リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「上部地殻においてのマグマの移動:雲仙火山における広帯域MT観測からの示唆」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

上部地殻においてのマグマの移動:雲仙火山における広帯域MT観測からの示唆

アグニス, トリアハディニ AGNIS, TRIAHADINI 九州大学

2021.09.24

概要

Unzen volcano, located in Shimabara Peninsula, Nagasaki, Japan, is an active volcano and monitored intensively before the last eruption in 1990-1995. Earthquakes and surface deformation have revealed that magma was transported obliquely from the western offset magma. Broad-band magnetotelluric (MT) surveys were conducted at 99 sites around the Shimabara Peninsula. Our 3-D resistivity model shows a broad high resistivity zone beneath Shimabara Peninsula and low resistivity zones in the west and east side of Shimabara Peninsula. Unexpectedly, the high resistivity zone at 3 km to 15 km depth spatially correlates with low-velocity zone (Miyano et al., 2021). By using the composition of melt inclusion of the erupted products, we estimated that < 5% melt may exist in the high resistivity zone and low-velocity zone. Thus, we propose the high resistive zone and low-velocity zone as the highly crystallized mush zone containing < 5% melt fraction with low permeability. The earthquake and pressure sources of the 1990-1995 are distributed along the upper boundary of the high-resistivity and low-velocity zone. Thus, we conclude that the magma migrated along the structure boundary where the permeability is relatively high. It was suggested that eruptible magma is usually transported vertically upward through the center of mush zone, while our result of this study offers new insight that the magma can be transported along the upper boundary of highly crystallized mush zone.

この論文で使われている画像

参考文献

Afanasyev, A., Blundy, J., Melnik, O., & Sparks, S. (2018). Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes. Earth and Planetary Science Letters, 486, 119–128. https://doi.org/10.1016/j.epsl.2018.01.013

Aizawa, K., Koyama, T., Hase, H., Uyeshima, M., Kanda, W., Utsugi, M., Yoshimura, R., Yamaya, Y., Hashimoto, T., Yamazaki, K., Komatsu, S., Watanabe, A., Miyakawa, K., & Ogawa, Y. (2014). Three-dimensional resistivity structure and magma plumbing system of the Kirishima Volcanoes as inferred from broadband magnaeotelluric data. Journal of Geophysical Research: Solid Earth, 119, 198-215, doi:10.1002/2013JB010682.

Aizawa, K., Takakura, S., Asaue, H., Koike, K., Yoshimura, R., Yamazaki, K., Komatsu, S., Utsugi, M., Inoue, H., Tsukamoto, K., Uyeshima, M., Koyama, T., Kanda, W., Yoshinaga, T., Matsushima, N., Uchida, K., Tsukashima, Y., Matsushima, T., Ichihara, H., Shimizu, H. (2021). Electrical conductive fluid-rich zones and their influence on the earthquake initiation, growth, and arrest processes: observations from the 2016 Kumamoto earthquake sequence, Kyushu Island, Japan. Earth, Planets and Space, 73(1). https://doi.org/10.1186/s40623-020- 01340-w.

Aizawa, K., Ustugi, M., Kitamura, K., Koyama, T., Uyeshima, M., Matsuhima, N., Takakura, S., Inagaki, H., Saito, H., & Fujimitsu, Y. (2021). Magmatic fluid pathways in the upper crust: Insights from dense magnetotelluric observations around the Kuju Volcanoes, Japan, Geophysical Journal International, in press.

Archie, G. E. (1942). The electrical resistivity log as an aid to determining some reservoir characteristics. Trans. A.I.M.E. 145: 389-409.

Árnason, K., Eysteinsson, H., & Hersir, G. P. (2010). Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland. Geothermics, 39(1), 13–34. https://doi.org/10.1016/j.geothermics.2010.01.002.

Bachmann, O., & Bergantz, G. (2008). The magma reservoirs that feed supereruptions. Elements, 4(1), 17–21. https://doi.org/10.2113/GSELEMENTS.4.1.17.

Bedrosian, P. A., Peacock, J. R., Bowles-Martinez, E., Schultz, A., & Hill, G. J. (2018). Crustal inheritance and a top-down control on arc magmatism at Mount St Helens. Nature Geoscience, 11(11), 865–870. https://doi.org/10.1038/s41561-018-0217-2.

Botcharnikov, R. E., Holtz, F., Almeev, R. R., Sato, H., & Behrens, H. (2008). Storage conditions and evolution of andesitic magma prior to the 1991-95 eruption of Unzen volcano: Constraints from natural samples and phase equilibria experiments. Journal of Volcanology and Geothermal Research, 175(1–2), 168–180. https://doi.org/10.1016/j.jvolgeores.2008.03.026.

Bowles-Martinez, E., & Schultz, A. (2020). Composition of Magma and Characteristics of the Hydrothermal System of Newberry Volcano, Oregon, From Magnetotellurics. Geochemistry, Geophysics, Geosystems, 21(3), 1–18. https://doi.org/10.1029/2019GC008831.

Blundy, J., Afanasyev, A., Tattitch, B., Sparks, S., Melnik, O., Utkin, I., & Rust, A. (2021). The economic potential of metalliferous sub-volcanic brines. Royal Society Open Science, 8(6), 202192. https://doi.org/10.1098/rsos.202192

Cagniard, L. (1953). Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics. 15: 31-36.

Caldwell, T. G., Bibby, H. M., & Brown, C. (2004). The magnetotelluric phase tensor. Geophysical Journal International, 158(2), 457–469. https://doi.org/10.1111/j.1365- 246X.2004.02281.x.

Cashman, K. V., Sparks, R. S. J., & Blundy, J. D. (2017). Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355(6331). https://doi.org/10.1126/science.aag3055.

Chave, A.D. & Jones, A.G. (2012). The Magnetotelluric Method: Theory and Practice. Cambridge University Press.

Chave, A.D., Thomson, D.J. (2004). Bounded influence magnetotelluric response function estimation. Geophysics Journal International, 157(3):988–1006. https ://doi.org/10.1111/j.1365-246X.2004.02203 .x.

Comeau, M. J., Unsworth, M. J., & Cordell, D. (2016). New constraints on the magma distribution and composition beneath Volcan Uturuncu and the southern Bolivian Altiplano from magnetotelluric data. Geosphere, 12(5), 1391–1421. https://doi.org/10.1130/GES01277.1

Cordell, D., Unsworth, M. J., & Díaz, D. (2018). Imaging the Laguna del Maule Volcanic Field, central Chile using magnetotellurics: Evidence for crustal melt regions laterally-offset from surface vents and lava flows. Earth and Planetary Science Letters, 488, 168–180. https://doi.org/10.1016/j.epsl.2018.01.007.

Duba. A.G. and Shankland, T.J. (1982). Free carbon and electrical conductivity in the Earth’s mantle. Geophysical Research Letters, Vol. 9, No.11, 1271-1274.

Edmonds, M., Cashman, K.V., Holness, M., & Jackson, M. (2019). Architecture and dynamics of magma reservoirs. Philosophical Transactions Royal Society A, 377: 20180298. http://dx.doi.org/10.1098/rsta.2018.0298.

Flinders, A. F., & Shen, Y. (2017). Seismic evidence for a possible deep crustal hot zone beneath Southwest Washington. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017- 07123-w.

Gamble, T. D., Goubau, W. M., & Clarke, J. (1979). Magnetotellurics with a remote magnetic reference. Geophysics, 44(1), 53–68. https://doi.org/10.1190/1.1440923.

Gresse, M., Uyeshima, M., Koyama, T., Hase, H., Aizawa, K., Yamaya, Y., Morita, Y., Weller, D., Rung‐Arunwan, T., Kaneko, T., Sasai, Y., Zlotnicki, J., Ishido, T., Ueda, H., & Hata, M. (2021). Hydrothermal and magmatic system of a volcanic island inferred from magnetotellurics, seismicity, self‐potential, and thermal image: an example of Miyakejima (Japan). Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2021jb022034.

Glover, P. J., Hole, M. J., & Pous, J. (2000). A modified Archie’s law for two conducting phases. Earth and Planetaru Science Letter, 180, 369-383. https://doi.org/10.1016/S0012- 821X(00)00168-0

Guo, X., Zhang, L., Behrens, H., & Ni, H. (2016). Probing the status of felsic magma reservoirs: Constraints from the P-T-H2O dependences of electrical conductivity of rhyolitic melt. Earth and Planetary Science Letters, 433(January 2020), 54–62. https://doi.org/10.1016/j.epsl.2015.10.036.

Guo, X., Li, B., Ni, H., & Mao, Z. (2017). Electrical conductivity of hydrous andesitic melts pertinent to subduction zones. Journal of Geophysical Research: Solid Earth, 122(3), 1777– 1788. https://doi.org/10.1002/2016JB013524.

Hashimoto, T. M., Aizawa, K., Hayashida, Y., Yuasa, Y., Matsushima, T., Yamamoto, Y., Tsukamoto, K., Miyano, K., Matsumoto, S., & Shimizu, H. (2020). Joint seismological – magnetotelluric investigation of shallow and implosive non-DC and DC earthquakes beneath the gravitationally unstable Heisei-Shinzan Lava Dome , Unzen Volcano , Japan. Journal of Volcanology and Geothermal Research, 406, 107066. https://doi.org/10.1016/j.jvolgeores.2020.107066.

Hashin, Z. and Shtrikman, S. (1962). A variational approach to the theory of the effective magnetic permeability of multiphase materials. Journal of Applied Physics. 33: 3125-3131

Hata, M., Takakura, S., Matsushima, N., Hashimoto, T., & Utsugi, M. (2016). Crustal magma pathway beneath Aso caldera inferred from three-dimensional electrical resistivity structure. Geophysical Research Letters, 43(20), 10,720-10,727. https://doi.org/10.1002/2016GL070315.

Hill, G. J., Bibby, H. M., Ogawa, Y., Wallin, E. L., Bennie, S. L., Caldwell, T. G., Keys, H., Bertrand, E. A., & Heise, W. (2015). Structure of the Tongariro Volcanic system: Insights from magnetotelluric imaging. Earth and Planetary Science Letters, 432, 115–125. https://doi.org/10.1016/j.epsl.2015.10.003.

Hata, M., Takakura, S., Matsushima, N., Hashimoto, T., & Utsugi, M. (2016). Crustal magma pathway beneath Aso caldera inferred from three-dimensional electrical resistivity structure. Geophysical Research Letters, 43(20), 10,720-10,727. https://doi.org/10.1002/2016GL070315.

Hotta, K., Iguchi, M., Ohkura, T., Hendrasto, M., Gunawan, H., Rosadi, U., & Kriswati, E. (2019). Magma intrusion and effusion at Sinabung volcano, Indonesia, from 2013 to 2016, as revealed by continuous GPS observation. Journal of Volcanology and Geothermal Research, 382, 173–183. https://doi.org/10.1016/j.jvolgeores.2017.12.015.

Hotta, K., Iguchi, M., & Tameguri, T. (2016). Rapid dike intrusion into Sakurajima volcano on August 15, 2015, as detected by multi-parameter ground deformation observations. Earth, Planets and Space, 68(1). https://doi.org/10.1186/s40623-016-0450-0.

Hyndman, R. D., Vanyan, L. L., Marquis, G., & Law, L. K. (1993). The origin of electrically conductive lower continental crust: saline water or graphite? Physics of the Earth and Planetary Interiors, 81(1–4), 325–345. https://doi.org/10.1016/0031-9201(93)90139-Z.

Kagiyama, T., Utada, H., & Yamamoto, T. (1999). Magma ascent beneath Unzen Volcano, SW Japan, deduced from the electrical resistivity structure. Journal of Volcanology and Geothermal Research, 89(1–4), 35–42. https://doi.org/10.1016/S0377-0273(98)00120-6.

Kita, I., Nagao, K., Taguchi, S., & Hasegawa, H. (1993). Emission of magmatic He with different 3He/4He ratios from the Unzen volcanic area, Japan. Geochemical Journal, 27, 251–259. https://doi.org/10.2343/geochemj.27.251.

Kohno, Y., Matsushima, T., & Shimizu, H. (2008). Pressure sources beneath Unzen Volcano inferred from leveling and GPS data. Journal of Volcanology and Geothermal Research, 175(1–2), 100–109. https://doi.org/10.1016/j.jvolgeores.2008.03.022.

Komori, S., Kagiyama, T., Utsugi, M., Inoue, H., & Azuhata, I. (2013). Two-dimensional resistivity structure of Unzen Volcano revealed by AMT and MT surveys. Earth, Planets and Space, 65(7), 759–766. https://doi.org/10.5047/eps.2012.10.005.

Koulakov, I., Kasatkina, E., Shapiro, N. M., Jaupart, C., Vasilevsky, A., El Khrepy, S., Al-Arifi, N., & Smirnov, S. (2016). The feeder system of the Toba supervolcano from the slab to the shallow reservoir. Nature Communications, 7. https://doi.org/10.1038/ncomms12228.

Kukarina, E., West, M., Keyson, L. H., Koulakov, I., Tsibizov, L., & Smirnov, S. (2017). Focused magmatism beneath Uturuncu volcano, Bolivia: Insights from seismic tomography and deformation modeling. Geosphere, 13(6), 1855–1866. https://doi.org/10.1130/GES01403.1.

Kuo, L. W., Huang, J. R., Fang, J. N., Si, J., Li, H., & Song, S. R. (2018). Carbonaceous materials in the fault zone of the longmenshan fault belt: 1. Signatures within the deep wenchuan earthquake fault zone and their implications. Minerals, 8(9). https://doi.org/10.3390/min8090385.

Lee, B., Unsworth, M., Árnason, K., & Cordell, D. (2020). Imaging the magmatic system beneath the Krafla geothermal field, Iceland: A new 3-D electrical resistivity model from inversion of magnetotelluric data. Geophysical Journal International, 220(1), 541–567. https://doi.org/10.1093/gji/ggz427.

Luque, F. J., Ortega, L., Barrenechea, J. F., Huizenga, J. M., & Millward, D. (2012). Key factors controlling massive graphite deposition in volcanic settings: An example of a self-organized critical system. Journal of the Geological Society, 169(3), 269–277. https://doi.org/10.1144/0016-76492011-069.

Magee, C., Stevenson, C. T. E., Ebmeier, S. K., Keir, D., Hammond, J. O. S., Gottsmann, J. H., Whaler, K. A., Schofield, N., Jackson, C. A. L., Petronis, M. S., O’Driscoll, B., Morgan, J., Cruden, A., Vollgger, S. A., Dering, G., Micklethwaite, S., & Jackson, M. D. (2018).

Magma plumbing systems: A geophysical perspective. Journal of Petrology, 59(6), 1217– 1251. https://doi.org/10.1093/petrology/egy064.

Matsumoto, S., Shimizu, H., Onishi, M., & Uehira, K. (2012). Seismic reflection survey of the crustal structure beneath Unzen volcano, Kyushu, Japan. Earth, Planets and Space, 64(5), 405–414. https://doi.org/10.5047/eps.2011.11.006.

Miyano, K., Aizawa, K., Matsushima, T., Shito, A., & Shimizu, H. (2021). Seismic velocity structure of the Unzen volcano, Japan, and its relationship to the magma ascent route for the 1990-1995 eruptions. submitted to Scientific Reports (in revision).

Mogi, K. (1958), Relations between the eruptions of various volcanoes and the deformations of the ground surface around them, Bull. Earthquake Res. Inst. Univ. Tokyo, 36, 99–134.

Munoz, G., & Ritter, O. (2013). Pseudo-remote reference processing of magnetotelluric data : a fast and efficient data acquisition scheme for local arrays. Geophysical Prospecting 61, 300–316. https://doi.org/10.1111/1365-2478.12012

Morikawa, N., Kazahaya, K., Fourre, E., Takahashi, H. A., Jean-Baptiste, P., Ohwada, M., LeGuern, F. J., & Nakama, A. (2008). Magmatic He distribution around Unzen volcano inferred from intensive investigation of helium isotopes in groundwater. Journal of Volcanology and Geothermal Research, 175(1–2), 218–230. https://doi.org/10.1016/j.jvolgeores.2008.03.038.

Nakada, S., Shimizu, H., & Ohta, K. (1999). Overview of the 1990-1995 eruption at Unzen Volcano. Journal of Volcanology and Geothermal Research, 89(1–4), 1–22. https://doi.org/10.1016/S0377-0273(98)00118-8

Nakada, S., & Motomura, Y. (1999). Petrology of the 1991-1995 eruption at Unzen: Effusion pulsation and groundmass crystallization. Journal of Volcanology and Geothermal Research, 89(1–4), 173–196. https://doi.org/10.1016/S0377-0273(98)00131-0

Nakada, S., Uto, K., Sakuma, S., Eichelberger, J. C., & Shimizu, H. (2005). Scientific Results of Conduit Drilling in the Unzen Scientific Drilling Project (USDP). Scientific Drilling, 1(October 2014), 18–22. https://doi.org/10.5194/sd-1-18-2005.

Nesbitt, B. E. (1993). Resistivities of Crustal Fluids. Journal of Geophysical Research: Solid Earth, 98(9), 4301–4310.

Nishi, K. (2002). Three-dimensional Seismic Velocity Structure beneath Unzen Volcano, Kyushu, Japan Inferred by Tomography from Experimental Explosion Data. Bulletin of the Volcanological Society of Japan, 47(4), 227–241. https://doi.org/10.18940/kazan.47.4_227

Nishimura, K., Kawamoto, T., Kobayashi, T., Sugimoto, T., & Yamashita, S. (2005). Melt inclusion analysis of the Unzen 1991-1995 dacite: Implications for crystallization processes of dacite magma. Bulletin of Volcanology, 67(7), 648–662. https://doi.org/10.1007/s00445- 004-0400-8.

Oohashi, K., Hirose, T., Kobayashi, K., & Shimamoto, T. (2012). The occurrence of graphite- bearing fault rocks in the Atotsugawa fault system, Japan: Origins and implications for fault creep. Journal of Structural Geology, 38, 39–50. https://doi.org/10.1016/j.jsg.2011.10.011.

Ozeki, N., Okuno, M., & Kobayashi, T. (2005). Growth History of Mayuyama, Unzen Volcano, Kyushu, Southwest Japan. 火山. 441-454. 10.18940/kazan.50.6_441. In Japanese with English abstract Pritchard, M. E., & Simons, M. (2004). An InSAR-based survey of volcanic deformation in the central Andes. Geochemistry, Geophysics, Geosystems, 5(2), 1–42. https://doi.org/10.1029/2003GC000610.

Lundstrom, C. C., & Glazner, A. F. (2016). Silicic magmatism and the volcanic-plutonic connection. Elements, 12(2), 91–96. https://doi.org/10.2113/gselements.12.2.91

Luque, F. J., Huizenga, J. M., Crespo-Feo, E., Wada, H., Ortega, L., & Barrenechea, J. F. (2014). Vein graphite deposits: Geological settings, origin, and economic significance. Mineralium Deposita, 49(2), 261–277. https://doi.org/10.1007/s00126-013-0489-9.

Rung-arunwan, T., Siripunvaraporn, W., & Utada, H. (2016). On the Berdichevsky average. Physics of the Earth And Planetary Interiors, 253, 1–4. https://doi.org/10.1016/j.pepi.2016.01.006

Sakuma, S., Kajiwara, T., Nakada, S., Uto, K., & Shimizu, H. (2008). Drilling and logging results of USDP-4 - Penetration into the volcanic conduit of Unzen Volcano, Japan. Journal of Volcanology and Geothermal Research, 175(1–2), 1–12. https://doi.org/10.1016/j.jvolgeores.2008.03.039.

Samrock, F., Grayver, A. V., Eysteinsson, H., & Saar, M. O. (2018). Magnetotelluric Image of Transcrustal Magmatic System Beneath the Tulu Moye Geothermal Prospect in the Ethiopian Rift. Geophysical Research Letters, 45(23), 12,847-12,855. https://doi.org/10.1029/2018GL080333.

Sato, H., Holtz, F., Botcharnikov, R. E., & Nakada, S. (2017). Intermittent generation of mafic enclaves in the 1991–1995 dacite of Unzen Volcano recorded in mineral chemistry. Contributions to Mineralogy and Petrology, 172(4), 1–19. https://doi.org/10.1007/s00410- 017-1335-3.

Schmincke, H.U. (2004). Volcanism. Springer: Berlin.

Segall, P. (2019). Magma chambers: What we can, and cannot, learn from volcano geodesy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2139). https://doi.org/10.1098/rsta.2018.0158.

Shinohara, H. (2007). Excess degassing from volcanoes and its role on eruptive and intrusive activity. Reviews of Geophysics, 46(4), 1–31. https://doi.org/10.1029/2007RG000244.

Simpson, F. & Bahr, K. (2005). Practical Magnetotellurics. Cambridge University Press.

Siripunvaraporn, W., Egbert, G., & Uyeshima, M. (2005). Interpretation of two-dimensional magnetotelluric profile data with three-dimensional inversion: Synthetic examples. Geophysical Journal International, 160(3), 804–814. https://doi.org/10.1111/j.1365-246X.2005.02527.x.

Siripunvaraporn, W., & Egbert, G. (2009). WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation. Physics of the Earth and Planetary Interiors, 173(3–4), 317–329. https://doi.org/10.1016/j.pepi.2009.01.013.

Sparks, R. S. J., Annen, C., Blundy, J. D., Cashman, K. V., Rust, A. C., & Jackson, M. D. (2019). Formation and dynamics of magma reservoirs. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2139). https://doi.org/10.1098/rsta.2018.0019.

Srigutomo, W., Kagiyama, T., Kanda, W., Munekane, H., Hashimoto, T., Tanaka, Y., Utada, H., & Utsugi, M. (2008). Resistivity structure of Unzen Volcano derived from time domain electromagnetic (TDEM) survey. Journal of Volcanology and Geothermal Research, 175(1– 2), 231–240. https://doi.org/10.1016/j.jvolgeores.2008.03.033.

Sugimoto, T., Ishibashi, H., Wakamatsu, S., & Yanagi, T. (2005). Petrologic evolution of Pre- Unzen and Unzen magma chambers beneath the Shimabara Peninsula, Kyushu, Japan: Evidence from petrography and bulk rock chemistry. Geochemical Journal, 39(3), 241–256. https://doi.org/10.2343/geochemj.39.241.

Takei, Y. (2002). Effect of pore geometry on V P / V S : From equilibrium geometry to crack . Journal of Geophysical Research, 107(B2). https://doi.org/10.1029/2001jb000522

Telford, W.M., Geldart, L.P., Sherrif, R.E. (1990). Applied Geophysics: Second Edition. Cambridge University Press.

Tibaldi, A., Bonali, F. L., & Corazzato, C. (2017). Structural control on volcanoes and magma paths from local- to orogen-scale: The central Andes case. Tectonophysics, 699, 16–41. https://doi.org/10.1016/j.tecto.2017.01.005

Tikhonov, A.N. (1950). The determination of the electrical properties of deep layers of the Earth’s crust. Doklady, 73(2): 295-297.

Tretner, A., Zimmer, M., Erzinger, J., Nakada, S., & Saito, M. (2008). Real-time drill mud gas logging at the USDP-4 drilling, Unzen volcano, Japan. Journal of Volcanology and Geothermal Research, 175(1–2), 28–34. https://doi.org/10.1016/j.jvolgeores.2008.03.031

Triahadini, A., Aizawa, K., Teguri, Y., Koyama, T., Tsukamoto, K., Muramatsu, D., Chiba, K., & Uyeshima, M. (2019). Magnetotelluric transect of Unzen graben, Japan: conductors associated with normal faults. Earth, Planets and Space, 71(1). https://doi.org/10.1186/s40623-019-1004-z.

Tseng, K. H., Ogawa, Y., Nurhasan, Tank, S. B., Ujihara, N., Honkura, Y., Terada, A., Usui, Y., & Kanda, W. (2020). Anatomy of active volcanic edifice at the Kusatsu–Shirane volcano, Japan, by magnetotellurics: hydrothermal implications for volcanic unrests. Earth, Planets and Space, 72(1). https://doi.org/10.1186/s40623-020-01283-2

Tsukamoto, K., Aizawa, K., Chiba, K., Kanda, W., Uyeshima, M., Koyama, T., Utsugi, M., Seki, K., & Kishita, T. (2018). Three-Dimensional Resistivity Structure of Iwo-Yama Volcano, Kirishima Volcanic Complex, Japan: Relationship to Shallow Seismicity, Surface Uplift, and a Small Phreatic Eruption. Geophysical Research Letters, 45(23), 12,821-12,828. https://doi.org/10.1029/2018GL080202

Umakoshi, K., Shimizu, H., & Matsuwo, N. (2001). Volcano-tectonic seismicity at Unzen Volcano. Journal of Volcanology and Geothermal Research, 112, 117–131.

Ussher, G., Harvey, C., Johnstone, R., Anderson, E., & Zealand, N. (2000). Understanding the resistivities observed in geothermal systems. Proceedings World Geothermal Congress, 1915–1920.

Vanyan, L., Tezkan, B., & Palshin, N. (2001). Low electrical resistivity and seismic velocity at the base of the upper crust as indicator of rheologically weak layer. Surveys in Geophysics, 22(2), 131–154. https://doi.org/10.1023/A:1012937410685.

Waff, H.S. (1974). Theoritical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry. Journal of Geophysical Research, 79 : 4003-4010.

Wespestad, C. E., Thurber, C. H., Andersen, N. L., Singer, B. S., Cardona, C., Zeng, X., Bennington, N. L., Keranen, K., Peterson, D. E., Cordell, D., Unsworth, M., Miller, C., & Williams-Jones, G. (2019). Magma Reservoir Below Laguna del Maule Volcanic Field, Chile, Imaged with Surface-Wave Tomography. Journal of Geophysical Research: Solid Earth, 124(3), 2858–2872. https://doi.org/10.1029/2018JB016485.

Widiyantoro, S., Ramdhan, M., Métaxian, J. P., Cummins, P. R., Martel, C., Erdmann, S., Nugraha, A. D., Budi-Santoso, A., Laurin, A., & Fahmi, A. A. (2018). Seismic imaging and petrology explain highly explosive eruptions of Merapi Volcano, Indonesia. Scientific Reports, 8(1), 1–7. https://doi.org/10.1038/s41598-018-31293-w.

Yoshimura, R., Ogawa, Y., Yukutake, Y., Kanda, W., Komori, S., Hase, H., Goto, T. nori, Honda, R., Harada, M., Yamazaki, T., Kamo, M., Kawasaki, S., Higa, T., Suzuki, T., Yasuda, Y., Tani, M., & Usui, Y. (2018). Resistivity characterisation of Hakone volcano, Central Japan, by three-dimensional magnetotelluric inversion. Earth, Planets and Space, 70(1), 1–10. https://doi.org/10.1186/s40623-018-0848-y.

Yuasa, Y., Matsumoto, S., Nakao, S., Matsushima, T., & Ohkura, T. (2020). Inelastic strain rate and stress fields in and around an aseismic zone of Kyushu Island, Japan, inferred from seismic and GNSS data. Geophysical Journal International, 221(1), 289–304. https://doi.org/10.1093/gji/ggaa008.

Yukutake, Y., Abe, Y., Honda, R., & Sakai, S. (2021). Magma Reservoir and Magmatic Feeding System Beneath Hakone Volcano, Central Japan, Revealed by Highly Resolved Velocity Structure. Journal of Geophysical Research: Solid Earth, 126(4), 1–18. https://doi.org/10.1029/2020JB021236.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る