リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of Current Noise Measurement System and Non-equilibrium Transport in Quantum Hall Effect」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of Current Noise Measurement System and Non-equilibrium Transport in Quantum Hall Effect

Lee, Sanghyun 大阪大学 DOI:10.18910/82007

2021.03.24

概要

微細加工技術の発展により、電気伝導に関する特徴的な長さ(平均自由行程やコヒーレンス長など)よりも小さい素子を作製できるようになった。このような素子をメゾスコピック系と呼ぶ。メゾスコピック系における電気伝導は量子力学的な散乱問題として記述できる。これまで多くの研究が電気伝導度測定によって行われてきているが、電流雑音の測定によっても、電子の微視的な伝導過程に関して有用な情報が得られることが知られている。しかし、技術的な難易度が高いため、電流雑音測定を行う実験グループは世界的にみてもそれほど多くない。
 本学位論文では、メゾスコピック系における電流雑音に関して二つのテーマに取り組んだ。一つは高精度の電流雑音測定系の開発であり、もう一つは量子ホール効果の崩壊にともなう電流雑音測定である。
 これまで、高精度の電流雑音測定のためには信号のデータ数を増やし長時間の統計平均を行う か、あるいは、低温増幅回路の改良によって信号対雑音比を高める方法が用いられてきた。しか し、データ数を増やすために必要な長時間測定には現実的な限界があり、また、市販の高移動度トランジスタ(HEMT)を用いる低温増幅回路ではその性能に限界があった。そこで本学位論文で は、GaAsヘテロ構造を用いて低温測定に適したHEMTを新たに設計・最適化した。開発した HEMTを低温増幅回路に組み込むことにより、従来よりも9倍の高効率をもつ電流雑音測定系の構築に成功した。
 量子ホール効果は国際単位系(SI)において抵抗標準として用いられる重要な現象である。しかし、印加電流が過大になると量子ホール効果が崩壊することが知られており、その原因に関して、理論的・実験的研究が盛んに行われてきた。本学位論文では、グラフェン素子を用いて、キャリアのタイプ及びその密度を変調させながら量子ホール効果の崩壊にともなう電流雑音を系統的に調べた。その結果、崩壊の際に電流雑音が印加電流のほぼ二乗に比例して増大し、電子温度が測定温度の数100倍に達していることを明らかにした。この結果は、量子ホール効果の崩壊が電子散乱にともなう熱的なものであるという理論を支持する。
 以上のように、本学位論文は、メゾスコピック系における電流雑音測定技術を進展させるとともに、量子ホール効果の崩壊現象のメカニズムについて重要な手がかりを与えるものである。いずれも、今後のメゾスコピック系の研究の発展にとって重要な貢献であると位置づけられる。

参考文献

1. V. Klitzing, K., Dorda, G. & Pepper, M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters 45, 494–497 (1980).

2. Landauer, R. Solid-state shot noise. Physical Review B 47, 16427–16432 (1993).

3. Blanter, Y. & Büttiker, M. Shot noise in mesoscopic conductors. Physics Reports 336, 1–166 (2000).

4. Martin, T. Noise in mesoscopic physics. les Houches Session LXXXI, H. Bouchiat et. al. eds. (Elsevier 2005). arXiv: cond-mat/0501208 [cond-mat.mes-hall] (Jan. 10, 2005).

5. Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Observation of the e/3 Fractionally Charged Laughlin Quasiparticle. Physical Review Let- ters 79, 2526–2529 (1997).

6. De Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997).

7. Reznikov, M., de Picciotto, R., Griffiths, T. G., Heiblum, M. & Umansky, V. Observation of quasiparticles with one-fifth of an electron's charge. Nature 399, 238–241 (1999).

8. Hashisaka, M., Ota, T., Muraki, K. & Fujisawa, T. Shot-Noise Evidence of Fractional Quasiparticle Creation in a Local Fractional Quantum Hall State. Physical Review Letters 114, 056802 (2015).

9. Zarchin, O., Zaffalon, M., Heiblum, M., Mahalu, D. & Umansky, V. Two-electron bunching in transport through a quantum dot induced by Kondo correlations. Physical Review B 77, 241303 (2008).

10. Yamauchi, Y. et al. Evolution of the Kondo Effect in a Quantum Dot Probed by Shot Noise. Physical Review Letters 106, 176601 (2011).

11. Ferrier, M. et al. Universality of non-equilibrium fluctuations in strongly correlated quantum liquids. Nature Physics 12, 230–235 (2016).

12. DiCarlo, L. et al. System for measuring auto- and cross correlation of current noise at low temperatures. Review of Scientific Instruments 77, 073906 (2006).

13. Wilczek, F. Magnetic Flux, Angular Momentum, and Statistics. Physical Review Letters 48, 1144–1146 (1982).

14. Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

15. Samuelsson, P., Sukhorukov, E. V. & Büttiker, M. Two-Particle Aharonov- Bohm Effect and Entanglement in the Electronic Hanbury Brown–Twiss Setup. Physical Review Letters 92, 026805 (2004).

16. Datta, S. Electronic Transport in Mesoscopic Systems 396 pp. ISBN: 0521599431 (Cambridge University Press, Sept. 15, 2014).

17. Mimura, T., Hiyamizu, S., Fujii, T. & Nanbu, K. A New Field-Effect Transistor with Selectively Doped GaAs/n-Al x Ga 1- x As Heterojunc- tions. Japanese Journal of Applied Physics 19, L225–L227. ISSN: 0021-4922 (1980).

18. Mimura, T. The early history of the high electron mobility transistor (HEMT). IEEE Transactions on Microwave Theory and Techniques 50, 780– 782. ISSN: 00189480 (2002).

19. Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Reviews of Modern Physics 81, 109–162 (2009).

20. Partoens, B. & Peeters, F. M. From graphene to graphite: Electronic structure around theKpoint. Physical Review B 74, 075404 (2006).

21. Mucha-Kruczyn´ski, M. et al. Characterization of graphene through anisotropy of constant-energy maps in angle-resolved photoemission. Physical Re- view B 77, 195403 (2008).

22. Sarma, S. D., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Reviews of Modern Physics 83, 407–470 (2011).

23. Goerbig, M. O. Electronic properties of graphene in a strong magnetic field. Reviews of Modern Physics 83, 1193–1243 (2011).

24. Bena, C. & Montambaux, G. Remarks on the tight-binding model of graphene. New Journal of Physics 11, 095003 (2009).

25. DiVincenzo, D. P. & Mele, E. J. Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Physical Review B 29, 1685–1694 (1984).

26. Semenoff, G. W. Condensed-Matter Simulation of a Three-Dimensional Anomaly. Physical Review Letters 53, 2449–2452 (1984).

27. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

28. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observa- tion of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

29. Deacon, R. S., Chuang, K.-C., Nicholas, R. J., Novoselov, K. S. & Geim, A. K. Cyclotron resonance study of the electron and hole velocity in graphene monolayers. Physical Review B 76, 081406 (2007).

30. Jiang, Z. et al. Infrared Spectroscopy of Landau Levels of Graphene. Physical Review Letters 98, 197403 (2007).

31. Micolich, A. Double or nothing? Nature Physics 9, 530–531 (2013).

32. Büttiker, M. Quantized transmission of a saddle-point constriction. Phys- ical Review B 41, 7906–7909 (1990).

33. Weissman, M. B. 1fnoise and other slow, nonexponential kinetics in condensed matter. Reviews of Modern Physics 60, 537–571 (1988).

34. Connor, J. On the analytical description of resonance tunnelling reac- tions. Molecular Physics 15, 37–46 (1968).

35. Goerbig, M. O. Quantum Hall Effects. arXiv: 0909.1998 [cond-mat.mes-hall] (Sept. 10, 2009).

36. Hall, E. H. On a New Action of the Magnet on Electric Currents. Amer- ican Journal of Mathematics 2, 287 (1879).

37. Janssen, T. J. B. M., Tzalenchuk, A, Lara-Avila, S, Kubatkin, S & Fal'ko, V. I. Quantum resistance metrology using graphene. Reports on Progress in Physics 76, 104501 (2013).

38. Klaß, U., Dietsche, W., von Klitzing, K. & Ploog, K. Imaging of the dissipation in quantum-Hall-effect experiments. Zeitschrift für Physik B Condensed Matter 82, 351–354 (1991).

39. Zhang, Y. et al. Landau-Level Splitting in Graphene in High Magnetic Fields. Physical Review Letters 96, 136806 (2006).

40. Giesbers, A. J. M. et al. Quantum-Hall Activation Gaps in Graphene. Physical Review Letters 99, 206803 (2007).

41. Giesbers, A. J. M. et al. Gap opening in the zeroth Landau level of graphene. Physical Review B 80, 201403 (2009).

42. Ebert, G, von Klitzing, K, Ploog, K & Weinmann, G. Two-dimensional magneto-quantum transport on GaAs-AlxGa1-xAs heterostructures un- der non-ohmic conditions. Journal of Physics C: Solid State Physics 16, 5441–5448 (1983).

43. Cage, M. E. et al. Dissipation and Dynamic Nonlinear Behavior in the Quantum Hall Regime. Physical Review Letters 51, 1374–1377 (1983).

44. Kuchar, F., Bauer, G., Weimann, G. & Burkhard, H. Non-equilibrium behaviour of the two-dimensional electron gas in the quantized Hall resistance regime of GaAs/Al0.3Ga0.7As. Surface Science 142, 196–202 (1984).

45. Komiyama, S., Takamasu, T., Hiyamizu, S. & Sasa, S. Breakdown of the quantum Hall effect due to electron heating. Solid State Communications 54, 479–484 (1985).

46. Kawaji, S. et al. Breakdown of the Quantum Hall Effect in GaAs/AlGaAs Heterostructures Due to Current. Journal of the Physical Society of Japan 63, 2303–2313 (1994).

47. Von Klitzing, K. in The Quantum Hall Effect: Poincaré Seminar 2004 (eds Douçot, B., Pasquier, V., Duplantier, B. & Rivasseau, V.) 1–21 (Birkhäuser Basel, Basel, 2005). ISBN: 978-3-7643-7393-1.

48. Von Klitzing, K. Metrology in 2019. Nature Physics 13, 198–198 (2017).

49. Heinonen, O., Taylor, P. L. & Girvin, S. M. Electron-phonon interactions and the breakdown of the dissipationless quantum Hall effect. Physical Review B 30, 3016–3019 (1984).

50. Eaves, L, Guimaraes, P. S. S. & Portal, J. C. Hot-electron magnetophonon spectroscopy on micron- and sub-micron-size n+nn+GaAs structures. Journal of Physics C: Solid State Physics 17, 6177–6190 (1984).

51. Eaves, L & Sheard, F. W. Size-dependent quantised breakdown of the dissipationless quantum Hall effect in narrow channels. Semiconductor Science and Technology 1, 346–349 (1986).

52. Bliek, L. et al. Breakdown of dissipationless quantum hall conduction in narrow channels. Surface Science 196, 156–164 (1988).

53. Balaban, N. Q., Meirav, U., Shtrikman, H. & Levinson, Y. Scaling of the critical current in the quantum Hall effect: A probe of current distribu- tion. Physical Review Letters 71, 1443–1446 (1993).

54. Balaban, N. Q., Meirav, U. & Shtrikman, H. Crossover between differ- ent regimes of current distribution in the quantum Hall effect. Physical Review B 52, R5503–R5506 (1995).

55. Makarovsky, O et al. Quantum Hall effect breakdown: can the boot- strap heating and inter-Landau-level scattering models be reconciled? Physica E: Low-dimensional Systems and Nanostructures 12, 178–181 (2002).

56. Guimaraes, P., Eaves, L., Sheard, F., Portal, J. & Hill, G. Resonant mag- netoresistance measurements in short ( 1 µm) n+nn+GaAs structures: Investigation of the electric field dependence of quasi-elastic inter-Landau level scattering processes. Physica B+C 134, 47–52 (1985).

57. Bliek, L et al. Critical current density for the dissipationless quantum Hall effect. Semiconductor Science and Technology 1, 110–112 (1986).

58. Kirtley, J. R. et al. Low-voltage breakdown of the quantum Hall state in a laterally constricted two-dimensional electron gas. Physical Review B 34, 1384–1387 (1986).

59. Komiyama, S. & Kawaguchi, Y. Heat instability of quantum Hall con- ductors. Physical Review B 61, 2014–2027 (2000).

60. Komiyama, S. & Nii, H. Nonequilibrium electron distribution and non- local resistance in a two-dimensional electron gas at high magnetic fields. Physica B: Condensed Matter 184, 7–16 (1993).

61. Takamasu, T., Komiyama, S., Hiyamizu, S. & Sasa, S. Effect of finite electric field on the quantum Hall effect. Surface Science 170, 202–208 (1986)

62. Kawaguchi, Y. et al. Disappearance of the Breakdown of Quantum Hall Effects in Short Devices. Japanese Journal of Applied Physics 34, 4309– 4312 (1995).

63. Komiyama, S., Kawaguchi, Y., Osada, T. & Shiraki, Y. Evidence of Non- local Breakdown of the Integer Quantum Hall Effect. Physical Review Letters 77, 558–561 (1996).

64. Boella, G. et al. Analysis of time behavior in the breakdown of the inte- gral quantum Hall effect. Physical Review B 50, 7608–7614 (1994).

65. Sagol, B. E., Nachtwei, G., von Klitzing, K., Hein, G. & Eberl, K. Time scale of the excitation of electrons at the breakdown of the quantum Hall effect. Physical Review B 66, 075305 (2002).

66. Li, M.-Y. et al. Transition dynamics in the electrical breakdown of the quantum Hall effect. Physical Review B 85, 245315 (2012).

67. Nakajima, T. & Komiyama, S. Lifetime of dissipation-less state of quan- tum Hall electron systems in the bistable regime. Physica E: Low-dimensional Systems and Nanostructures 42, 1026–1029 (2010).

68. Kawaji, S., Hirakawa, K. & Nagata, M. Device-width dependence of plateau width in quantum Hall states. Physica B: Condensed Matter 184, 17–20 (1993).

69. Alexander-Webber, J. A. et al. Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene. Physical Review Letters 111, 096601 (2013).

70. Meziani, Y. M. et al. Behavior of the contacts of quantum Hall effect devices at high currents. Journal of Applied Physics 96, 404–410 (2004).

71. 加藤, . < 講義ノート > メゾスコピック系の物理: 基礎から最近の話題まで. 物性研究・電子版 3, 1. https://ci.nii.ac.jp/naid/ 120005373102/en/ (2014).

72. Chida, K. et al. Observation of finite excess noise in the voltage-biased quantum Hall regime as a precursor for breakdown. Physical Review B 87, 155313 (2013).

73. Chida, K. et al. Avalanche electron bunching in a Corbino disk in the quantum Hall effect breakdown regime. Physical Review B 89, 235318 (2014).

74. Hata, T., Arakawa, T., Chida, K., Matsuo, S. & Kobayashi, K. Giant Fano factor and bistability in a Corbino disk in the quantum Hall ef- fect breakdown regime. Journal of Physics: Condensed Matter 28, 055801 (2016).

75. Kohda, M. et al. Spin–orbit induced electronic spin separation in semi- conductor nanostructures. Nature Communications 3, 1 (Jan. 2012).

76. Arakawa, T. et al. Shot Noise Induced by Nonequilibrium Spin Accu- mulation. Physical Review Letters 114, 016601 (2015).

77. Nakamura, S. et al. Nonequilibrium Fluctuation Relations in a Quan- tum Coherent Conductor. Physical Review Letters 104, 080602 (2010).

78. Henny, M. The Fermionic Hanbury Brown and Twiss Experiment. Sci- ence 284, 296–298 (1999).

79. Oliver, W. D. Hanbury Brown and Twiss-Type Experiment with Elec- trons. Science 284, 299–301 (1999).

80. Dubois, J. et al. Minimal-excitation states for electron quantum optics using levitons. Nature 502, 659–663 (2013).

81. Bocquillon, E. et al. Coherence and Indistinguishability of Single Elec- trons Emitted by Independent Sources. Science 339, 1054–1057 (2013).

82. Balandin, A. A. Low-frequency 1/ f noise in graphene devices. Nature Nanotechnology 8, 549–555 (2013).

83. Johnson, J. B. The Schottky Effect in Low Frequency Circuits. Physical Review 26, 71–85 (1925).

84. FLINN, I. Extent of the 1/ f Noise Spectrum. Nature 219, 1356–1357 (1968).

85. Schoelkopf, R. J. The Radio-Frequency Single-Electron Transistor (RF- SET): A Fast and Ultrasensitive Electrometer. Science 280, 1238–1242 (1998).

86. Balandin, A. Noise and fluctuations control in electronic devices ISBN: 1588830055 (American Scientific Publishers, Stevenson Ranch, Calif, 2002).

87. Dutta, P. & Horn, P. M. Low-frequency fluctuations in solids:1/ f noise. Reviews of Modern Physics 53, 497–516 (1981).

88. Bernamont, J. Fluctuations de potentiel aux bornes d'un conducteur métallique de faible volume parcouru par un courant. Annales de physique 11, 71–140 (1937).

89. Galperin, Y. M., Gurevich, V. L & Kozub, V. I. Disorder-Induced Low- Frequency Noise in Small Systems: Point and Tunnel Contacts in the Normal and Superconducting State. Europhysics Letters (EPL) 10, 753– 758 (1989).

90. Dmitriev, A. P., Levinshtein, M. E. & Rumyantsev, S. L. On the Hooge relation in semiconductors and metals. Journal of Applied Physics 106, 024514 (2009).

91. Hooge, F. 1/ f noise is no surface effect. Physics Letters A 29, 139–140 (1969).

92. Xu, G. et al. Effect of Spatial Charge Inhomogeneity on 1/fNoise Be- havior in Graphene. Nano Letters 10, 3312–3317 (2010).

93. Takeshita, S. et al. Anomalous behavior of 1/f noise in graphene near the charge neutrality point. Applied Physics Letters 108, 103106 (2016).

94. Clauss, W et al. Self-Organized Critical Behaviour in the Low-Temperature Impact Ionization Breakdown of p-Ge. Europhysics Letters (EPL) 12, 423–428 (1990).

95. Johnson, J. B. Thermal Agitation of Electricity in Conductors. Physical Review 32, 97–109. ISSN: 0031-899X (1928).

96. Nyquist, H. Thermal Agitation of Electric Charge in Conductors. Phys- ical Review 32, 110–113 (1928).

97. Muro, T. et al. Finite shot noise and electron heating at quantized con- ductance in high-mobility quantum point contacts. Physical Review B 93, 195411 (2016).

98. kobayashi, K. What can we learn from noise? — Mesoscopic nonequi- librium statistical physics —. Proceedings of the Japan Academy, Series B 92, 204–221 (2016).

99. Hashisaka, M. et al. Development of a measurement system for quan- tum shot noise at low temperatures. physica status solidi (c) 5, 182–185 (2008).

100. Hashisaka, M et al. Measurement for quantum shot noise in a quantum point contact at low temperatures. Journal of Physics: Conference Series 109, 012013 (2008).

101. Hashisaka, M. et al. Noise measurement system at electron tempera- ture down to 20 mK with combinations of the low pass filters. Review of Scientific Instruments 80, 096105 (2009).

102. Arakawa, T., Nishihara, Y., Maeda, M., Norimoto, S. & Kobayashi, K. Cryogenic amplifier for shot noise measurement at 20 mK. Applied Physics Letters 103, 172104 (2013).

103. Kumar, A., Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Exper- imental Test of the Quantum Shot Noise Reduction Theory. Physical Review Letters 76, 2778–2781 (1996).

104. Sampietro, M., Fasoli, L. & Ferrari, G. Spectrum analyzer with noise re- duction by cross-correlation technique on two channels. Review of Sci- entific Instruments 70, 2520–2525 (1999).

105. Hashisaka, M. et al. Bolometric detection of quantum shot noise in cou- pled mesoscopic systems. Physical Review B 78, 241303 (2008).

106. Reznikov, M., Heiblum, M., Shtrikman, H. & Mahalu, D. Temporal Correlation of Electrons: Suppression of Shot Noise in a Ballistic Quan- tum Point Contact. Physical Review Letters 75, 3340–3343 (1995).

107. Liu, R. C., Odom, B., Yamamoto, Y. & Tarucha, S. Quantum interference in electron collision. Nature 391, 263–265 (1998).

108. Roche, P. et al. Fano Factor Reduction on the 0.7 Conductance Structure of a Ballistic One-Dimensional Wire. Physical Review Letters 93, 116602 (Sept. 2004).

109. DiCarlo, L. et al. Shot-Noise Signatures of 0.7 Structure and Spin in a Quantum Point Contact. Physical Review Letters 97, 036810 (2006).

110. Nakamura, S. et al. Conductance anomaly and Fano factor reduction in quantum point contacts. Physical Review B 79, 201308 (2009).

111. Nishihara, Y. et al. Shot noise suppression in InGaAs/InGaAsP quan- tum channels. Applied Physics Letters 100, 203111 (2012).

112. Steinbach, A. H., Martinis, J. M. & Devoret, M. H. Observation of Hot- Electron Shot Noise in a Metallic Resistor. Physical Review Letters 76, 3806–3809 (1996).

113. Henny, M., Oberholzer, S., Strunk, C. & Schönenberger, C. 1/3-shot- noise suppression in diffusive nanowires. Physical Review B 59, 2871– 2880 (1999).

114. Zarchin, O., Chung, Y. C., Heiblum, M., Rohrlich, D. & Umansky, V. Electron Bunching in Transport through Quantum Dots in a High Mag- netic Field. Physical Review Letters 98, 066801 (2007).

115. Okazaki, Y., Sasaki, S. & Muraki, K. Shot noise spectroscopy on a semi- conductor quantum dot in the elastic and inelastic cotunneling regimes. Physical Review B 87, 041302 (2013).

116. Gustavsson, S. et al. Counting Statistics of Single Electron Transport in a Quantum Dot. Physical Review Letters 96, 076605 (2006).

117. Onac, E., Balestro, F., Trauzettel, B., Lodewijk, C. F. J. & Kouwenhoven, L. P. Shot-Noise Detection in a Carbon Nanotube Quantum Dot. Phys- ical Review Letters 96, 026803 (2006).

118. Safonov, S. S. et al. Enhanced Shot Noise in Resonant Tunneling via Interacting Localized States. Physical Review Letters 91, 136801 (2003).

119. Sekiguchi, K. et al. Nonreciprocal emission of spin-wave packet in FeNi film. Applied Physics Letters 97, 022508 (2010).

120. Arakawa, T. et al. Sub-Poissonian shot noise in CoFeB/MgO/CoFeB- based magnetic tunneling junctions. Applied Physics Letters 98, 202103 (2011).

121. Jehl, X., Sanquer, M., Calemczuk, R. & Mailly, D. Detection of dou- bled shot noise in short normal-metal/ superconductor junctions. Na- ture 405, 50–53 (2000).

122. Chida, K. et al. Shot noise induced by electron-nuclear spin-flip scat- tering in a nonequilibrium quantum wire. Physical Review B 85, 041309 (2012).

123. Delattre, T. et al. Noisy Kondo impurities. Nature Physics 5, 208 (2009) 5, 208–212. arXiv: 1010.4815 [cond-mat.mes-hall] (Oct. 22, 2010).

124. Hashisaka, M., Ota, T., Yamagishi, M., Fujisawa, T. & Muraki, K. Cross- correlation measurement of quantum shot noise using homemade tran- simpedance amplifiers. Review of Scientific Instruments 85, 054704 (2014).

125. Dong, Q. et al. Ultra-low noise high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout electron- ics. Applied Physics Letters 105, 013504 (2014).

126. Liang, Y. X., Dong, Q., Gennser, U., Cavanna, A. & Jin, Y. Input Noise Voltage Below 1 nV/Hz1/2 at 1 kHz in the HEMTs at 4.2 K. Journal of Low Temperature Physics 167, 632–637 (2012).

127. Landauer, R. Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Develop- ment 1, 223–231 (1957).

128. Ziel, A. V. D. & Chenette, E. in Advances in Electronics and Electron Physics Volume 46 313–383 (Elsevier, 1978).

129. Hooge, F. 1/ f noise in the conductance of ions in aqueous solutions. Physics Letters A 33, 169–170 (1970).

130. Schurr, J., Moser, H., Pierz, K., Ramm, G. & Kibble, B. P. Johnson–Nyquist Noise of the Quantized Hall Resistance. IEEE Transactions on Instrumen- tation and Measurement 60, 2280–2285 (2011).

131. Schurr, J., Ahlers, F. & Callegaro, L. Noise and Correlation Study of Quantum Hall Devices. IEEE Transactions on Instrumentation and Mea- surement 62, 1574–1580 (2013).

132. Baker, A. M. R., Alexander-Webber, J. A., Altebaeumer, T. & Nicholas, R. J. Energy relaxation for hot Dirac fermions in graphene and break- down of the quantum Hall effect. Physical Review B 85, 115403 (2012).

133. Baker, A. M. R. et al. Energy loss rates of hot Dirac fermions in epitaxial, exfoliated, and CVD graphene. Physical Review B 87, 045414 (2013).

134. Betz, A. C. et al. Hot Electron Cooling by Acoustic Phonons in Graphene. Physical Review Letters 109, 056805 (2012).

135. Tan, Z. et al. Shubnikov-de Haas oscillations of a single layer graphene under dc current bias. Physical Review B 84, 115429 (2011).

136. Betz, A. C. et al. Supercollision cooling in undoped graphene. Nature Physics 9, 109–112 (2012).

137. Singh, V. & Deshmukh, M. M. Nonequilibrium breakdown of quantum Hall state in graphene. Physical Review B 80, 081404 (2009).

138. Yanık, C. & Kaya, I. Local breakdown of the quantum Hall effect in narrow single layer graphene Hall devices. Solid State Communications 160, 47–51 (2013).

139. Laitinen, A., Kumar, M., Hakonen, P. & Sonin, E. Gyrotropic Zener tunneling and nonlinear IV curves in the zero-energy Landau level of graphene in a strong magnetic field. Scientific Reports 8, 1 (2018).

140. Kubakaddi, S. S. Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Physical Review B 79, 075417 (2009).

141. Laitinen, A. et al. Breakdown of Zero-Energy Quantum Hall State in Graphene in the Light of Current Fluctuations and Shot Noise. Journal of Low Temperature Physics 191, 272–287 (2018).

142. Yang, W. et al. Landau Velocity for Collective Quantum Hall Break- down in Bilayer Graphene. Physical Review Letters 121, 136804 (2018).

143. Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666–669 (2004).

144. Novoselov, K. S. & Neto, A. H. C. Two-dimensional crystals-based het- erostructures: materials with tailored properties. Physica Scripta T146, 014006 (2012).

145. Zomer, P. J., Dash, S. P., Tombros, N. & van Wees, B. J. A transfer tech- nique for high mobility graphene devices on commercially available hexagonal boron nitride. Applied Physics Letters 99, 232104 (2011).

146. Wang, L. et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 342, 614–617 (2013).

147. Nistor, R. A., Kuroda, M. A., Maarouf, A. A. & Martyna, G. J. Doping of adsorbed graphene from defects and impurities in SiO2substrates. Physical Review B 86, 041409 (2012).

148. Hwang, E. H., Adam, S. & Sarma, S. D. Carrier Transport in Two- Dimensional Graphene Layers. Physical Review Letters 98, 186806 (2007).

149. Moser, J., Verdaguer, A., Jiménez, D., Barreiro, A. & Bachtold, A. The environment of graphene probed by electrostatic force microscopy. Ap- plied Physics Letters 92, 123507 (2008).

150. Lafkioti, M. et al. Graphene on a Hydrophobic Substrate: Doping Re- duction and Hysteresis Suppression under Ambient Conditions. Nano Letters 10, 1149–1153 (2010).

151. Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).

152. Abanin, D. A. & Levitov, L. S. Conformal invariance and shape-dependent conductance of graphene samples. Physical Review B 78, 035416 (2008).

153. Kirtley, J. R. et al. Voltage-controlled dissipation in the quantum Hall effect in a laterally constricted two-dimensional electron gas. Physical Review B 34, 5414–5422 (1986).

154. Kramer, T. et al. Theory of the quantum Hall effect in finite graphene devices. Physical Review B 81, 081410 (2010).

155. Bak, P. How nature works : the science of self-organized criticality ISBN: 9781475754261 (Springer New York, New York, NY, USA, 1996).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る