リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Microglia-triggered hypoexcitability plasticity of pyramidal neurons in the rat medial prefrontal cortex」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Microglia-triggered hypoexcitability plasticity of pyramidal neurons in the rat medial prefrontal cortex

Yamawaki, Yuki 京都大学 DOI:10.14989/doctor.k24509

2023.03.23

概要

Recent accumulating evidence indicates that disturbance of the im­
mune system is involved in the mechanisms of psychiatric disorders
(Khandaker et al., 2015; Pape et al., 2019; Barichello et al., 2019;
Segawa et al., 2021; Ozaki et al., 2021). Perhaps, excessive inflamma­
tory cytokines, disruption of brain vasculature systems, and prolifera­
tion of activated immune cells in the parenchyma cause various
symptoms of psychiatric disorders (Segawa et al., 2021). After the in­
vasion of microbes and viruses into the central nervous system (CNS),
the resident immune cells in the brain, microglia, are activated via the
innate immune system. Transient exposure of brain slices to the
Gram-negative bacterial endotoxin, lipopolysaccharide (LPS), activates
microglia through Toll-like receptor 4 (TLR4). Exposure to LPS facili­
tates the vesicular release at hippocampal excitatory presynaptic ter­
minals (Pascual et al., 2012). ...

この論文で使われている画像

参考文献

Adelman, J.P., 2016. SK channels and calmodulin. Channels 10, 1–6. https://doi.org/

10.1080/19336950.2015.1029688.

Adelman, J.P., Maylie, J., Sah, P., 2012. Small-conductance Ca2+-activated K+

channels: form and function. Annu. Rev. Physiol. 74, 245–269. https://doi.org/

10.1146/annurev-physiol-020911-153336.

Aguzzi, A., Barres, B.A., Bennett, M.L., 2013. Microglia: scapegoat, saboteur, or

something else? Science 339, 156–161. https://doi.org/10.1126/science.1227901.

Ashwell, K., 1990. Microglia and cell death in the developing mouse cerebellum. Dev.

Brain Res. 55, 219–230. https://doi.org/10.1016/0165-3806(90)90203-b.

Ayata, P., Badimon, A., Strasburger, H.J., Duff, M.K., Montgomery, S.E., Loh, Y.E.,

Ebert, A., Pimenova, A.A., Ramirez, B.R., Chan, A.T., Sullivan, J.M.,

Purushothaman, I., Scarpa, J.R., Goate, A.M., Busslinger, M., Shen, L., Losic, B.,

Schaefer, A., 2018. Epigenetic regulation of brain region-specific microglia clearance

activity. Nat. Neurosci. 21, 1049–1060. https://doi.org/10.1038/s41593-018-01923.

Barichello, T., Sayana, P., Giridharan, V.V., Arumanayagam, A.S., Narendran, B.,

Giustina, A.D., Petronilho, F., Quevedo, J., Dal-Pizzol, F., 2019. Long-term cognitive

outcomes after sepsis: a translational systematic review. Mol. Neurobiol. 56,

186–251. https://doi.org/10.1007/s12035-018-1048-2.

Beattie, E.C., Stellwagen, D., Morishita, W., Bresnahan, J.C., Ha, B.K., Von Zastrow, M.,

Beattie, M.S., Malenka, R.C., 2002. Control of synaptic strength by glial TNFalpha.

Science 295, 2282–2285. https://doi.org/10.1126/science.1067859.

Belmeguenai, A., Hosy, E., Bengtsson, F., Pedroarena, C.M., Piochon, C., Teuling, E.,

He, Q., Ohtsuki, G., De Jeu, M.T., Elgersma, Y., De Zeeuw, C.I., J¨

orntell, H.,

Hansel, C., 2010. Intrinsic plasticity complements long-term potentiation in parallel

fiber input gain control in cerebellar Purkinje cells. J. Neurosci. 30, 13630–13643.

https://doi.org/10.1523/JNEUROSCI.3226-10.2010.

Bienenstock, E.L., Cooper, L.N., Munro, P.W., 1982. Theory for the development of

neuron selectivity: orientation specificity and binocular interaction in visual cortex.

J. Neurosci. 2, 32–48. https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982.

Bock, T., Stuart, G.J., 2016. The impact of BK channels on cellular excitability depends

on their subcellular location. Front. Cell. Neurosci. 10, 206. https://doi.org/

10.3389/fncel.2016.00206.

Bock, T., Honnuraiah, S., Stuart, G.J., 2019. Paradoxical excitatory impact of SK channels

on dendritic excitability. J. Neurosci. 39, 7826–7839. https://doi.org/10.1523/

JNEUROSCI.0105-19.2019.

Breton, J.D., Stuart, G.J., 2009. Loss of sensory input increases the intrinsic excitability of

layer 5 pyramidal neurons in rat barrel cortex. J. Physiol. 587, 5107–5119. https://

doi.org/10.1113/jphysiol.2009.180943.

5. Conclusions

Our study shows that the directionality of the microglia-triggered

intrinsic plasticity is inverted between the mPFC L5 pyramidal cells

and the cerebellar Purkinje cells. The induction of the hypoexcitability

plasticity of mPFC L5 pyramidal neurons is mediated by the TNF- α and

is dependent on the intraneuronal activity of protein phosphatases. The

functional upregulation of SK1 channels is involved in the LTD of mPFC

pyramidal cells. The contrasting responses against acute inflammation

in the two brain regions may cause the impairment of network func­

tional connectivity during immune-associated brain dysfunctions.

Animal ethics statement

All procedures were performed following the guidelines of the Ani­

mal Care and Use Committees and approved by the Ethical Committee of

Kyoto University. All animal handling and reporting comply with the

ARRIVE guidelines. Rats were housed (5 animals at maximum in each

cage) and maintained under a 12-h light: 12-h dark cycle, at a constant

temperature and humidity (20–24 ◦ C, 35%–55%), with food and water

available ad libitum.

Funding sources

This work was supported by grants from the Brain Science

14

Y. Yamawaki et al.

Current Research in Neurobiology 3 (2022) 100028

Campanac, E., Daoudal, G., Ankri, N., Debanne, D., 2008. Downregulation of dendritic I

(h) in CA1 pyramidal neurons after LTP. J. Neurosci. 28, 8635–8643. https://doi.

org/10.1523/JNEUROSCI.1411-08.2008.

Carta, I., Chen, C.H., Schott, A.L., Dorizan, S., Khodakhah, K., 2019. Cerebellar

modulation of the reward circuitry and social behavior. Science 363, 1–10. https://

doi.org/10.1126/science.aav0581.

Chen, S., Benninger, F., Yaari, Y., 2014. Role of small conductance Ca2⁺-activated K⁺

channels in controlling CA1 pyramidal cell excitability. J. Neurosci. 34, 8219–8230.

https://doi.org/10.1523/JNEUROSCI.0936-14.2014.

Chetkovich, D.M., Chen, L., Stocker, T.J., Nicoll, R.A., Bredt, D.S., 2002. Phosphorylation

of the postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 binding site of

stargazin regulates binding to PSD-95 and synaptic targeting of AMPA receptors.

J. Neurosci. 22, 5791–5796. https://doi.org/10.1523/JNEUROSCI.22-1405791.2002.

Chitu, V., Gokhan, S¸., Nandi, S., Mehler, M.F., Stanley, E.R., 2016. Emerging roles for

CSF-1 receptor and its ligands in the nervous system. Trends Neurosci. 39, 378–393.

https://doi.org/10.1016/j.tins.2016.03.005.

Chung, W.S., Welsh, C.A., Barres, B.A., Stevens, B., 2015. Do glia drive synaptic and

cognitive impairment in disease? Nat. Neurosci. 18, 1539–1545. https://doi.org/

10.1038/nn.4142.

Coesmans, M., Weber, J.T., De Zeeuw, C.I., Hansel, C., 2004. Bidirectional parallel fiber

plasticity in the cerebellum under climbing fiber control. Neuron 44, 691–700.

https://doi.org/10.1016/j.neuron.2004.10.031.

Coull, J.A., Beggs, S., Boudreau, D., Boivin, D., Tsuda, M., Inoue, K., Gravel, C., Salter, M.

W., De Koninck, Y., 2005. BDNF from microglia causes the shift in neuronal anion

gradient underlying neuropathic pain. Nature 438, 1017–1021. https://doi.org/

10.1038/nature04223.

Daoudal, G., Debanne, D., 2003. Long-term plasticity of intrinsic excitability: learning

rules and mechanisms. Learn. Mem. 10, 456–465. https://doi.org/10.1101/

lm.64103.

Daoudal, G., Hanada, Y., Debanne, D., 2002. Bidirectional plasticity of excitatory

postsynaptic potential (EPSP)-spike coupling in CA1 hippocampal pyramidal

neurons. Proc. Natl. Acad. Sci. U. S. A. 99, 14512–14517. https://doi.org/10.1073/

pnas.222546399.

Davalos, D., Ryu, J.K., Merlini, M., Baeten, K.M., Le Moan, N., Petersen, M.A.,

Deerinck, T.J., Smirnoff, D.S., Bedard, C., Hakozaki, H., Gonias Murray, S., Ling, J.

B., Lassmann, H., Degen, J.L., Ellisman, M.H., Akassoglou, K., 2012. Fibrinogeninduced perivascular microglial clustering is required for the development of axonal

damage in neuroinflammation. Nat. Commun. 3, 1227. https://doi.org/10.1038/

ncomms2230.

De Biase, L.M., Schuebel, K.E., Fusfeld, Z.H., Jair, K., Hawes, I.A., Cimbro, R., Zhang, H.Y., Liu, Q.-R., Shen, H., Xi, Z.-X., Goldman, D., Bonci, A., 2017. Local cues establish

and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95,

341–356. https://doi.org/10.1016/j.neuron.2017.06.020 e6.

Desai, N.S., Rutherford, L.C., Turrigiano, G.G., 1999. Plasticity in the intrinsic

excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520. https://doi.

org/10.1038/9165.

Duan, L., Zhang, X.D., Miao, W.Y., Sun, Y.J., Xiong, G., Wu, Q., Li, G., Yang, P., Yu, H.,

Li, H., Wang, Y., Zhang, M., Hu, L.Y., Tong, X., Zhou, W.H., Yu, X., 2018. PDGFRβ

cells rapidly relay inflammatory signal from the circulatory system to neurons via

chemokine CCL2. Neuron 100, 183–200. https://doi.org/10.1016/j.

neuron.2018.08.030 e8.

Ehlers, M.D., 2000. Reinsertion or degradation of AMPA receptors determined by

activity-dependent endocytic sorting. Neuron 28, 511–525. https://doi.org/

10.1016/s0896-6273(00)00129-x.

Elmore, M.R., Najafi, A.R., Koike, M.A., Dagher, N.N., Spangenberg, E.E., Rice, R.A.,

Kitazawa, M., Matusow, B., Nguyen, H., West, B.L., Green, K.N., 2014. Colonystimulating factor 1 receptor signaling is necessary for microglia viability,

unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397.

https://doi.org/10.1016/j.neuron.2014.02.040.

Feldman, D.E., Brecht, M., 2005. Map plasticity in somatosensory cortex. Science 310,

810–815. https://doi.org/10.1126/science.1115807.

Fern´

andez-Fern´

andez, D., Lamas, J.A., 2021. Metabotropic modulation of potassium

channels during synaptic plasticity. Neuroscience 456, 4–16. https://doi.org/

10.1016/j.neuroscience.2020.02.025.

Gao, F., Liu, Z., Ren, W., Jiang, W., 2014. Acute lipopolysaccharide exposure facilitates

epileptiform activity via enhanced excitatory synaptic transmission and neuronal

excitability in vitro. Neuropsychiatric Dis. Treat. 10, 1489–1495. https://doi.org/

10.2147/NDT.S65695.

Gill, D.F., Hansel, C., 2020. Muscarinic modulation of SK2-type K + channels promotes

intrinsic plasticity in L2/3 pyramidal neurons of the mouse primary somatosensory

cortex. eNeuro 7. https://doi.org/10.1523/ENEURO.0453-19.2020. ENEURO.045319.2020.

Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., Mehler, M.F.,

Conway, S.J., Ng, L.G., Stanley, E.R., Samokhvalov, I.M., Merad, M., 2010. Fate

mapping analysis reveals that adult microglia derive from primitive macrophages.

Science 330, 841–845. https://doi.org/10.1126/science.1194637.

Grabert, K., Michoel, T., Karavolos, M.H., Clohisey, S., Baillie, J.K., Stevens, M.P.,

Freeman, T.C., Summers, K.M., McColl, B.W., 2016. Microglial brain regiondependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19,

504–516. https://doi.org/10.1038/nn.4222.

Granja, M.G., Alves, L.P., Leardini-Trist˜

ao, M., Bortoni, L.C., Saul, M.E., de Moraes, F.M.,

Ferreira, E.C., de Moraes, B.P.T., da Silva, V.Z., dos Santos, A.F.R., Silva, A.R.,

Gonçalves-de-Albuquerque, C.F., Bambini-Junior, V., Weyrich, A.S., Rondina, M.T.,

Zimmerman, G.A., de Castro-Faria-Neto, H.C., 2021. Inflammatory, synaptic, motor

and behavioral alterations induced by gestational sepsis on the offspring at different

stages of life. J. Neuroinflammation 18, 60. https://doi.org/10.1186/s12974-02102106-1.

Grasselli, G., He, Q., Wan, V., Adelman, J.P., Ohtsuki, G., Hansel, C., 2016. Activitydependent plasticity of spike pauses in cerebellar Purkinje cells. Cell Rep. 14,

2546–2553. https://doi.org/10.1016/j.celrep.2016.02.054.

Grasselli, G., Boele, H., Titley, H.K., Bradford, N., van Beers, L., Jay, L., Beekhof, G.C.,

Busch, S.E., De Zeeuw, C.I., Schonewille, M., Hansel, C., 2020. SK2 channels in

cerebellar Purkinje cells contribute to excitability modulation in motor-learningspecific memory traces. PLoS Biol. 18, e3000596 https://doi.org/10.1371/journal.

pbio.3000596.

Gu, N., Hu, H., Vervaeke, K., Storm, J.F., 2008. SK (KCa2) channels do not control

somatic excitability in CA1 pyramidal neurons but can be activated by dendritic

excitatory synapses and regulate their impact. J. Neurophysiol. 100, 2589–2604.

https://doi.org/10.1152/jn.90433.2008.

Habbas, S., Santello, M., Becker, D., Stubbe, H., Zappia, G., Liaudet, N., Klaus, F.R.,

Kollias, G., Fontana, A., Pryce, C.R., Suter, T., Volterra, A., 2015. Neuroinflammatory

TNFα impairs memory via astrocyte signaling. Cell 163, 1730–1741. https://doi.org/

10.1016/j.cell.2015.11.023.

Hoshiko, M., Arnoux, I., Avignone, E., Yamamoto, N., Audinat, E., 2012. Deficiency of

the microglial receptor CX3CR1 impairs postnatal functional development of

thalamocortical synapses in the barrel cortex. J. Neurosci. 32, 15106–15111.

https://doi.org/10.1523/JNEUROSCI.1167-12.2012.

Hull, C.A., Chu, Y., Thanawala, M., Regehr, W.G., 2013. Hyperpolarization induces

along-term increase in the spontaneous firing rate of cerebellar Golgi cells.

J. Neurosci. 33, 5895–5902. https://doi.org/10.1523/jneurosci.4052-12.2013.

Ito, M., 1957. The electrical activity of spinal ganglion cells investigated with

intracellular microelectrodes. Jpn. J. Physiol. 7, 297–323. https://doi.org/10.2170/

jjphysiol.7.297.

orntell, H., Hansel, C., 2006. Synaptic memories upside down: bidirectional plasticity at

cerebellar parallel fiber-Purkinje cell synapses. Neuron 52, 227–238. https://doi.

org/10.1016/j.neuron.2006.09.032.

Jung, H.Y., Staff, N.P., Spruston, N., 2001. Action potential bursting in subicular

pyramidal neurons is driven by a calcium tail current. J. Neurosci. 21, 3312–3321.

https://doi.org/10.1523/JNEUROSCI.21-10-03312.2001.

Kelly, R.M., Strick, P.L., 2003. Cerebellar loops with motor cortex and prefrontal cortex

of a nonhuman primate. J. Neurosci. 23, 8432–8444. https://doi.org/10.1523/

JNEUROSCI.23-23-08432.2003.

Kelly, E., Meng, F., Fujita, H., Morgado, F., Kazemi, Y., Rice, L.C., Ren, C., Escamilla, C.

O., Gibson, J.M., Sajadi, S., Pendry, R.J., Tan, T., Ellegood, J., Basson, M.A.,

Blakely, R.D., Dindot, S.V., Golzio, C., Hahn, M.K., Katsanis, N., Robins, D.M.,

Silverman, J.L., Singh, K.K., Wevrick, R., Taylor, M.J., Hammill, C., Anagnostou, E.,

Pfeiffer, B.E., Stoodley, C.J., Lerch, J.P., Du Lac, S., Tsai, P.T., 2020. Regulation of

autism-relevant behaviors by cerebellar–prefrontal cortical circuits. Nat. Neurosci.

23, 1102–1110. https://doi.org/10.1038/s41593-020-0665-z.

Khandaker, G.M., Cousins, L., Deakin, J., Lennox, B.R., Yolken, R., Jones, P.B., 2015.

Inflammation and immunity in schizophrenia: implications for pathophysiology and

treatment. Lancet Psychiatr. 2, 258–270. https://doi.org/10.1016/S2215-0366(14)

00122-9.

Kierdorf, K., Erny, D., Goldmann, T., Sander, V., Schulz, C., Perdiguero, E.G.,

Wieghofer, P., Heinrich, A., Riemke, P., H¨

olscher, C., Müller, D.N., Luckow, B.,

Brocker, T., Debowski, K., Fritz, G., Opdenakker, G., Diefenbach, A., Biber, K.,

Heikenwalder, M., Geissmann, F., Rosenbauer, F., Prinz, M., 2013. Microglia emerge

from erythromyeloid precursors via Pu.1-and Irf8- dependent pathways. Nat.

Neurosci. 16, 273–280. https://doi.org/10.1038/nn.3318.

Klapal, L., Igelhorst, B.A., Dietzel-Meyer, I.D., 2016. Changes in neuronal excitability by

activated microglia: differential Na(+) current upregulation in pyramid-shaped and

bipolar neurons by TNF-α and IL-18. Front. Neurol. 7, 44. https://doi.org/10.3389/

fneur.2016.00044.

Lawson, L.J., Perry, V.H., Dri, P., Gordon, S., 1990. Heterogeneity in the distribution and

morphology of microglia in the normal adult mouse brain. Neuroscience 39,

151–170. https://doi.org/10.1016/0306-4522(90)90229-w.

LeMessurier, A.M., Feldman, D.E., 2018. Plasticity of population coding in primary

sensory cortex. Curr. Opin. Neurobiol. 53, 50–56. https://doi.org/10.1016/j.

conb.2018.04.029.

Luo, H., Liu, H.Z., Zhang, W.W., Matsuda, M., Lv, N., Chen, G., Xu, Z.Z., Zhang, Y.Q.,

2019. Interleukin-17 regulates neuron-glial communications, synaptic transmission,

and neuropathic pain after chemotherapy. Cell Rep. 29, 2384–2397. https://doi.org/

10.1016/j.celrep.2019.10.085 e5.

Mahon, S., Charpier, S., 2012. Bidirectional plasticity of intrinsic excitability controls

sensory inputs efficiency in layer 5 barrel cortex neurons in vivo. J. Neurosci. 32,

11377–11389. https://doi.org/10.1523/JNEUROSCI.0415-12.2012.

Masi, A., Quintana, D.S., Glozier, N., Lloyd, A.R., Hickie, I.B., Guastella, A.J., 2015.

Cytokine aberrations in autism spectrum disorder: a systematic review and metaanalysis. Mol. Psychiatr. 20, 440–446. https://doi.org/10.1038/mp.2014.59.

Matcovitch-Natan, O., Winter, D.R., Giladi, A., Vargas Aguilar, S., Spinrad, A.,

Sarrazin, S., Ben-Yehuda, H., David, E., Zelada Gonz´

alez, F., Perrin, P., KerenShaul, H., Gury, M., Lara-Astaiso, D., Thaiss, C.A., Cohen, M., Bahar Halpern, K.,

Baruch, K., Deczkowska, A., Lorenzo-Vivas, E., Itzkovitz, S., Elinav, E., Sieweke, M.

H., Schwartz, M., Amit, I., 2016. Microglia development follows a stepwise program

to regulate brain homeostasis. Science 353, aad8670. https://doi.org/10.1126/

science.aad8670.

Matta, S.M., Hill-Yardin, E.L., Crack, P.J., 2019. The influence of neuroinflammation in

autism spectrum disorder. Brain Behav. Immun. 79, 75–90. https://doi.org/

10.1016/j.bbi.2019.04.037.

Mitoma, H., Adhikari, K., Aeschlimann, D., Chattopadhyay, P., Hadjivassiliou, M.,

Hampe, C.S., Honnorat, J., Joubert, B., Kakei, S., Lee, J., Manto, M., Matsunaga, A.,

15

Y. Yamawaki et al.

Current Research in Neurobiology 3 (2022) 100028

Mizusawa, H., Nanri, K., Shanmugarajah, P., Yoneda, M., Yuki, N., 2016. Consensus

paper: neuroimmune mechanisms of cerebellar ataxias. Cerebellum 15, 213–232.

https://doi.org/10.1007/s12311-015-0664-x.

Nandi, S., Gokhan, S., Dai, X.-M., Wei, S., Enikolopov, G., Lin, H., Mehler, M.F.,

Stanley, E.R., 2012. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct

developmental brain expression patterns and regulate neural progenitor cell

maintenance and maturation. Dev. Biol. 367, 100–113. https://doi.org/10.1016/j.

ydbio.2012.03.026.

Nelson, A.B., Krispel, C.M., Sekirnjak, C., du Lac, S., 2003. Long-lasting increases in

intrinsic excitability triggered by inhibition. Neuron 40, 609–620. https://doi.org/

10.1016/S0896-6273(03)00641-X.

Nelson, A.B., Gittis, A.H., du Lac, S., 2005. Decreases in CaMKII activity trigger persistent

potentiation of intrinsic excitability in spontaneously firing vestibular nucleus

neurons. Neuron 46, 623–631. https://doi.org/10.1016/j.neuron.2005.04.009.

Nie, X., Kitaoka, S., Tanaka, K., Segi-Nishida, E., Imoto, Y., Ogawa, A., Nakano, F.,

Tomohiro, A., Nakayama, K., Taniguchi, M., Mimori-Kiyosue, Y., Kakizuka, A.,

Narumiya, S., Furuyashiki, T., 2018. The innate immune receptors TLR2/4 mediate

repeated social defeat stress-induced social avoidance through prefrontal microglial

activation. Neuron 99, 464–479. https://doi.org/10.1016/j.neuron.2018.06.035.

Ohno, H., Kubo, K., Murooka, H., Kobayashi, Y., Nishitoba, T., Shibuya, M., Yoneda, T.,

Isoe, T., 2006. A c-fms tyrosine kinase inhibitor, Ki20227, suppresses osteoclast

differentiation and osteolytic bone destruction in a bone metastasis model. Mol.

Cancer Therapeut. 5, 2634–2643. https://doi.org/10.1158/1535-7163.MCT-050313.

Ohtsuki, G., 2020. Modification of synaptic-input clustering by intrinsic excitability

plasticity on cerebellar Purkinje cell dendrites. J. Neurosci. 40, 267–282. https://doi.

org/10.1523/JNEUROSCI.3211-18.2019.

Ohtsuki, G., Hansel, C., 2018. Synaptic potential and plasticity of an SK2 channel gate

regulate spike burst activity in cerebellar Purkinje cells. iScience 1, 49–54. https://

doi.org/10.1016/j.isci.2018.02.001.

Ohtsuki, G., Piochon, C., Hansel, C., 2009. Climbing fiber signaling and cerebellar gain

control. Front. Cell. Neurosci. 3, 4. https://doi.org/10.3389/neuro.03.004.2009.

Ohtsuki, G., Piochon, C., Adelman, J.P., Hansel, C., 2012. SK2 channel modulation

contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells.

Neuron 75, 108–120. https://doi.org/10.1016/j.neuron.2012.05.025.

Ohtsuki, G., Shishikura, M., Ozaki, A., 2020. Synergistic excitability plasticity in

cerebellar functioning. FEBS J. 287, 4557–4593. https://doi.org/10.1111/

febs.15355.

Onore, C.E., Careaga, M., Babineau, B.A., Schwartzer, J.J., Berman, R.F., Ashwood, P.,

2013. Inflammatory macrophage phenotype in BTBR T+tf/J mice. Front. Neurosci.

7, 158. https://doi.org/10.3389/fnins.2013.00158.

Ozaki, A., Yamawaki, Y., Ohtsuki, G., 2021. Psychosis symptoms following aberrant

immunity in the brain. Neural Regen Res 16, 512–513. https://doi.org/10.4103/

1673-5374.293148.

Paolicelli, R.C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P.,

Giustetto, M., Ferreira, T.A., Guiducci, E., Dumas, L., Ragozzino, D., Gross, C.T.,

2011. Synaptic pruning by microglia is necessary for normal brain development.

Science 333, 1456–1458. https://doi.org/10.1126/science.1202529.

Pape, K., Tamouza, R., Leboyer, M., Zipp, F., 2019. Immunoneuropsychiatry - novel

perspectives on brain disorders. Nat. Rev. Neurol. 15, 317–328. https://doi.org/

10.1038/s41582-019-0174-4.

Park, M.R., Kita, H., Klee, M.R., Oomura, Y., 1983. Bridge balance in intracellular

recording; introduction of the phase-sensitive method. J. Neurosci. Methods 8,

105–125. https://doi.org/10.1016/0165-0270(83)90112-7.

Parkhurst, C.N., Yang, G., Ninan, I., Savas, J.N., Yates 3rd, J.R., Lafaille, J.J.,

Hempstead, B.L., Littman, D.R., Gan, W.B., 2013. Microglia promote learningdependent synapse formation through brain-derived neurotrophic factor. Cell 155,

1596–1609. https://doi.org/10.1016/j.cell.2013.11.030.

Pascual, O., Ben Achour, S., Rostaing, P., Triller, A., Bessis, A., 2012. Microglia activation

triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl.

Acad. Sci. U.S.A. 109, E197–E205. https://doi.org/10.1073/pnas.1111098109.

Pribiag, H., Stellwagen, D., 2013. TNF-α downregulates inhibitory neurotransmission

through protein phosphatase 1-dependent trafficking of GABA(A) receptors.

J. Neurosci. 33, 15879–15893. https://doi.org/10.1523/JNEUROSCI.0530-13.2013.

Radnikow, G., Feldmeyer, D., 2018. Layer- and cell type-specific modulation of

excitatory neuronal activity in the neocortex. Front. Neuroanat. 12, 1. https://doi.

org/10.3389/fnana.2018.00001.

Sailer, C.A., Hu, H., Kaufmann, W.A., Trieb, M., Schwarzer, C., Storm, J.F., Knaus, H.G.,

2002. Regional differences in distribution and functional expression of smallconductance Ca2+-activated K+ channels in rat brain. J. Neurosci. 22, 9698–9707.

https://doi.org/10.1523/JNEUROSCI.22-22-09698.2002.

Santello, M., Bezzi, P., Volterra, A., 2011. TNFα controls glutamatergic gliotransmission

in the hippocampal dentate gyrus. Neuron 69, 988–1001. https://doi.org/10.1016/j.

neuron.2011.02.003.

Schafer, D.P., Lehrman, E.K., Kautzman, A.G., Koyama, R., Mardinly, A.R., Yamasaki, R.,

Ransohoff, R.M., Greenberg, M.E., Barres, B.A., Stevens, B., 2012. Microglia sculpt

postnatal neural circuits in an activity and complement-dependent manner. Neuron

74, 691–705. https://doi.org/10.1016/j.neuron.2012.03.026.

Schonewille, M., Belmeguenai, A., Koekkoek, S.K., Houtman, S.H., Boele, H.J., van

Beugen, B.J., Gao, Z., Badura, A., Ohtsuki, G., Amerika, W.E., Hosy, E., Hoebeek, F.

E., Elgersma, Y., Hansel, C., De Zeeuw, C.I., 2010. Purkinje cell-specific knockout of

the protein phosphatase PP2B impairs potentiation and cerebellar motor learning.

Neuron 67, 618–628. https://doi.org/10.1016/j.neuron.2010.07.009.

Schreurs, B.G., Sanchez-Andres, J.V., Alkon, D.L., 1991. Learning-specific differences in

Purkinje-cell dendrites of lobule HVI (Lobulus simplex): intracellular recording in a

rabbit cerebellar slice. Brain Res. 548, 18–22. https://doi.org/10.1016/0006-8993

(91)91100-F.

Segawa, K., Blumenthal, Y., Yamawaki, Y., Ohtsuki, G., 2021. A destruction model of the

vascular and lymphatic systems in the emergence of psychiatric symptoms. Biology

10, 34. https://doi.org/10.3390/biology10010034.

Shih, E.K., Sekerkov´

a, G., Ohtsuki, G., Aldinger, K.A., Chizhikov, V.V., Hansel, C.,

Mugnaini, E., Millen, K.J., 2015. The spontaneous ataxic mouse mutant tippy is

characterized by a novel Purkinje cell morphogenesis and degeneration phenotype.

Cerebellum 14, 292–307. https://doi.org/10.1007/s12311-014-0640-x.

Shim, H.G., Jang, D.C., Lee, J., Chung, G., Lee, S., Kim, Y.G., Jeon, D.E., Kim, S.J., 2017.

Long-term depression of intrinsic excitability accompanied by synaptic depression in

cerebellar Purkinje cells. J. Neurosci. 37, 5659–5669. https://doi.org/10.1523/

JNEUROSCI.3464-16.2017.

Silvin, A., Ginhoux, F., 2018. Microglia heterogeneity along a spatio–temporal axis: more

questions than answers. Glia 66, 2045–2057. https://doi.org/10.1002/glia.23458.

` Kelly, E.A., Lamantia, C.E., Majewska, A.K.,

Sipe, G.O., Lowery, R.L., Tremblay, M.-E.,

2016. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex.

Nat. Commun. 7, 1–10. https://doi.org/10.1038/ncomms10905.

Stevens, B., Allen, N.J., Vazquez, L.E., Howell, G.R., Christopherson, K.S., Nouri, N.,

Micheva, K.D., Mehalow, A.K., Huberman, A.D., Stafford, B., Sher, A., Litke, A.M.,

Lambris, J.D., Smith, S.J., John, W.S., Barres, B.A., 2007. The classical complement

cascade mediates CNS synapse elimination. Cell 131, 1164–1178. https://doi.org/

10.1016/j.cell.2007.10.036.

Stocker, M., 2004. Ca(2+)-activated K+ channels: molecular determinants and function

of the SK family. Nat. Rev. Neurosci. 5, 758–770. https://doi.org/10.1038/nrn1516.

Stocker, M., Hirzel, K., D’hoedt, D., Pedarzani, P., 2004. Matching molecules to function:

neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon 43,

933–949. https://doi.org/10.1016/j.toxicon.2003.12.009.

Stoessel, M.B., Majewska, A.K., 2021. Little cells of the little brain: microglia in

cerebellar development and function. Trends Neurosci. 44, 564–578. https://doi.

org/10.1016/j.tins.2021.04.001.

Stoodley, C.J., D’Mello, A.M., Ellegood, J., Jakkamsetti, V., Liu, P., Nebel, M.B.,

Gibson, J.M., Kelly, E., Meng, F., Cano, C.A., Pascual, J.M., Mostofsky, S.H., Lerch, J.

P., Tsai, P.T., 2017. Altered cerebellar connectivity in autism and cerebellarmediated rescue of autism-related behaviors in mice. Nat. Neurosci. 20, 1744–1751.

https://doi.org/10.1038/s41593-017-0004-1.

Stowell, R.D., Wong, E.L., Batchelor, H.N., Mendes, M.S., Lamantia, C.E., Whitelaw, B.S.,

Majewska, A.K., 2018. Cerebellar microglia are dynamically unique and survey

Purkinje neurons in vivo. Dev Neurobiol 78, 627–644. https://doi.org/10.1002/

dneu.22572.

Stowell, R.D., Sipe, G.O., Dawes, R.P., Batchelor, H.N., Lordy, K.A., Whitelaw, B.S.,

Stoessel, M.B., Bidlack, J.M., Brown, E., Sur, M., Majewska, A.K., 2019.

Noradrenergic signaling in wakeful states inhibits microglial surveillance and

synaptic plasticity in the mouse visual cortex. Nat. Neurosci. 22, 1782–1792.

https://doi.org/10.1038/s41593-019-0514-0.

Suzuki, L., Coulon, P., Sabel-Goedknegt, E.H., Ruigrok, T.J., 2012. Organization of

cerebral projections to identified cerebellar zones in the posterior cerebellum of the

rat. J. Neurosci. 32, 10854–10869. https://doi.org/10.1523/JNEUROSCI.085712.2012.

Süß, P., Hoffmann, A., Rothe, T., Ouyang, Z., Baum, W., Staszewski, O., Schett, G.,

Prinz, M., Kr¨

onke, G., Glass, C.K., Winkler, J., Schlachetzki, J.C.M., 2020. Chronic

peripheral inflammation causes a region-specific myeloid response in the central

nervous system. Cell Rep. 30, 4082–4095. https://doi.org/10.1016/j.

celrep.2020.02.109 e6.

Tanaka, K., Khiroug, L., Santamaria, F., Doi, T., Ogasawara, H., Ellis-Davies, G.C.R.,

Kawato, M., Augustine, G.J., 2007. Ca2+ requirements for cerebellar long-term

synaptic depression: role for a postsynaptic leaky integrator. Neuron 54, 787–800.

https://doi.org/10.1016/j.neuron.2007.05.014.

Tay, T.L., Mai, D., Dautzenberg, J., Fern´

andez-Klett, F., Lin, G., Sagar Datta, M.,

Drougard, A., Stempfl, T., Ardura-Fabregat, A., Staszewski, O., Margineanu, A.,

Sporbert, A., Steinmetz, L.M., Pospisilik, J.A., Jung, S., Priller, J., Grün, D.,

Ronneberger, O., Prinz, M., 2017. A new fate mapping system reveals contextdependent random or clonal expansion of microglia. Nat. Neurosci. 20, 793–803.

https://doi.org/10.1038/nn.4547.

Titley, H.K., Watkins, G.V., Lin, C., Weiss, C., McCarthy, M., Disterhoft, J.F., Hansel, C.,

2020. Intrinsic excitability increase in cerebellar Purkinje cells after delay eye-blink

conditioning in mice. J. Neurosci. 40, 2038–2046. https://doi.org/10.1523/

JNEUROSCI.2259-19.2019.

Turrigiano, G., Abbott, L.F., Marder, E., 1994. Activity-dependent changes in the intrinsic

properties of cultured neurons. Science 264, 974–977. https://doi.org/10.1126/

science.8178157.

Tzour, A., Leibovich, H., Barkai, O., Biala, Y., Lev, S., Yaari, Y., Binshtok, A.M., 2017. KV

7/M channels as targets for lipopolysaccharide-induced inflammatory neuronal

hyperexcitability. J. Physiol. 595, 713–738. https://doi.org/10.1113/JP272547.

Vaaga, C.E., Brown, S.T., Raman, I.M., 2020. Cerebellar modulation of synaptic input to

freezing-related neurons in the periaqueductal gray. Elife 9, 1–28. https://doi.org/

10.7554/eLife.54302.

Vela, J.M., Dalmau, I., Gonz´

alez, B., Castellano, B., 1995. Morphology and distribution of

microglial cells in the young and adult mouse cerebellum. J. Comp. Neurol. 361,

602–616. https://doi.org/10.1002/cne.903610405.

Wang, S.S., Denk, W., H¨

ausser, M., 2000. Coincidence detection in single dendritic spines

mediated by calcium release. Nat. Neurosci. 3, 1266–1273. https://doi.org/

10.1038/81792.

Wang, Z., Xu, N.L., Wu, C.P., Duan, S., Poo, M.M., 2003. Bidirectional changes in spatial

dendritic integration accompanying long-term synaptic modifications. Neuron 37,

463–472. https://doi.org/10.1016/S0896-6273(02)01189-3.

16

Y. Yamawaki et al.

Current Research in Neurobiology 3 (2022) 100028

Xanthos, D.N., Sandkühler, J., 2014. Neurogenic neuroinflammation: inflammatory CNS

reactions in response to neuronal activity. Nat. Rev. Neurosci. 15, 43–53. https://

doi.org/10.1038/nrn3617.

Yamamoto, M., Kim, M., Imai, H., Itakura, Y., Ohtsuki, G., 2019. Microglia-triggered

plasticity of intrinsic excitability modulates psychomotor behaviors in acute

cerebellar inflammation. Cell Rep. 28, 2923–2938. https://doi.org/10.1016/j.

celrep.2019.07.078 e8.

Yamauchi, T., Makinodan, M., Toritsuka, M., Okumura, K., Kayashima, Y., Ishida, R.,

Kishimoto, N., Takahashi, M., Komori, T., Yamaguchi, Y., Takada, R., Yamamuro, K.,

Kimoto, S., Yasuda, Y., Hashimoto, R., Kishimoto, T., 2021. Tumor necrosis factor-α

expression aberration of M1/M2 macrophages in adult high-functioning autism

spectrum disorder. Autism Res. 14, 2330–2341. https://doi.org/10.1002/aur.2585.

Yu, Y.C., Bultje, R.S., Wang, X., Shi, S.H., 2009. Specific synapses develop preferentially

among sister excitatory neurons in the neocortex. Nature 458, 501–504. https://doi.

org/10.1038/nature07722.

Zhan, Y., Paolicelli, R.C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F.,

Vyssotski, A.L., Bifone, A., Gozzi, A., Ragozzino, D., Gross, C.T., 2014. Deficient

neuron-microglia signaling results in impaired functional brain connectivity and

social behavior. Nat. Neurosci ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る