リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Generation model of laser-driven magnetic field with consideration of warm-dense-matter properties」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Generation model of laser-driven magnetic field with consideration of warm-dense-matter properties

森田, 大樹 大阪大学 DOI:10.18910/82004

2021.03.24

概要

磁場は、宇宙,天体でのプラズマ物理現象や核融合研究の分野において重要な役割を果たしている。磁化プラズマ研究のために磁場発生に関する研究が様々行われている。中でも髙出カレーザーを用いた「レーザー駆動コイル」という手法は、100Tを超える強磁場を容易に生成することができる。最近ではこのレーザー駆動コイルを使い、様々な強磁場中でのプラズマ物理現象の実験研究が行われている。

 金属やプラズマのような導電性が髙い物質が十分に「磁化」されるためには、印加される磁場の持続時間よりも物質中への磁場の拡散時間が短くなければならない。十分な磁化を実現するためにはこの磁場拡散の時間スケール を把握しておく必要がある。

 一方で、100Tを超える強磁場はパルス的に発生し、磁場強度が強いほどそのパルス幅は短いという特徴を持つ。パルス強磁場は物質中に誘導加熱を引き起こし物質の導電率を大きく変化させる。磁場の拡散時間は物質の導電率に比例するので、拡散時間を評価するためには0.01eV~100eVといった広い温度領域での導電率の温度変化を考慮する必要がある。しかし、パルス磁場の拡散過程において、急激に加熱される金属は固体密度のまま数eVという温度まで上昇する。この状態はwarm dense matter (WDM)と呼ばれる、モデルで取り扱うことが難しい固体とプラズ マの中間状態である。WDM状態における導電率の実験データは少なくモデルも発展途上であるため、正確な拡散時間を見積もるためには実験データを必要としない第一原理的な導電率の評価が必要になる。

 本研究の目的は、レーザー駆動コイルによって生成されるパルス磁場が、どのように金属中に拡散するのかを明らかにすることである。著者は主に以下3つの課題について研究を行った。
1.WDM状態における導電率の評価
2.コイル断面における電流密度分布および導電率の時間発展を考慮したレーザー駆動コイルのモデリング
3.導電率の温度依存性を考慮した金属へのパルス磁場拡散

始めに、WDM状態における導電率の温度依存性を数値的に評価した。上で述べたようにWDM状態における導電率 の実験データは少なく、モデルも未だ発展途上である。本研究では導電率を評価するために、実験データを必要としない第一原理分子動力学シミュレーションを用いた。また、導電率の温度依存性を考慮した電磁場の時間発展を数値的に解析するため、本研究の基盤となる加熱機構を含んだ電磁場シミュレーションを開発した。

 第二に、開発した電磁場シミュレーションを用い、磁場発生手法の一つであるレーザー駆動コイルのモデリングを行った。従来、レーザー駆動コイルの電流の時間発展は回路方程式を基にモデリングされていた。著者らはそこに電磁場シミュレーションを応用することで、コイル断面における電流密度分布の時間発展および、Joule加熱に伴う導電率の時間変化を考慮したモデルを開発した。また、開発したモデルが実験結果と比較し従架の回路モデルよ りも実験結果をよく再現することを示した。

 最後に、レーザー駆動コイルで生成されるパルス磁場が、金属中に誘導加熱を起こし、導電率を変化させながら浸透する過程を数値的に評価した。パルス磁場の拡散は高強度レーザーを用いた核融合研究において重要な役割を 果たしている。最近のレーザー核融合研究では、燃料プラズマの加熱効率を向上させるために、レーザー駆動コイルで生成される強磁場を応用するという方法が検討されている。強磁場による加熱効率の向上を実現するためには、生成された強磁場がそのパルス幅時間内に燃料プラズマを十分に磁化している必要がある。燃料プラズマの加熱効率の向上を図る本手法において、直接計測することが難しいパルス磁場拡散の数値的評価は、より実験に近い状況を模擬したシミュレーションや、原理実証に向けた実験のデザイン、および実験結果の解析を助力する。本研究成果は核融合研究だけでなく、レーザー駆動コイルで生成される強磁場を用いた磁化プラズマ研究を行う上でも当該分野に大きく貢献するものである。

参考文献

[1] H. J. Schneider-muntau, J. Toth and H. W. Weijers, Generation of the Highest Continuous Magnetic Fields, IEEE Trans. Appl. Supercond., 14, 2 (2004):pp. 1245–1252

[2] K. Kindo, 100 T magnet developed in Osaka, Phys. B Condens. Matter, 294-295, (2001):pp. 585–590

[3] A. I. Bykov, M. I. Dolotenko, N. P. Kolokolchikov, V. D. Selemir and O. M. Tatsenko, VNIIEF achievements on ultra-high magnetic fields generation, Phys. B Condens. Matter, 294-295, (2001):pp. 574–578

[4] S. Takeyama and E. Kojima, A copper-lined magnet coil with maximum field of 700 T for electromagnetic flux compression, J. Phys. D. Appl. Phys., 44, 425003 (2011)

[5] F. S. Felber, M. M. Malley, M. A. Palmer and A. L. Velikovich, Compression of ultrahigh magnetic fields in a gas-puff Z pinch, Phys. Fluids, 31, 2053 (1988)

[6] J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J. Manuel, R. D. Petrasso, J. R. Rygg and F. H. Sguin, ´ Compressing magnetic fields with high-energy lasers, Phys. Plasmas, 17, 056318 (2010)

[7] S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura and H. Azechi, Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser, Sci. Rep., 3, 1170 (2013)

[8] J. J. Santos, L. Giuffrida, S. Fujioka, Z. Zhang, P. Korneev, R. Bouillaud, S. Dorard, D. Batani, M. Chevrot, J. E. Cross, R. Crowston, J. l. Dubois, J. Gazave, G. Gregori, E. Humi`eres, S. Hulin, K. Ishihara, S. Kojima, E. Loyez, J. R. Marqu`es, A. Morace, P. Nicola¨ı, O. Peyrusse, A. Poy´e, D. Raffestin, J. Ribolzi, M. Roth, G. Schaumann, F. Serres, V. T. Tikhonchuk, P. Vacar and N. Woolsey, Laser-driven platform for generation and characterization of strong quasi-static magnetic fields, New J. Phys., 17, 083051 (2015)[9] K. F. F. Law, A. Morace, S. Sakata, K. Matsuo, S. Kojima, S. Lee, X. Vaisseau, Y. Arikawa, A. Yogo, K. Kondo, Z. Zhang, C. Bellei, J. J. Santos, S. Fujioka, H. Azechi, K. F. F. Law, A. Morace, S. Sakata, K. Matsuo and S. Kojima, Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry, Appl. Phys. Lett., 108, 091104 (2016)[10] C. Courtois, A. D. Ash, D. M. Chambers, R. A. D. Grundy and N. C. Woolsey, Creation of a uniform high magnetic-field strength environment for laser-driven experiments, J. Appl. Phys., 98, 054913 (2005)

[11] G. Fiksel, W. Fox, L. Gao and H. Ji, A simple model for estimating a magnetic field in laser-driven coils, Appl. Phys. Lett., 109, 134103 (2016)

[12] V. T. Tikhonchuk, M. Bailly-Grandvaux, J. J. Santos and A. Poy´e, Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly, Phys. Rev. E, 96, 023202 (2017)

[13] K. F. F. Law, Y. Abe, A. Morace, Y. Arikawa, S. Sakata, S. Lee, K. Matsuo, H. Morita, Y. Ochiai, C. Liu, A. Yogo, K. Okamoto, D. Golovin, M. Ehret, T. Ozaki, M. Nakai, Y. Sentoku, J. J. Santos, E. Humi`eres, P. Korneev and S. Fujioka, Relativistic magnetic reconnection in laser laboratory for testing an emission mechanism of hard-state black hole system, Phys. Rev. E, 102, 033202 (2020)

[14] S. P. D. Mangles, P. A. Norreys, M. Wei, M. Zepf and K. Krushelnick, Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas, Phys. Rev. E, 70, 026401 (2004)

[15] C. Plechaty, R. Presura, S. Stein, D. Martinez, S. Neff, V. Ivanov and Y. Stepanenko, Penetration of a laser-produced plasma across an applied magnetic field, High Energy Density Phys., 6, (2010):pp. 258–261

[16] B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. B´eard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsd¨orfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H. P. Schlenvoigt, I. Y. Skobelev, A. Y. Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. P´epin and J. Fuchs, Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field, Science (80-. )., 346, 6207 (2014)

[17] D. B. Schaeffer, W. Fox, D. Haberberger, G. Fiksel, A. Bhattacharjee, D. H. Barnak, S. X. Hu, K. Germaschewski and R. K. Follett, High-Mach number, laser-driven magnetized collisionless shocks, Phys. Plasmas, 24, 122702 (2017)

[18] T. Byvank, J. T. Banasek, W. M. Potter, J. B. Greenly, C. E. Seyler and B. R. Kusse, Applied axial magnetic field effects on laboratory plasma jets: Density hollowing, field compression, and azimuthal rotation, Phys. Plasmas, 24, 122701 (2017)

[19] P. Mabey, B. Albertazzi, G. Rigon, J.-R. Marqu`es, C. A. J. Palmer, J. ToppMugglestone, P. Perez-Martin, F. Kroll, F.-E. Brack, T. E. Cowan, U. Schramm, K. Falk, G. Gregori, E. Falize and M. Koenig, Laboratory Study of Bilateral Supernova Remnants and Continuous MHD Shocks, Astrophys. J., 896, 167 (2020)

[20] K. Matsuo, H. Nagatomo, Z. Zhang, P. Nicolai, T. Sano, S. Sakata, S. Kojima, S. H. Lee, K. Fai, F. Law, Y. Arikawa, Y. Sakawa, T. Morita and Y. Kuramitsu, Magnetohydrodynamics of laser-produced high-energy-density plasma in a strong external magnetic field, Phys. Rev. E, 95, 053204 (2017)

[21] L. J. Perkins, B. G. Logan, G. B. Zimmerman and C. J. Werner, Twodimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields, Phys. Plasmas, 20, 072708 (2013)

[22] J. S. Green, V. M. Ovchinnikov, R. G. Evans, K. U. Akli, H. Azechi, F. N. Beg, C. Bellei, R. R. Freeman, H. Habara, R. Heathcote, M. H. Key, J. A. King, K. L. Lancaster, N. C. Lopes, T. Ma, A. J. MacKinnon, K. Markey, A. McPhee, Z. Najmudin, P. Nilson, R. Onofrei, R. Stephens, K. Takeda, K. A. Tanaka, W. Theobald, T. Tanimoto, J. Waugh, L. Van Woerkom, N. C. Woolsey, M. Zepf, J. R. Davies and P. A. Norreys, Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas, Phys. Rev. Lett., 100, 1 (2008):pp. 1–4

[23] K. L. Lancaster, J. S. Green, D. S. Hey, K. U. Akli, J. R. Davies, R. J. Clarke, R. R. Freeman, H. Habara, M. H. Key, R. Kodama, K. Krushelnick, C. D. Murphy, M. Nakatsutsumi, P. Simpson, R. Stephens, C. Stoeckl, T. Yabuuchi, M. Zepf and P. A. Norreys, Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5 × 1020Wcm-2, Phys. Rev. Lett., 98, 125002 (2007)

[24] H. B. Cai, S. P. Zhu and X. T. He, Effects of the imposed magnetic field on the production and transport of relativistic electron beams, Phys. Plasmas, 20, 072701 (2013)

[25] T. Johzaki, T. Taguchi, Y. Sentoku, A. Sunahara, H. Nagatomo, H. Sakagami, K. Mima, S. Fujioka and H. Shiraga, Control of an electron beam using strong magnetic field for efficient core heating in fast ignition, Nucl. Fusion, 55, 5 (2015)

[26] T. Johzaki, H. Nagatomo, A. Sunahara, Y. Sentoku, H. Sakagami, M. Hata, T. Taguchi, K. Mima, Y. Kai, D. Ajimi, T. Isoda, T. Endo, A. Yogo, Y. Arikawa, S. Fujioka, H. Shiraga and H. Azechi, Integrated simulation of magnetic-fieldassist fast ignition laser fusion, Plasma Phys. Control. Fusion, 59, 014045 (2017)

[27] S. Sakata, S. Lee, H. Morita, T. Johzaki, H. Sawada, Y. Iwasa, K. Matsuo, K. F. F. Law, A. Yao, M. Hata, A. Sunahara, S. Kojima, Y. Abe, H. Kishimoto, A. Syuhada, T. Shiroto, A. Morace, A. Yogo, N. Iwata, M. Nakai, H. Sakagami, T. Ozaki, K. Yamanoi, T. Norimatsu, Y. Nakata, S. Tokita, N. Miyanaga, J. Kawanaka, H. Shiraga, K. Mima, H. Nishimura, M. Bailly-Grandvaux, J. J. Santos, H. Nagatomo, H. Azechi, R. Kodama, Y. Arikawa, Y. Sentoku and S. Fujioka, Magnetized fast isochoric laser heating for efficient creation of ultrahigh-energy-density states, Nat. Commun., 9, 3937 (2018)

[28] K. Matsuo, N. Higashi, N. Iwata, S. Sakata, S. Lee, T. Johzaki, H. Sawada, Y. Iwasa, K. F. F. Law, H. Morita, Y. Ochiai, S. Kojima, Y. Abe, M. Hata, T. Sano, H. Nagatomo, A. Sunahara, A. Morace, A. Yogo, M. Nakai, H. Sakagami, T. Ozaki, K. Yamanoi, T. Norimatsu, Y. Nakata, S. Tokita, J. Kawanaka, H. Shiraga, K. Mima, H. Azechi, R. Kodama, Y. Arikawa, Y. Sentoku and S. Fujioka, Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse, Phys. Rev. Lett., 124, 035001 (2020)

[29] S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon and R. A. Snavely, Energetic proton generation in ultra-intense laser-solid interactions, Phys. Plasmas, 8, 542 (2001)

[30] M. Passoni and M. Lontano, Theory of Light-Ion Acceleration Driven by a Strong Charge Separation, Phys. Rev. Lett., 101, 115001 (2008)

[31] M. Passoni, C. Perego, A. Sgattoni, D. Batani, M. Passoni, C. Perego, A. Sgattoni and D. Batani, Advances in target normal sheath acceleration theory, Phys. Plasmas, 20, 060701 (2013)

[32] A. Arefiev, T. Toncian and G. Fiksel, Enhanced proton acceleration in an applied longitudinal magnetic field, New J. Phys., 18, 105011 (2016)

[33] A. E. Raymond, C. F. Dong, A. McKelvey, C. Zulick, N. Alexander, A. Bhattacharjee, P. T. Campbell, H. Chen, V. Chvykov, E. Del Rio, P. Fitzsimmons, W. Fox, B. Hou, A. Maksimchuk, C. Mileham, J. Nees, P. M. Nilson, C. Stoeckl, A. G. R. Thomas, M. S. Wei, V. Yanovsky, K. Krushelnick, and L. Willingale, Relativistic-electron-driven magnetic reconnection in the laboratory, Phys. Rev. E, 98, 043207 (2018)

[34] S. X. Luan, W. Yu, F. Y. Li, D. Wu, Z. M. Sheng, M. Y. Yu and J. Zhang, Laser propagation in dense magnetized plasma, Phys. Rev. E, 94, 053207 (2016)

[35] T. Sano, Y. Tanaka, N. Iwata, M. Hata, K. Mima, M. Murakami and Y. Sentoku, Broadening of cyclotron resonance conditions in the relativistic interaction of an intense laser with overdense plasmas, Phys. Rev. E, 96, 043209 (2017)

[36] C. Liu, K. Matsuo, S. Ferri, H. K. Chung, S. Lee, S. Sakata, K. F. F. Law, H. Morita, B. Pollock, J. Moody and S. Fujioka, Design of Zeeman spectroscopy experiment with magnetized silicon plasma generated in the laboratory, High Energy Density Phys., 33, 100710 (2019)

[37] K. Higuchi, D. B. Hamal and M. Higuchi, Nonperturbative description of the butterfly diagram of energy spectra for materials immersed in a magnetic field, Phys. Rev. B, 97, 195135 (2018)

[38] R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl and J. D. Zuegel, Direct-drive inertial confinement fusion: A review, Phys. Plasmas, 22, 110501 (2015)

[39] M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry and R. J. Mason, Ignition and high gain with ultrapowerful lasers, Phys. Plasmas, 1, 5 (1994)

[40] R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka and M. Zepf, Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition, Nature, 412, 23 (2001):pp. 798–802

[41] W. Theobald, A. A. Solodov, C. Stoeckl, K. S. Anderson, F. N. Beg, R. Epstein, G. Fiksel, E. M. Giraldez, V. Y. Glebov, H. Habara, S. Ivancic, L. C. Jarrott, F. J. Marshall, G. McKiernan, H. S. McLean, C. Mileham, P. M. Nilson, P. K. Patel, F. P´erez, T. C. Sangster, J. J. Santos, H. Sawada, A. Shvydky, R. B. Stephens and M. S. Wei, Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion, Nat. Commun., 5, 5785 (2014)

[42] L. C. Jarrott, M. S. Wei, C. McGuffey, A. A. Solodov, W. Theobald, B. Qiao, C. Stoeckl, R. Betti, H. Chen, J. Delettrez, T. D¨oppner, E. M. Giraldez, V. Y. Glebov, H. Habara, T. Iwawaki, M. H. Key, R. W. Luo, F. J. Marshall, H. S. Mclean, C. Mileham, P. K. Patel, J. J. Santos, H. Sawada, R. B. Stephens, T. Yabuuchi and F. N. Beg, Visualizing fast electron energy transport into lasercompressed high-density fast-ignition targets, Nat. Phys., 12, (2016):pp. 499–504

[43] S. C. Wilks, W. L. Kruer, M. Tabak and A. B. Langdon, Absorption of ultraintense laser pulses, Phys. Rev. Lett., 69, 9 (1992):pp. 1383–1386

[44] F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys and M. Tatarakis, A study of picosecond laser-solid interactions up to 1019W cm-2, Phys. Plasmas, 4, 2 (1997):pp. 447–457

[45] D. J. Strozzi, M. Tabak, D. J. Larson, L. Divol, A. J. Kemp, C. Bellei, M. M. Marinak and M. H. Key, Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields, Phys. Plasmas, 19, 072711 (2012)

[46] J. Wang, Z. Q. Zhao, B. Zhu, Z. M. Zhang, L. H. Cao, W. M. Zhou and Y. Q. Gu, Refluxed electrons direct laser acceleration in ultrahigh laser and relativistic critical density plasma interaction, Phys. Plasmas, 22, 013106 (2015)

[47] C. Goyon, B. B. Pollock, D. P. Turnbull, A. Hazi, L. Divol, W. A. Farmer, D. Haberberger, J. Javedani, A. J. Johnson, A. Kemp, M. C. Levy, B. Grant Logan, D. A. Mariscal, O. L. Landen, S. Patankar, J. S. Ross, A. M. Rubenchik, G. F. Swadling, G. J. Williams, S. Fujioka, K. F. Law and J. D. Moody, Ultrafast probing of magnetic field growth inside a laser-driven solenoid, Phys. Rev. E, 95, 033208 (2017)

[48] R. P. Drake, High-Energy-Density-Physics, Springer, Chap. 1 Introduction to High-Energy-Density-Physics, p. 6

[49] M. R. Zaghloul, A simple theoretical approach to calculate the electrical conductivity of nonideal copper plasma, Phys. Plasmas, 15, 042705 (2008)

[50] D.-K. Kim and I. Kim, Calculation of ionization balance and electrical conductivity in nonideal aluminum plasma, Phys. Rev. E, 68, 056410 (2003)

[51] Z. Fu, L. Jia, X. Sun and Q. Chen, Electrical conductivity of warm dense tungsten, High Energy Density Phys., 9, (2013):pp. 781–786

[52] M. Payne, M. Teter, D. Allan, T. Arias and J. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys., 64, 4 (1992)

[53] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, 11 (1990)

[54] P. E. Bl¨ochl, Projector augmented-wave method, Phys. Rev. B, 50, 24 (1994)

[55] S. Mazevet, M. Torrent, V. Recoules and F. Jollet, Calculations of the transport properties within the PAW formalism, High Energy Density Phys., 6, (2010):pp. 84–88

[56] D. J. Chadi and M. L. Cohen, Special points in the brillouin zone, Phys. Rev. B, 8, 12 (1973):pp. 5747–5753

[57] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 12 (1976)

[58] F. Graziani, M. P. Desjarlais, R. Redmer and S. B. Trickey, Frontiers and Challenges in Warm Dense Matter, Springer, Progress in Warm Dense Matter and Planetary Physics, p. 209

[59] M. P. Desjarlais, J. D. Kress and L. A. Collins, Electrical conductivity for warm, dense aluminum plasmas and liquids, Phys. Rev. E, 66, 025401 (2002)

[60] R. Matula, Resistivity of Copper, Gold, Palladium, and Silver, J. Phys. Chem. Ref. Data, 8, 4 (1979)

[61] G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 1 (1993):pp. 558–561

[62] G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set, Phys. Rev. B, 54, 16 (1996)

[63] S. Nos´e, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81, 1 (1984):pp. 511–519

[64] X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J. M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Cˆot´e, F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D. R. Hamann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukaˇcevi´c, A. Martin, C. Martins, M. J. Oliveira, S. Ponc´e, Y. Pouillon, T. Rangel, G. M. Rignanese, A. H. Romero, B. Rousseau, O. Rubel, A. A. Shukri, M. Stankovski, M. Torrent, M. J. Van Setten, B. Van Troeye, M. J. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou and J. W. Zwanziger, Recent developments in the ABINIT software package, Comput. Phys. Commun., 205, (2016):pp. 106–131

[65] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 18 (1996):pp. 3865–3868

[66] M. Pozzo, M. P. Desjarlais and D. Alf`e, Electrical and thermal conductivity of liquid sodium from first-principles calculations, Phys. Rev. B, 84, 054203 (2011)

[67] B. Holst, V. Recoules, S. Mazevet, M. Torrent, A. Ng, Z. Chen, S. E. Kirkwood, V. Sametoglu, M. Reid and Y. Y. Tsui, Ab initio model of optical properties of two-temperature warm dense matter, Phys. Rev. B, 90, 035121 (2014)

[68] A. Ng, P. Sterne, S. Hansen, V. Recoules, Z. Chen, Y. Y. Tsui and B. Wilson, dc conductivity of two-temperature warm dense gold, Phys. Rev. E, 94, 033213 (2016)

[69] Dongxiao Liu, Wei Fan, Lianqiang Shan, Chao Tian, Bi Bi, Feng Zhang, Zongqiang Yuan, Weiwu Wang, Hongjie Liu, Lei Yang, Lingbiao Meng, Leifeng Cao, Weimin Zhou, and Yuqiu Gu. Ab initio simulations for expanded gold fluid in metal-nonmetal transition regime. Phys. Plasmas, Vol. 26, No. 12, 2019.

[70] I. M. Bespalov and A. Y. Polishchuk, Method for calculating the degree of ionization and the thermal and electrical conductivity over a wide range of density and temperature, Sov. Tech. Phys. Lett., 15, (1989):pp. 39–41

[71] A. Kramida, Y. Ralchenko, J. Reader and N. A. Team, NIST Atomic Spectra Database (version 5.5.6), National Institute of Standards and Technology, Gaithersburg, MD. (2018)

[72] O. Portugall, N. Puhlmann, H. U. M¨uller, M. Barczewski, I. Stolpe and M. Von Ortenberg, Megagauss magnetic field generation in single-turn coils: New frontiers for scientific experiments, J. Phys. D. Appl. Phys., 32, (1999):pp. 2354–2366

[73] B. Albertazzi, J. B´eard, A. Ciardi, T. Vinci, J. Albrecht, J. Billette, T. BurrisMog, S. N. Chen, D. Da Silva, S. Dittrich, T. Herrmannsd¨orfer, B. Hirardin, F. Kroll, M. Nakatsutsumi, S. Nitsche, C. Riconda, L. Romagnagni, H. P. Schlenvoigt, S. Simond, E. Veuillot, T. E. Cowan, O. Portugall, H. P´epin and J. Fuchs, Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields, Rev. Sci. Instrum., 84, 4 (2013)

[74] R. V. Shapovalov, G. Brent, R. Moshier, M. Shoup, R. B. Spielman and P. A. Gourdain, Design of 30-T pulsed magnetic field generator for magnetized high-energy-density plasma experiments, Phys. Rev. Accel. Beams, 22, 080401 (2019)

[75] P. Hu, G. Y. Hu, Y. L. Wang, H. B. Tang, Z. C. Zhang and J. Zheng, Pulsed magnetic field device for laser plasma experiments at Shenguang-II laser facility, Rev. Sci. Instrum., 91, 014703 (2020)

[76] L. Gao, H. Ji, G. Fiksel, W. Fox, M. Evans and N. Alfonso, Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current, Phys. Plasmas, 23, 043106 (2016)

[77] B. J. Zhu, Y. T. Li, D. W. Yuan, Y. F. Li, F. Li, G. Q. Liao, J. R. Zhao, J. Y. Zhong, F. B. Xue, S. K. He, W. W. Wang, F. Lu, F. Q. Zhang, L. Yang, K. N. Zhou, N. Xie, W. Hong, H. G. Wei, K. Zhang, B. Han, X. X. Pei, C. Liu, Z. Zhang, W. M. Wang, J. Q. Zhu, Y. Q. Gu, Z. Q. Zhao, B. H. Zhang, G. Zhao and J. Zhang, Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses, Appl. Phys. Lett., 107, 261903 (2015)

[78] X. X. Pei, J. Y. Zhong, Y. Sakawa, Z. Zhang, K. Zhang, H. G. Wei, Y. T. Li, Y. F. Li, B. J. Zhu, T. Sano, Y. Hara, S. Kondo, S. Fujioka, G. Y. Liang, F. L.Wang and G. Zhao, Magnetic reconnection driven by Gekko XII lasers with a Helmholtz capacitor-coil target, Phys. Plasmas, 23, 032125 (2016)

[79] M. Bailly-Grandvaux, J. J. Santos, C. Bellei, P. Forestier-Colleoni, S. Fujioka, L. Giuffrida, J. J. Honrubia, D. Batani, R. Bouillaud, M. Chevrot, J. E. Cross, R. Crowston, S. Dorard, J. L. Dubois, M. Ehret, G. Gregori, S. Hulin, S. Kojima, E. Loyez, J. R. Marqu`es, A. Morace, P. Nicola¨ı, M. Roth, S. Sakata, G. Schaumann, F. Serres, J. Servel, V. T. Tikhonchuk, N. Woolsey and Z. Zhang, Guiding of relativistic electron beams in dense matter by laserdriven magnetostatic fields, Nat. Commun., 9, 102 (2018)

[80] T. Sano, M. Hata, D. Kawahito, K. Mima and Y. Sentoku, Ultrafast waveparticle energy transfer in the collapse of standing whistler waves, Phys. Rev. E, 100, 053205 (2019)

[81] V. V. Korobkin and S. Motylev, Laser method for producing strong magnetic fields, Soviet Technical Physics Letters, 5, 474 (1979)

[82] J. F. Seely, Pulsed megagauss fields produced by laser-driven coils, Applied Physics B, 31, 1 (1983)

[83] H. Daido, F. Miki, K. Mima, M. Fujita, K. Sawai, H. Fujita, Y. Kitagawa, S. Nakai and C. Yamanaka, Generation of a Strong Magnetic Field by an Intense CO2 Laser Pulse, Phys. Rev. Lett., 56, 8 (1986)

[84] P. Mora, Thin-foil expansion into a vacuum, Phys. Rev. E, 72, 056401 (2005)

[85] G. Williams, S. Patankar, D. A. Mariscal, V. T. Tikhonchuk, J. Bude, C. Carr, C. Goyon, B. Norton, A. M. Rubenchik, G. F. Swadling, E. Tubman and J. Moody, Laser intensity scaling of the magnetic field from a laser-driven coil target, J. Appl. Phys., 17, 083302 (2020)

[86] N. F. Chen, M. F. Kasim, L. Ceurvorst, N. Ratan, J. Sadler, M. C. Levy, R. Trines, R. Bingham and P. Norreys, Machine learning applied to proton radiography of high-energy-density plasmas, Phys. Rev. E, 95, 043305 (2017)

[87] M. F. Kasim, L. Ceurvorst, N. Ratan, J. Sadler, N. Chen, A. S¨avert, R. Trines, R. Bingham, P. N. Burrows, M. C. Kaluza and P. Norreys, Quantitative shadowgraphy and proton radiography for large intensity modulations, Phys. Rev. E, 95, 023306 (2017)

[88] N. L. Kugland, D. D. Ryutov, C. Plechaty, J. S. Ross and H. S. Park, Invited Article: Relation between electric and magnetic field structures and their protonbeam images, Rev. Sci. Instrum., 83, 101301 (2012)

[89] Y. Sentoku, T. E. Cowan, A. Kemp and H. Ruhl, High energy proton acceleration in interaction of short laser pulse with dense plsma target, Phys. Plasmas, 10, 5 (2003)

[90] A. B. Zylstra, C. K. Li, H. G. Rinderknecht, F. H. S´eguin and R. D. Petrasso, Using high-intensity laser-generated energetic protons to radiograph directly driven implosions directly driven implosions, Rev. Sci. Instrum., 83, 013511 (2012)

[91] S. Atzeni and J. Meyer-Ter-Vehn, The Physics of Inertial Fusion, Oxford University Press Inc., Chap. 11 Beat-target interaction, pp. 389–396

[92] T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. ichiro Abe, T. Kai, P. E. Tsai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver and K. Niita, Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, J. Nucl. Sci. Technol., 55, 6 (2018):pp. 684–690

[93] L. Lancia, B. Albertazzi, C. Boniface, A. Grisollet, R. Riquier, F. Chaland, K. C. Le Thanh, P. Mellor, P. Antici, S. Buffechoux, S. N. Chen, D. Doria, M. Nakatsutsumi, C. Peth, M. Swantusch, M. Stardubtsev, L. Palumbo, M. Borghesi, O. Willi, H. P´epin and J. Fuchs, Topology of megagauss magnetic fields and of heat-carrying electrons produced in a high-power laser-solid interaction, Phys. Rev. Lett., 113, 235001 (2014)

[94] Y. Abe, A. Morace, Y. Arikawa, S. Shokita, S. R. Mirfayzi, D. Golovin, K. Law, S. Fujioka, A. Yogo, S. Tojo and M. Nakai, Dosimetric calibration of GAFCHROMIC HD-V2, MD-V3, and EBT3 film for dose ranges up to 30 MGy, unpublished

[95] E. J. Tuohy, T. H. Lee and H. P. Fullerton, Transient Resistance of Conductors, IEEE Transactions on Power Apparatus and Systems, 87, 094505 (1968)

[96] P. A. Gourdain, M. B. Adams, J. R. Davies and C. E. Seyler, Axial magnetic field injection in magnetized liner inertial fusion, Phys. Plasmas, 24, 102712 (2017)

[97] J. Moody, A. Johnson, J. Javedani, E. Carroll, J. Fry, B. Kozioziemski, S. Kucheyev, B. Logan, B. Pollock, H. Sio, D. Strozzi, W. Stygar, V. Tang and S. Winters, Transient magnetic field diffusion considerations relevant to magnetically assisted indirect drive inertial confinement fusion, Phys. Plasmas, 27, 112711 (2020)

[98] H. Morita, A. Sunahara, Y. Arikawa, H. Azechi and S. Fujioka, Numerical analysis of pulsed magnetic field diffusion dynamics in gold cone target, Phys. Plasmas, 25, 094505 (2018)

[99] J. Cl´erouin, P. Noiret, P. Blottiau, V. Recoules, B. Siberchicot, P. Renaudin, C. Blancard, G. Faussurier, B. Holst and C. E. Starrett, A database for equations of state and resistivities measurements in the warm dense matter regime, Phys. Plasmas, 19, 082702 (2012)

[100] V. Tikhonchuk, J. Santos and P. Korneev, Generation of strong magnetic fields with lasers: from nano- to picoseconds, Invited Talk at the 35th European Conference on Laser Interaction with Matter in Rethymno, Greece (2018)

[101] D. Forslund, J. Kindel and K. Lee, Theory of Hot-Electron Spectra at High Laser Intensity, Phys. Rev. Lett., 39, 5 (1977):pp. 284–287

[102] S. Atzeni and J. Meyer-Ter-Vehn, The Physics of Inertial Fusion, Oxford University Press Inc., Chap. 10 Hot Dense Matter, pp. 332–335

[103] S. Christian, C. Andreas and F. Wolfgang, Review of fdtd time-stepping schemes for efficient simulation of electric conductive media, Microw. Opt. Technol. Lett., 25, 1 (2000):pp. 16–21

[104] F. Schillaci, M. D. Marco, L. Giuffrida, S. Fujioka, Z. Zhang, G. Korn and D. Margarone, Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields, AIP Adv., 8, 025103 (2018)

[105] M. Yousuf, P. C. Sahu and G. K. Rajan, High-pressure and high-temperature electrical resistivity of ferromagnetic transition metals: Nickel and iron, Phys. Rev. B, 34, 11 (1986)

[106] V. Recoules and J. P. Crocombette, Ab initio determination of electrical and thermal conductivity of liquid aluminum, Phys. Rev. B, 72, 104202 (2005)

[107] V. Vlˇcek, N. De Koker and G. Steinle-Neumann, Electrical and thermal conductivity of Al liquid at high pressures and temperatures from ab initio computations, Phys. Rev. B, 85, 184201 (2012)

[108] M. Borghesi, D. H. Campbell, A. Schiavi, M. G. Haines, O. Willi, A. J. MacKinnon, P. Patel, L. A. Gizzi, M. Galimberti, R. J. Clarke, F. Pegoraro, H. Ruhl and S. Bulanov, Electric field detection in laser-plasma interaction experiments via the proton imaging technique, Phys. Plasmas, 9, 5 (2002)

[109] A. J. MacKinnon, P. K. Patel, M. Borghesi, R. C. Clarke, R. R. Freeman, H. Habara, S. P. Hatchett, D. Hey, D. G. Hicks, S. Kar, M. H. Key, J. A. King, K. Lancaster, D. Neely, A. Nikkro, P. A. Norreys, M. M. Notley, T. W. Phillips, L. Romagnani, R. A. Snavely, R. B. Stephens and R. P. Town, Proton radiography of a laser-driven implosion, Phys. Rev. Lett., 97, 045001 (2006)

[110] K. L. Lancaster, S. Karsch, H. Habara, F. N. Beg, E. L. Clark, R. Freeman, M. H. Key, J. A. King, R. Kodama, K. Krushelnick, K. W. Ledingham, P. McKenna, C. D. Murphy, P. A. Norreys, R. Stephens, C. St¨oeckl, Y. Toyama, M. S. Wei and M. Zepf, Characterization of LiBe neutron yields from laser produced ion beams for fast neutron radiography, Phys. Plasmas, 11, 7 (2004):pp. 3404–3408

[111] S. Kar, K. Markey, P. T. Simpson, C. Bellei, J. S. Green, S. R. Nagel, S. Kneip, D. C. Carroll, B. Dromey, L. Willingale, E. L. Clark, P. McKenna, Z. Najmudin, K. Krushelnick, P. Norreys, R. J. Clarke, D. Neely, M. Borghesi and M. Zepf, Dynamic control of laser-produced proton beams, Phys. Rev. Lett., 100, 105004 (2008)

[112] S. V. Bulanov and V. S. Khoroshkov, Feasibility of Using Laser Ion Accelerators in Proton Therapy, Plasma Phys. Reports, 28, 5 (2002):pp. 493–496

[113] M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry and H. Powell, Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Lett., 86, 3 (2001):pp. 436–439

[114] J. C. Fern´andez, J. J. Honrubia, B. J. Albright, K. A. Flippo, D. C. Gautier, B. M. Hegelich, M. J. Schmitt, M. Temporal and L. Yin, Progress and prospects of ion-driven fast ignition, Nucl. Fusion, 49, 065004 (2009)

[115] I. J. Kim, K. H. Pae, I. W. Choi, C. L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim and C. H. Nam, Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses, Phys. Plasmas, 23, 070701 (2016)

[116] P. Antici, E. Boella, S. N. Chen, D. S. Andrews, M. Barberio, J. B¨oker, F. Cardelli, J. L. Feugeas, M. Glesser, P. Nicola¨ı, L. Romagnani, M. Scisci`o, M. Starodubtsev, O. Willi, J. C. Kieffer, V. Tikhonchuk, H. P´epin, L. O. Silva, E. D. Humi`eres and J. Fuchs, Acceleration of collimated 45 MeV protons by collisionless shocks driven in low-density, large-scale gradient plasmas by a 1020W/cm2, 1 µm laser, Sci. Rep., 7, 16463 (2017)

[117] D. Wang, Y. Shou, P. Wang, J. Liu, C. Li, Z. Gong, R. Hu, W. Ma and X. Yan, Enhanced proton acceleration from an ultrathin target irradiated by laser pulses with plateau ASE, Sci. Rep., 8, 2536 (2018)

[118] A. Higginson, R. J. Gray, M. King, R. J. Dance, S. D. Williamson, N. M. Butler, R. Wilson, R. Capdessus, C. Armstrong, J. S. Green, S. J. Hawkes, P. Martin, W. Q. Wei, S. R. Mirfayzi, X. H. Yuan, S. Kar, M. Borghesi, R. J. Clarke, D. Neely and P. McKenna, Near-100 MeV protons via a laserdriven transparency-enhanced hybrid acceleration scheme, Nat. Commun., 9, 724 (2018)

[119] H. Schwoerer, S. Pfotenhauer, O. J¨ackel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K. W. D. Ledingham and T. Esirkepov, Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets, Nature, 439, (2006):pp. 445–448

[120] O. Klimo, J. Psikal, J. Limpouch, J. Proska, F. Novotny, T. Ceccotti, V. Floquet and S. Kawata, Short pulse laser interaction with micro-structured targets: Simulations of laser absorption and ion acceleration, New J. Phys., 13, 053028 (2011)

[121] M. Blanco, C. Ruiz and M. Vranic, Table-top laser-based proton acceleration in nanostructured targets, New J. Phys., 19, 033004 (2017)

[122] A. Yogo, K. Mima, N. Iwata, S. Tosaki, A. Morace, Y. Arikawa, S. Fujioka, T. Johzaki, Y. Sentoku, H. Nishimura, A. Sagisaka, K. Matsuo, N. Kamitsukasa, S. Kojima, H. Nagatomo, M. Nakai, H. Shiraga, M. Murakami, S. Tokita, J. Kawanaka, N. Miyanaga, K. Yamanoi, T. Norimatsu, H. Sakagami, S. V. Bulanov, K. Kondo and H. Azechi, Boosting laser-ion acceleration with multipicosecond pulses, Sci. Rep., 7, 42451 (2017):p. 10

[123] A. Morace, N. Iwata, Y. Sentoku, K. Mima, Y. Arikawa, A. Yogo, A. Andreev, S. Tosaki, X. Vaisseau, Y. Abe, S. Kojima, S. Sakata, M. Hata, S. Lee, K. Matsuo, N. Kamitsukasa, T. Norimatsu, J. Kawanaka, S. Tokia, N. Miyanaga, H. Shiraga, Y. Sakawa, M. Nakai, H. Nishimura, H. Azechi, S. Fujioka and R. Kodama, Enhancing laser beam performance by interfering intense laser beamlets, Nat. Commun., 10, 2995 (2019)

[124] J. J. Santos, M. Bailly-Grandvaux, M. Ehret, A. V. Arefiev, D. Batani, F. N. Beg, A. Calisti, S. Ferri, R. Florido, P. Forestier-Colleoni, S. Fujioka, M. A. Gigosos, L. Giuffrida, L. Gremillet, J. J. Honrubia, S. Kojima, P. Korneev, K. F. Law, J. R. Marqu`es, A. Morace, C. Moss´e, O. Peyrusse, S. Rose, M. Roth, S. Sakata, G. Schaumann, F. Suzuki-Vidal, V. T. Tikhonchuk, T. Toncian, N. Woolsey and Z. Zhang, Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics, Phys. Plasmas, 25, 056705 (2018)

[125] K. Weichman, J. J. Santos, S. Fujioka, T. Toncian and A. V. Arefiev, Generation of focusing ion beams by magnetized electron sheath acceleration, Sci. Rep., 10, 18966 (2020)

[126] A. V. Arefiev, A. P. Robinson and V. N. Khudik, Novel aspects of direct laser acceleration of relativistic electrons, J. Plasma Phys., 81, 475810404 (2015)

[127] W. Priedhorsky, D. Lier, R. Day and D. Gerke, Hard-X-ray measurements of 10.6-µm laser-irradiated targets, Phys. Rev. Lett., 47, 23 (1981):pp. 1661–1664

[128] H. K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko and R. W. Lee, Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements, High Energy Density Physics, 1, (2005)

[129] S. Egashira et al., (private communication)

[130] R. J. Zollweg and R. W. Liebermann, Electrical conductivity of nonideal plasmas, J. Appl. Phys., 62, 9 (1987):pp. 3621–3627 Annotation:

[131] M. R. Zaghloul, M. A. Bourham and J. M. Doster, Energy-averaged electron–ion momentum transport cross section in the Born Approximation and Debye–Huckel potential, Phys. Lett. A, 266, (2000):pp. 34–40

[132] R. M. More, Pressure Ionization, Resonances, and the Continuity of Bound and Free States, Adv. At. Mol. Phys., 21, (1985):pp. 305–356 Annotation:

[133] M. P. Desjarlais, Practical Improvements to the Lee-More Conductivity Near the Metal-Insulator Transition, Contrib. to Plasma Phys., 41, 2-3 (2001):pp. 267–270

[134] M. R. Zaghloul, M. A. Bourham and J. M. Doster, Simple formulation and solution strategy of the Saha equation for ideal and nonideal plasmas, J. Phys. D. Appl. Phys., 33, 977 (2000)

[135] Y. T. Lee and R. M. More, An electron conductivity model for dense plasmas, Phys. Fluids, 27, 1273 (1984)

[136] M. R. Zaghloul, On the Calculation of the Electrical Conductivity of Hot Dense Nonideal Plasmas, Plasma Phys. Reports, 46, 5 (2020):pp. 574–586

[137] D. Bednarczyk and J. Bednarczyk, The approximtion of the Fermi-Dirac integral F1/2, Phys. Lett., 64, 4 (1978):pp. 409–410

[138] X. Aymerich-Humet, F. Serra-Mestres and J. Mill´an, An analytical approximation for the Fermi-Dirac integral F3/2(η), Solid State Electron., 24, 10 (1981):pp. 981–982

[139] K. Widmann, T. Ao, M. E. Foord, D. E. Price, A. D. Ellis, P. T. Springer, and A. Ng, Single-State Measurement of Electrical Conductivity of Warm Dense Gold, Phys. Rev. Lett., 92, 12 (2004)

[140] Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. W. Collins, and A. Ng, Dielectric function of warm dense gold, Phys. Plasmas, 15, 056303 (2008)

[141] Z. Chen, B. Holst, S. E. Kirkwood, V. Sametoglu, M. Reid, Y. Y. Tsui, V. Recoules, and A. Ng, Evolution of ac Conductivity in Nonequilibrium Warm Dense Gold, Phys. Rev. Lett., 110, 135001 (2013)

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る