リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evaluation of Backcrossed Pyramiding Lines of the Yield-related Gene and the Bacterial Leaf Blight Resistant Genes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evaluation of Backcrossed Pyramiding Lines of the Yield-related Gene and the Bacterial Leaf Blight Resistant Genes

山田, 修土 黒川, 裕介 永井, 啓祐 Angeles-Shim, Rosalyn B 安井, 秀 古屋, 成人 吉村, 淳 土井, 一行 芦苅, 基行 春原, 英彦 名古屋大学

2020.03

概要

The yield-related gene, WFP increases grain number by increasing the primary branch number per panicle in rice. In the present study, WFP was introgressed from ST-12 to IRBB60, a pyramiding line having the genes Xa4, xa5, xa13 and Xa21 for BLB resistance in the IR24 genetic background. The pyramided lines PL-1, PL-4 and PL-5 that were included in the initial BC2F2 selections based on their improved PBN were selected for further agronomic evaluation and generation advance up to BC2F3. All three lines recorded significantly higher PBN and GN due WFP introgression, although the loss of at least two BLB genes during the breeding process resulted in the variable response of the lines to the different BLB races. Among the lines, only PL-5 showed a significantly higher estimate of actual yield measured in terms of panicle weight per square meter compared to IRBB60. PL-5 also exhibited resistance to five out of the six BLB races used for resistance screening. Despite the negative effects in grain size, the improved yield estimates, as well as the validated BLB resistance of PL-5 makes it a suitable candidate for cultivar adoption under the tropical rice ecosystem of Southeast Asia.

この論文で使われている画像

参考文献

1. Tester M, Langridge P. (2010) Breeding technologies to increase crop production in a changing world. Sci- ence 327: 818-822.

2. Khush G. (2003) Productivity improvements in rice. Nutr Rev 61: S114-S116.

3. Seck PA, Diagne A, Mohanty S, Wopereis MCS. (2012) Crops that feed the world 7: rice. Food Secu- rity 4: 7-24.

4. Angeles-Shim RB, Ashikari M. (2017) Advances in molecular breeding techniques for rice. In: Achieving sustainable cultivation of rice Vol 1. Burleigh Dodds Science Publishing, UK: 27-49.

5. Kurokawa Y, Noda T, Yamagata Y, Angeles-Shim R, Sunohara H, Uehara K, Furuta T, Nagai K, Jena K, Yasui H, Yoshimura A, Ashikari M, Doi K. (2016) Construction of a versatile SNP array for pyramiding useful genes of rice. Plant Sci 242: 131-139.

6. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Ta- kashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. (2005) Cytokinin oxidase regulates rice grain production. Science 309: 741-745.

7. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42: 545-549.

8. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J. (2010) Regu- lation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42: 541-544.

9. Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, Li C. (2008) Mutation of the rice narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol 147: 1947-1959.

10. Fujita D, Trijatmiko KR, Tagle AG, Sapasap MV, Koide Y, Sasaki K, Tsakirpaloglou N, Gannaban R, Nishimura T, Yanagihara S, Fukuta Y, Koshiba T, Slamet-Loedin I, Ishimaru T, Kobayashi N. (2013) NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc Natl Acad Sci 110: 20431-20436.

11. Takai T, Adachi S, Taguchi-Shiobara F, Sanoh-Arai Y, Iwasawa N, Yoshinaga S, Hirose S, Taniguchi Y, Yamanouchi U, Wu J, Matsumoto T, Sugimoto K, Kondo K, Ikka T, Ando T, Kono I, Ito S, Shomura A, Ookawa T, Hirasawa T, Yano M, Kondo M, Yama- moto T. (2013) A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci Rep 3. doi: 10.1038/ srep02149.

12. Ikeda K, Nagasawa N, Nagoto Y. (2005) ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Dev Bio 282: 349-360.

13. Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. (2007) Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J 51: 1030-1040.

14. Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles E, Hirasawa T, Matsuoka M. (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1: 132.

15. Zhan X, Sun B, Lin Z, Gao Z, Yu P, Liu Q, Shen X, Zhang Y, Chen D, Cheng S, Cao L. (2015) Genetic mapping of a QTL controlling source--sink size and heading date in rice. Gene 571: 263-270.

16. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. (2007) A QTL for rice grain width and weight encodes a pre- viously unknown RING-type E3 ubiquitin ligase. Nat Genet 39: 623-630.

17. Song XJ, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen SE, Ashikari M. (2015) Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield and plant biomass in rice. Proc Natl Acad Sci 112: 76-81.

18. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112: 1164-1171.

19. Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S. (2009) Evolutionary History of GS3, a Gene Conferring Grain Length in Rice. Genetics 182: 1323-1334.

20. Wang DR, Han R, Wolfrum EJ, McCouch SR. (2017) The buffering capacity of stems: genetic architecture of nonstructural carbohydrates in cultivated Asian rice, Oryza sativa. New Phytol 215: 658-671.

21. Zhang J, Li G, Huang Q, Liu Z, Ding C, Tang S, Chen L, Wang S, Ding Y, Zhang W. (2017) Effects of culm carbohydrate partitioning on basal stem strength in a high-yielding rice population. Crop J 5: 478-487.

22. Phung DH, Sugiura D, Sunohara H, Makihara D, Kondo M, Nishiuchi S, Doi K. (2019) QTL analysis for carbon assimilate translocation-related traits dur- ing maturity in rice (Oryza sativa L.). Breed Sci 69: 289-296.

23. Hirose T, Aoki N, Harada Y, Okamura M, Hashida Y, Ohsugi R, Miyao A, Hirochika H, Terao T. (2013) Disruption of a rice gene for α-glucan water dikinase, OsGWD1, leads to hyperaccumulation of starch in leaves but exhibits limited effects on growth. Front Plant Sci 4. doi: 10.3389/fpls.2013.00147.

24. Wada H, Masumoto-Kubo C, Tsutsumi K, Nonami H, Tanaka F, Okada H, Erra-Balsells R, Hiraoka K, Nakashima T, Hakata M, Morita S. (2017) Turgor- responsive starch phosphorylation in Oryza sativa stems: A primary event of starch degradation associat- ed with grain-filling ability. PLoS One 12: e0181272. doi: 10.1371/journal.pone.0181272.

25. Kim SR, Ramos JM, Hizon RJM, Ashikari M, Virk P, Torres E, Nissila E, Jena K. (2018) Introgression of a functional epigenetic OsSPL14 WFP allele into elite indica rice genomes greatly improved panicle traits and grain yield. Sci Rep 8. doi: 10.1038/s41598-018- 21355-4.

26. Shafinah K, Sahari N, Sulaiman R, Yusoff MSM, Ikram MM. (2013) A framework of an expert system for crop pest and disease management. J Theor Appl Info Tech 58: 182-190.

27. Khush GS, Mackill DJ, Sidhu GS. (1989) Breeding rice for resistance to bacterial blight. In: Bacterial blight of rice. International Rice Research Institute, Manila, Philippines: 207-217.

28. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G. (1997) Pyramiding of bacterial blight re- sistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95: 313-320.

29. Jiang GH, Xia ZH, Zhou YL, Wan J, Li DY, Chen RS, Zhai WX, Zhu LH. (2006) Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1. Mol Gen Genom 275: 354-366.

30. Antony G, Zhou J, Huang S, Li T, Liu B, White F, Yang B. (2010) Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22: 3864- 3876.

31. Song W, Wang G, Chen L, Kim H, Pi L, Holsten T, Gardner J, Wang B, Zhai W, Zhu L, Fauquet C, Ron- ald P. (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804-1806.

32. Furuya N, Taura S, Goto T, Thuy BT, Ton PH, Tsuchiya K, Yoshimura A. (2012) Diversity in virulence of Xan- thomonas oryzae pv. oryzae from Northern Vietnam. Jpn Agricul Res Quarterly 46: 329-338.

33. Aye SS, Matsumoto M, Kaku H, Goto T, Furuya N, Yoshimura A. (2007) Evaluation of Resistance in Rice Plants to Myanmar Isolates of Xanthomonas oryzae pv. oryzae. J Fac Agr Kyushu Univ 52: 17-21.

34. Kauffman H, Reddy APK, Hsieh SPY, Merca SD, Kauffman EJ. (1973) An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep 57: 537-541.

35. Poland JA, Brown PJ, Sorrells ME, Jannink JL. (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by- sequencing approach (T. Yin, editor). PLoS One 7: e32253. doi: 10.1371/journal.pone.0032253.

36. Furuta T, Ashikari M, JenaK K, Doi K, Reuscher S. (2017) Adapting genotyping-by-sequencing for rice F2 populations. Genes Genomes Genet 7: 881-893.

37. Glaubitz J, Casstevens T, Lu F, Harriman J, Elshire R, Sun Q, Buckler E. (2014) TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS One 9. doi: 10.1371/journal.pone.0090346.

38. Swarts K, Li H, Alberto Romero Navarro J, An D, Romay M, Hearne S, Acharya C, Glaubitz J, Mitchell S, Elshire R, Buckler E, Bradbury P. (2014) Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome 7. doi: 10.3835/plantgen- ome2014.05.0023.

39. Ohsumi A, Takai T, Ida M, Yamamoto T, Arai-Sanoh Y, Yano M, Ando T, Kondo M. (2011) Evaluation of yield performance in rice near-isogenic lines with increased spikelet number. F Crop Res 120: 68-75.

40. Takai T, Matsuura S, Nishi T, Ohsumi A, Shiraiwa T, Horie T. (2006) Rice yield potential is closely related to crop growth rate during late reproductive period. Field Crop Res 96: 328-335.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る