リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Stratigraphy and palaeoenvironmental record of Lower Triassic deep-sea sedimentary rocks deposited in the pelagic Panthalassa」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Stratigraphy and palaeoenvironmental record of Lower Triassic deep-sea sedimentary rocks deposited in the pelagic Panthalassa

武藤, 俊 東京大学 DOI:10.15083/0002002081

2022.03.28

概要

The pelagic deep-sea sediments deposited in the Panthalassa during late Paleozoic to early Mesozoic times are dominated by bedded radiolarian chert, except for the Lower Triassic interval, which is composed of claystone dominant lithofacies: the deep-sea chert gap. In addition to the absence of bedded chert, the deep-sea chert gap is characterised by the occurrence of organic-rich black claystone at the end-Permian mass extinction (EPME) horizon. Therefore, the deep-sea chert gap potentially holds information on perturbations in the global silica and carbon cycles that began at the EPME and continued for the 5 Myr of the Early Triassic. However, information on its lithostratigraphy was highly fragmentary. This thesis attempted to clarify the complete lithostratigraphy of the Lower Triassic deep-sea chert gap, and to evaluate its record of perturbations in the silica cycle and the carbon cycle in the aftermath of the EPME.

Based on field investigations of nine sedimentary sections and conodont biostratigraphic investigations, in addition to compilation of previous studies, I established an almost complete lithostratigraphy of the deep-sea chert gap. The established lithostratigraphy of the deep-sea chert gap revealed the presence of chert beds, intercalated in or alternating with claystone beds, especially in the Olenekian interval. In addition, I discovered that black claystone is not restricted to the EPME horizon, and also occurs as dominant lithofacies in the lower Spathian and across the Olenekian-Anisian boundary (OAB). Furthermore, linear sedimentation rates (LSR) were estimated for the deep-sea chert gap by projecting U-Pb ages from shallow-marine sections using conodont biostratigraphy. The LSR of the deep-sea chert gap is > 7.4 m/Myr (5.8–10 m/Myr accounting for errors of radiometric age) from the EPME horizon to the lower Spathian, > 6.8 m/Myr (5.9–7.9 m/Myr accounting for errors of radiometric age) from the lower Spathian to the OAB and > 4.8 m/Myr (3.9–6.2 m/Myr accounting for errors of radiometric age) from the OAB to the Aegean-Bithynian substage boundary (ABB). These values are significantly higher than the LSR of Middle Triassic to Lower Jurassic bedded chert in the Inuyama area (1.5–1.7 m/Myr).

The organic matter burial flux (OMBF) in the deep-sea chert gap was estimated based on measurements of total organic carbon content (TOC), including data from previous studies. The estimated OCBF in the deep-sea chert gap is 30 g/Myr·cm2 (10–80 g/Myr·cm2) from the EPME to the early Spathian, 10 g/Myr·cm2 (4–20 g/Myr·cm2 ) from the early Spathian to the OAB and 20 g/Myr·cm2 (6–40 g/Myr·cm2 ) from the OAB to the ABB. These values are two orders of magnitude higher than that in bedded chert, and are comparable to upwelling zones in the modern ocean. The high OCBF in the deep-sea chert gap is interpreted as a result of high sediment accumulation rate, in addition to bottom water anoxia and/or high export production. Furthermore, assuming a relatively constant LSR, the highest OCBFs in the deep-sea chert gap in black claystone-dominant intervals are likely to be 500 to 1000 times that of bedded chert. Such an increase in OCBF probably occurred under the combined effects of high sediment accumulation rates, bottom water anoxia and high export production. The OCBF estimates were compared with secular changes in carbon isotope values of carbonates (δ13Ccarb) using conodont biostratigraphy and profiles of carbon isotope values of organic matter (δ13Corg) in the deep-sea chert gap including data from previous studies. The comparison showed that the extremely high OCBFs coincided with rising δ13Ccarb, suggesting that the high OCBF in the low latitude pelagic Panthalassa played a significant role in the removal of dissolved inorganic carbon form the atmosphere-ocean system. Indeed, extrapolation of the OCBF in black claystone dominant intervals to the area between 10°N and 10°S of the pelagic Panthalassa accounts for 10–30% of the total OCBF in the typical Phanerozoic ocean.

In order to clarify the origin of the clay-rich sedimentary rocks of the deep-sea chert gap, biogenic silica burial flux (BSBF) and clastic material burial flux (CMBF) in the deep-sea chert gap were calculated and compared with those in bedded chert. BSBF and CMBF were calculated using the content ratio of clastic material and biogenic silica within the deep-sea sediments based on the contents of SiO2 and Al2O3 measured by Xray fluorescence analysis. BSBF in the deep-sea chert gap is > 810 g/cm2 ·Myr (240–1740 g/cm2 ·Myr) from the EPME horizon to the lower Spathian, > 930 g/cm2 ·Myr (510–1480 g/cm2 ·Myr) from the lower Spathian to the OAB and > 680 g/cm2 ·Myr (360–1190 g/cm2 ·Myr) from the OAB to the ABB. CMBF in the deep-sea chert gap is > 1190 g/cm2 ·Myr (580–2260 g/cm2 ·Myr) from the EPME horizon to the lower Spathian, > 950 g/cm2·Myr (510–1550 g/cm2 ·Myr) from the lower Spathian to the OAB and > 620 g/cm2 ·Myr (270–1060 g/cm2 ·Myr) from the OAB to the ABB. Compared to estimated BSBF and CMBF in the Middle Triassic to Lower Jurassic bedded chert (420 g/cm2 ·Myr and 140 g/cm2·Myr, respectively), BSBF is increased at least by a factor of 2 and CMBF is increased at least 7 by a factor of in the deep-sea chert gap. Consequently, the origin of the deep-sea chert gap was identified as an anomalous increase in clastic material, most likely aeolian dust, to the pelagic realm. The increased CMBF may have been a result of expansion of arid regions due to the pole-ward expansion of the Hadley Cell under hothouse conditions in the Early Triassic. The increase in BSBF was probably a result of increased continental weathering, which is consistent with strontium isotope (87Sr/86Sr) records in South China and Iran.

A plausible causal relation between the high OCBF, BSBF and CMBF in the deep-sea chert identified in this study and environmental perturbations reported for the Early Triassic is as follows. Climatic warming caused the expansion of arid areas through the pole-ward expansion of the Hadley Cell, and also an increase in chemical weathering of the continents. The expansion of arid areas led to the increase in aeolian dust flux to the pelagic Panthalassa, resulting in high CMBF. Increased continental weathering resulted in increased dissolved silica and nutrient flux to the oceans. Increased dissolved silica flux resulted in increased BSBF, which in concert with high accumulation rate of aeolian dust, enhanced the burial efficiency of organic carbon by shielding. Increased nutrient flux to the oceans led to increased export production in the pelagic Panthalassa, which resulted in episodic oxygen depletion in the bottom water. In addition to high nutrient flux, the increase in aeolian dust flux may have been an essential factor that supported high export production by fertilising the pelagic ocean with iron. A combination of high sediment accumulation rates, high export production and episodic bottom water anoxia resulted in a dramatic increase in OCBF.

参考文献

Agematsu, S., Orchard, M. J., Sashida, K., 2008. Reconstruction of an apparatus of Neostrachanognathus tahoensis from Oritate, Japan and Species of Neostrachanognathus from Oman. Palaeontology, 51, 1201-1211.

Aita, Y., Spörli, K. B., 2007. Geological framework for the pelagic Permian/Triassic oceanic sequence of Arrow Rocks, Waipapa terrane, Northland, New Zealand. GNS Science Monograph, 24, 1-16.

Algeo, T., Twitchett, R., 2010. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology, 38, 1023-1026.

Algeo, T. J., Hinnov, L., Moser, J., Maynard, J. B., Elswick, E., Kuwahara, K., Sano, H. 2010. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology, 38, 187-190.

Algeo, T. J., Chen, Z. Q., Fraiser, M. L., Twitchett, R. J., 2011a. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 1-11.

Algeo, T. J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., Hinnov, L., Ellwood, B., Mosser, J., Maynard, J. B., 2011b. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 65-83.

Algeo, T. J., Henderson, C. M., Tong, J., Feng, Q., Yin, H., Tyson, R. V., 2013. Plankton and productivity during the Permian–Triassic boundary crisis: an analysis of organic carbon fluxes. Glob. Planet. Change, 105, 52-67.

Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marchall, C. R., McGowan, A. J., Miller, A. I., Olszewiski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., Vissagi, C. C., 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science, 321, 97-100

Ando, A., Kodama, K., Kojima, S., 2001. Low-latitude and Southern Hemisphere origin of Anisian (Triassic) bedded chert in the Inuyama area, Mino terrane, central Japan. Jour. Geophys. Res.: Solid Earth (1978–2012), 106, 1973-1986.

Arakawa, R., 1986. Upper Paleozoic and Mesozoic strata in the southeastern part of the Ashio Mountains. Bull. Tochigi Pref. Museum, 3, 1-37 (in Japanese with English abstract).

Balini, M., Lucas, S. G., Jenks, J. F. and Spielmann, J. A., 2010. Triassic ammonoid biostratigraphy: an overview. Geolo. Soc. London, Spec. Publ., 334, 221-262.

Baumgartner, P. O., 2013. Mesozoic radiolarites–accumulation as a function of sea surface fertility on Tethyan margins and in ocean basins. Sedimentology, 60, 292-318.

Beauchamp, B., Baud, A., 2002. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 37-63.

Bender, H., 1970. Zur Gliederung der Mediterranen Trias II. Die Conodontenchronologie der Mediterranen Trias. Ann. Géol. Pays Hélleniques, Serie 1, 19, 465-540.

Benton, M. J., Tverdokhlebov, V. P., Surkov, M. V., 2004. Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia. Nature, 432,97–100.

Benton, M. J., Ruta, M., Dunhill, A. M., Sakamoto, M., 2013. The first half of tetrapod evolution, sampling proxies, and fossil record quality. Palaeogeogr. Palaeoclimatol. Paeleoecol., 372, 18-41.

Berner, R. A., 1989. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Glob. Planet. Change, 1, 97-122.

Betts, J. N., Holland, H. D., 1991. The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. Glob. Planet. Change, 5, 5-18.

Brack, P., 2010. The “golden spike” for the Ladinian is set! Albertiana, 38, 8-10.

Brack, P., Rieber, H., Nicora, A., Mundil, R., 2005. The global boundary stratotype section and point (GSSP) of the Ladinian Stage (Middle Triassic) at Bagolino (Southern Alps, Northern Italy) and its implications for the Triassic time scale. Episodes, 28, 233-244.

Brack, P., Rieber, H., Mundil, R., Blendinger, W., Maurer, F., 2007. Geometry and chronology of growth and drowning of Middle Triassic carbonate platforms(Cernera and Bivera/Clapsavon) in the Southern Alps (northern Italy). Swiss J. Geosci. 100, 327-348.

Bucher, H., 1989. Lower Anisian ammonoids from the northern Humboldt Range (northwestern Nevada, USA) and their bearing upon the Lower-Middle Triassic boundary. Eclogae Geologicae Helvetiae, 82, 945-1002.

Budurov, K., 1976. Die triassischen Conodonten des Ostbalkans. Geologica Balcanica, 6, 95–104.

Budurov, K., Stefanov, S., 1975. Neue Daten über die Conodontenchronologie der Balkaniden Mittleren Trias. Doklady Bolgarskoi Akademii Nauk, 28, 791-794.

Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High-precision timeline for Earth’s most severe extinction. PNAS, 111, 3316-3321.

Burgess, S. D., Bowring, S. A., 2015. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Science Advances, 1, e1500470.

Buryi, G. I., 1979, Lower Triassic Conodonts of South Primorye, 144 p. Akademiya Nauk SSSR, Sibirskoye Otdeleniye, Institut Geologii i Geo ziki, Moskva. (in Russian; original title translated).

Buryi, G. I., 1989. Konodonty i Stratigraphiya Triasovykh Otlozhenii Sikhote-Alinya [Triassic Conodonts and Stratigraphy of Sikhote-Alin]. Vladivostok: Dalnevostochnoye Otdeleniye Akademii Nauk SSSR.

Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Mar. Geol., 113, 67-88.

Canfield, D. E., 1994. Factors influencing organic carbon preservation in marine sediments. Chem. Geol., 114, 315-329.

Chen, J., Shen, S. Z., Li, X. H., Xu, Y. G., Joachimski, M. M., Bowring, S. A., Erwin, D. H., Yuan, D. X., Chen, B., Zhang, H., Wang, Y., Cao, C. Q., Zheng, Q. F., Mu, L., 2016. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction. Palaeogeogr., Palaeoclimatol., Palaeoecol., 448, 26-38.

Chen, Z. Q., Benton, M. J., 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci., 5, 375-383.

Chen, Y., Jiang, H., Lai, X., Yan, C., Richoz, S., Liu, X., Wang, L., 2015. Early Triassic conodonts of Jiarong, Nanpanjiang Basin, southern Guizhou Province, South China. Jour. Asian Earth Sci., 105, 104-121.

Chen, Y., Neubauer, T. A., Krystyn, L. and Richoz, S., 2016a. Allometry in Anisian (Middle Triassic) segminiplanate conodonts and its implications for conodont taxonomy. Palaeontology, 59, 725-741.

Chen, Y., Krystyn, L., Orchard, M. J., Lai, X. L., Richoz, S., 2016b. A review of the evolution, biostratigraphy, provincialism and diversity of Middle and early Late Triassic conodonts. Papers in Palaeontology, 2, 235-263.

Chumakov, N. M., Zharkov, M. A., 2003. Climate during the Permian-Triassic biosphere reorganizations. Article 2. Climate of the Late Permian and Early Triassic: general inferences. Strat. Geol. Corr., 11, 361-375.

Clark, D. L., Sweet W. C., Bergström, S. M., Klapper, G., Austin, R. L., Rhodes, F. H. T., Müller, K. J., Ziegler, W., Lindström, M., Miller, J. F., Harris, A. G., 1981. Treatise on invertebrate paleontology. Part W Miscellanea, Supplement 2,

Conodonta. Geol. Soc. Amer. and Univ. Kansas, Boulder Colorado, and Lawrence, Kansas, 1-202.

Clarke, M. W. H., 1988. Stratigraphy and rock unit nomenclature in the oil-producing area of interior Oman. Jour. Petrol. Geol., 11, 5-60.

Cui, Y., Kump, L. R., Ridgwell, A., 2013. Initial assessment of the carbon emission rate and climatic consequences during the end-Permian mass extinction. Palaeogeogr., Palaeoclimatol., Palaeoecol., 389, 128-136.

Czamanske, G. K., Gurevitch, A. B., Fedorenko, V., Simonov, O., 1998. Demise of the Siberian plume: paleogeographic and paleotectonic reconstruction from the prevolcanic and volcanic record, north-central Siberia. Internat. Geol. Revi., 40, 95-115.

Ding, M., 1983. Lower Triassic conodonts from the Mountain Maijashan in Anhui Province and their stratigraphic significance. Earth Sci. – Jour. Wuhan Coll. Geol., 1983, 37-48.

Droser, M. L., Bottjer, D. J., 1986. A semiquantitative field classification of ichnofabric. Jour. Sed. Res., 56, 558–559.

Dürr, H. H., Meybeck, M., Hartmann, J., Laruelle, G. G., Roubeix, V., 2011. Global spatial distribution of natural riverine silica inputs to the coastal zone. Biogeosci., 8, 597-620.

El Wakeel, S. K., Riley, J. P., 1961. Chemical and mineralogical studies of deep-sea sediments. Geochim. cosmochim. acta, 25, 110-146.

Erwin, D. H., 1994. The Permo-Triassic extinction. Nature, 367, 231-236. Feng, Q.L., Yang, F.Q., Zhang, Z.F., Zhang, N., Gao, Y.Q., Wang, Z.P., 2000. Radiolarian evolution during the Permian and Triassic in South and southwest Chia. In Yin, H., Dickins, J.M., Shi, G.R. and Tong, J. (eds.) Permian-Triassic

Evolution of Tethys and Western Circum-Pacific. Elsevier, Amsterdam, p. 309-326.

Feng, Q., Zhang, Z., Mei, Y., 2001. Middle Triassic radiolarian fauna from southwest Yunnan, China. Micropaleontol., 47, 173-204.

Feng, Q., He, W., Gu, S., Meng, Y., Jin, Y., Zhang, F., 2007. Radiolarian evolution during the latest Permian in South China. Glob. Planet. Change, 55, 177-192.

Frierson, D. M., Lu, J., Chen, G., 2007. Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, 18.

Fujii, K., 1954. Stratigraphy and geological structure of the Usuki area, Oita Prefecture, Kyushu (1). Jour. Geol. Soc. Japan, 60, 413-427 (in Japanese with English abstract).

Fujimoto, H., 1961. Explanatory Text of the Geological Map of Japan, Scale 1:50000, Tochigi. Geological survey of Japan (in Japanese with English abstract).

Fujisaki, W., Sawaki, Y., Yamamoto, S., Sato, T., Nishizawa, M., Windley, B. F. Maruyama, S., 2016. Tracking the redox history and nitrogen cycle in the pelagic Panthalassic deep ocean in the Middle Triassic to Early Jurassic: Insights from redox-sensitive elements and nitrogen isotopes. Palaeogeogr., Palaeoclimatol., Palaeoecol., 449, 397-420.

Fujisaki, W., Matsui, Y., Asanuma, H., Sawaki, Y., Suzuki, K., Maruyama, S., 2018.

Global perturbations of carbon cycle during the Triassic–Jurassic transition recorded in the mid-Panthalassa. Earth. Planet. Sci. Lett., 500, 105-116.

Galán-Abellán, B., López-Gómez, J., Barrenechea, J. F., Marzo, M., De la Horra, R., Arche, A., 2013. The beginning of the Buntsandstein cycle (Early–Middle Triassic) in the Catalan Ranges, NE Spain: Sedimentary and palaeogeographic implications. Sed. Geol., 296, 86-102.

Galfetti, T., Bucher, H., Brayard, A., Hochuli, P. A., Weissert, H., Guodun, K., Atudorei, V., Guex, J., 2007a. Late Early Triassic climate change: insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. Palaeogeogr Palaeoclimatol Palaeoecol, 243, 394-411.

Galfetti, T., Bucher, H., Ovtcharova, M., Schaltegger, U., Brayard, A., Brühwiler, T., Goudemand, N., Weissert, H., Hochuli, P. A., Cordey, F., Guodun, K., 2007b. Timing of the Early Triassic carbon cycle perturbations inferred from new U–Pb ages and ammonoid biochronozones. Earth Planet. Sci. Lett., 258, 593-604.

Gaillardet, J., Duprè, B., Louvat, P., Allègre, C.J., 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of the large rivers. Chem.

Geol., 159, 3-30. Gedik, I., 1975. Die Conodonten der Trias auf der Kocaeli-Halbinsel (Türkei). Palaeontographica, Abteiling A, 150, 99-160 (in German with English summary).

Golding, M. L. and Orchard, M. J., 2016. New species of the conodont Neogondolella from the Anisian (Middle Triassic) of northeastern British Columbia, Canada, and their importance for regional correlation. Jour. Paleontol., 90, 1197-1211.

Goudemand, N., Orchard, M. J., Bucher, H., Jenks, J., 2012a. The elusive origin of Chiosella timorensis (Conodont Triassic). Geobios, 45, 199-207.

Goudemand, N., Orchard, M. J., Tafforeau, P., Urdy, S., Bruehwiler, T., Brayard, A., Galfetti, T., Bucher, H., 2012b. Early Triassic conodont clusters from South China: revision of the architecture of the 15 element apparatuses of the superfamily Gondolelloidea. Palaeontology, 55, 1021-1034.

Goudie, A. S., Middleton, N. J., 2001. Saharan dust storms: nature and consequences. Earth-Sci. Rev., 56, 179-204.

Gradinaru, E., Orchard, M. J., Nicora, A., Gallet, Y., Besse, J., Krystyn, L., Sobolev, E. S., Atudorei, N.-V., Ivanova, D., 2007. The global boundary stratotype section and point (GSSP) for the base of the Anisian stage: Deşli Caira Hill, North Dobrogea, Romania. Albertiana, 36, 54-71.

Grasby, S. E., Beauchamp, B., Embry, A., Sanei, H., 2013. Recurrent Early Triassic ocean anoxia. Geology, 41, 175-178.

Hayashi, S., 1968. Permian in the chert of the Adoyama Formation, Ashio Mountains, central Japan. Earth Science (Chikyu Kagaku), 22, 63-77 (in Japanese with English abstract and description).

Hedges, J. I., Keil, R. G., 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem., 49, 81-115.

Hermann, E., Hochuli, P. A., Méhay, S., Bucher, H., Brühwiler, T., Ware, D., Hautmann, M., Roohi, G., ur-Rehman, K., Yaseen, A., 2011. Organic matter and palaeoenvironmental signals during the Early Triassic biotic recovery: The Salt Range and Surghar Range records. Sediment. Geol., 234, 19-41.

Hinnov, L. A., 2000. New perspectives on orbitally forced stratigraphy. Ann. Rev. Earth Planet. Sci., 28, 419-475.

Hinnov, L. A., 2013. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences. Geol. Soc. Am. Bull., 125, 1703-1734.

Hirayama, K., Yamashita, N., Suyari, K., Nakagawa, C., 1956. Geologic map of “Kenzan” and its explanatory text. Tokushima Prefecture, 52p.

Horacek, M., Brandner, R., Abart, R., 2007a. Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: evidence for rapid changes in storage of organic carbon. Palaeogeogr., Palaeoclimatol., Palaeoecol., 252, 347-354.

Horacek, M., Richoz, S., Brandner, R., Krystyn, L., Spötl, C., 2007b. Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys: The δ13C record from marine sections in Iran. Palaeogeogr., Palaeoclimatol., Palaeoecol., 252, 355-369.

Horacek, M., Koike, T., Richoz, S., 2009. Lower Triassic δ13C isotope curve from shallow-marine carbonates in Japan, Panthalassa realm: Confirmation of the Tethys δ13C curve. Jour. Asian Earth Sci., 36, 481-490.

Hori, S. R., Cho, C., Umeda, H., 1993, Origin of cyclicity in Triassic-Jurassic radiolarian bedded cherts of the Mino accretionary complex from Japan. The Island Arc, 3, 170-180.

Hori, R. S., Yamakita, S., Ikehara, M., Kodama, K., Aita, Y., Sakai, T., Takemura, A., Kamata, Y., Suzuki, N., Takahashi, S., Spörli, K. B., Grant-Mackie, J. A., 2011. Early Triassic (Induan) Radiolaria and carbon-isotope ratios of a deep-sea sequence from Waiheke Island, North Island, New Zealand. Palaeoworld, 20, 166-178.

Hoshizumi, H., Saito, M., Mizuno, K., Miyazaki, K., Toshimitsu, S., Matsumoto, A., Ohno, T., Miyakawa, A., 2015. Geological map of Japan 1:200,000, Oita (2nd edition). Geological Survey of Japan, AIST (in Japanese with English abstract).

Huckriede, R., 1958. Die Conodonten der mediterranen Trias und ihr stratigraphier Wert. Paläontologische Zeitschrift, 32, 141-175.

Hüneke, H., Henrich, R., 2011. Pelagic sedimentation in modern and ancient oceans. H. Hüneke, and T. Mulder (Eds.). Elsevier: Amsterdam, The Netherlands, 215-351. Iacono-Marziano, G., Marecal, V., Pirre, M., Gaillard, F., Arteta, J., Scaillet, B., Arndt, N. T., 2012. Gas emissions due to magma–sediment interactions during flood magmatism at the Siberian Traps: gas dispersion and environmental consequences. Earth. Planet. Sci.e Lett., 357, 308-318.

Igo, Hy. and Koike, T., 1983. Conodont biostratigraphy of cherts in the Japanese Islands. Developments in Sedimentology, 36, 65-77.

Ikeda, M., Tada, R., 2014. A 70 million year astronomical time scale for the deep-sea bedded chert sequence (Inuyama, Japan): Implications for Triassic–Jurassic geochronology. Earth Planet. Sci. Lett., 399, 30-43.

Ikeda, M,. Tada, R., Sakuma, H., 2010, Astronomical cycle origin of bedded chert: A middle Triassic bedded chert sequence, Inuyama, Japan. Earth Planet. Scie. Lett., 297, 369-378.

Ikeda, M., Tada, R., Ozaki, K., 2017. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts. Nature comm., 8, 15532.

Imoto, N., 1984. Late Paleozoic and Mesozoic cherts in the Tamba Belt, Southwest Japan. Bull. Kyoto Univ. Edu., B 65, 15-71.

Imoto, N., Shimizu, D., Musashino, M., Ishida, S., 1989. Geology of the Kyoto Seihokubu district. With Geological Sheet Map at 1:50,000, Geol. Surv. Jap, 84p (in Japanese with English abstract).

Ishida, K., Yamashita, M., Ishiga, H., 1992. P/T boundary in the Tamba Belt, Southwest Japan. Geol. Repts. Shimane Univ., 11, 39-57 (in Japanese with English abstract).

Ishiga, H., 1983. two suites of stratigraphic succession within the Tamba Group in the western part of the Tamba Belt, southwest Japan. Jour. Geol. Soc. Japan, 89, 443-454 (in Japanese with English abstract).

Ishiga, H., 1986. Late Carboniferous and Permian radiolarian biostratigraphy of southwest Japan. Jour. Geosci., Osaka City Univ., 29, 89-100.

Ishiga, H., 1994, Permian/Triassic boundary and carbon circulation in pelagic sediments of Southwest Japan. Earth Science (Chikyu Kagaku), 48, 285-297.

Ishiga, H., Yamakita, S., 1993. Permian/Triassic boundary in pelagic sediments, Southwest Japan–an introduction–. Bull. Geol. Soc. Japan, 44, 419-423 (in Japanese with English abstract).

Ishiga, H., Kito, T., Imoto, N., 1982. Late Permian radiolarian assemblages in the Tamba district and an adjacent area, Southwest Japan. Earth Science (Chikyu Kagaku), 36, 10-22.

Ishii, K., Ichikawa, K., Katto, J., Yoshida, H., Kojima, G., 1957. Geology of the Chichibu Terrane along the highway from Kamiyakawa to Ino, Shikoku. Jour. Geol. Soc. Japan, 63, 449-454 (in Japanese with English abstract).

Isogawa, J., Aita, Y., Sakai, T., 1998. Early Triassic radiolarians from the bedded chert in the Minowa quarry, Kuzuu Town, Tochigi Prefecture. News Osaka Micropaleontol., Spec., 11, 81-93 (in Japanese with English abstract).

Isozaki, Y., 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science, 276, 235-238.

Isozaki, Y., 2009. Integrated “plume winter” scenario for the double-phased extinction during the Paleozoic–Mesozoic transition: the G-LB and P-TB events from a Panthalassan perspective. Jour. Asian Earth Sci. 36, 459-480.

Isozaki, Y., Maruyama, S., Furuoka, F., 1990. Accreted oceanic materials in Japan. Tectonophys., 181, 179-205.

Isozaki, Y., Shimizu, N., Yao, J., Ji, Z., Matsuda, T., 2007. End-Permian extinction and volcanism-induced environmental stress: the Permian–Triassic boundary interval of lower-slope facies at Chaotian, South China. Palaeogeogr., Palaeoclimatol., Palaeoecol., 252, 218-238.

Isozaki, Y., Maruyama, S., Aoki, K., Nakama, T., Miyashita, A., Otoh, S., 2010. Geotectonic Subdivision of the Japanese Islands Revisited: Categorization and definition of elements and boundaries of Pacific-type (Miyashiro-type) orogen.

Jour. Geogr., 119, 999-1053 (in Japanese with English abstract). Jahnke, R. A., 1996. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Glob. Biogeochem. Cycles, 10, 71-88.

Ji, W., Tong, J., Zhao, L., Zhuo, S., Chen, J., 2011. Lower-Middle Triassic conodont biostratigraphy of the Qingyan section, Guizhou Province, Southwest China. Palaeogeogr. Palaeoclimatol., Palaeoecol., 308, 213-223.

Joachimski, M. M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B., Chen, J., Sun, Y., 2012. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology, 40, 195-198.

Kaiho, K., Oba, M., Fukuda, Y., Ito, K., Ariyoshi, S., Gorjan, P., Riu, Y., Takahashi, S., Chen, Z. Q., Tong, J., Yamakita, S., 2012. Changes in depth-transect redox conditions spanning the end-Permian mass extinction and their impact on the marine extinction: Evidence from biomarkers and sulfur isotopes. Glob. Planet. Change, 94, 20-32.

Kakuwa, Y., 1993. Sedimentary petrographical study on bedded cherts of the Northern Chichibu Belt in eastern Shikoku–with special reference to the P/T boundary–. Bull. Geol. Suv. Japan, 44, 533-546 (in Japanese with English abstract).

Kakuwa, Y., 1996. Permian-Triassic mass extinction event recorded in bedded chert sequence in southwest Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol., 121, 35-51.

Kakuwa, Y., 1997. On the end-Permian mass extinction event inferred from the petrography of late Permian bedded chert in Southwest Japan. News Osaka Micropaleont., Spec. vol. 10, 77-86 (in Japanese with English abstract).

Kakuwa, Y., 1998. Significance of radiolarians, organic matter and pyrite in the Early Triassic siliceous claystone sequence, Southwest Japan. News Osaka Micropaleont., Spec. vol. 11, 71-80 (in Japanese with English abstract).

Kakuwa, Y., 2004. Trace fossils from the Triassic–Jurassic deep water, oceanic radiolarian chert successions of Japan. Fossil and Strata, 51, 58-67.

Kakuwa, Y., 2008. Evaluation of palaeo-oxygenation of the ocean bottom across the Permian-Triassic boundary. Glob. Planet. Change, 63, 40-56.

Kamata, Y., 1996. Tectonostratigraphy of the sedimentary complex in the southern part of the Ashio Terrane, central Japan. Sci. Repts., Inst. Geosci., Univ. Tsukuba, Sec. B, 17, 71-107.

Kamata, Y., 1997. Reconstruction of the chert-clastic sequence of the Ashio Terrane in the Kuzuu area, central Japan. Jour. Geol. Soc. Japan, 103, 343-356 (in Japanese with English abstract).

Kamata, Y., Shirouzu, A., Ueno, K., Sardsud, A., Charoentitirat, T., Charusiri, P., Koike, T., Hisada, K., 2014. Late Permian and Early to Middle Triassic radiolarians from the Hat Yai area, southern peninsular Thailand: Implications for the tectonic setting of the eastern margin of the Sibumasu Continental Block and closure timing of the Paleo-Tethys. Mar. Micropaleontol., 110, 8-24.

Kambe, N.,Teraoka, Y., 1968. Geological map of Japan, Scale 1:50,000. Usuki sheet and its explanatory text. Geological survey of Japan (in Japanese with English abstract).

Kemkin, I. V., 2008. Structure of terranes in a Jurassic accretionary prism in the Sikhote-Alin-Amur area: implications for the Jurassic geodynamic history of the Asian eastern margin. Russian Geology and Geophysics, 49, 759–770.

Kimura, K., 2000. Thrust system and kinematics of Jurassic accretionary complexes in the Tamba Belt, southwest Japan. Mem. Geol. Soc. Jap, 55, 181–202 (in Japanese with English abstract).

Kimura, K., Hori, R., 1993. Offscraping accretion of Jurassic chert-clastic complexes in the Mino-Tamba Belt, central Japan. Jour. Structural Geol., 15, 145-161.

Kimura, K., Nakae, S., 1993. Occurrence of siliceous claystone and associated greenstones in the Mino-Tamba Belt. Jour. Geol. Surv. japan, 44, 727-743 (in Japanese with English abstract).

Kimura, K., Makimoto, H., Yoshioka, T., 1989. Geology of the Ayabe district. With Geological sheet Map at 1:50,000, Geol. Surv. Japan, 104p. (in Japanese with English abstract 5p.).

Kimura, K., Nakae, S., Takahashi, Y., 1993. Geology of the Yotsuya districts, Quadrangle series, scale 1:50,000, Kyoto (11) no.15, Geol. Surv. Japan.

Koike, T., 1981. Biostratigraphy of Triassic conodonts in Japan. Sci. repts. Yokohama Nat. Univ. sec. 2, 28, 25-46.

Koike, T., 1982. Triassic conodont biostratigraphy in Kedah, west Malaysia. Geol. Paleontol. Southeast Asia, 23, 9-51.

Koike, T., 1992. Morphological variation in Spathian conodont Spathoicriodus collinsoni (Solien) from the Taho Limestone, Japan. Centenary of Japanese Micropaleontology. Terra Scientific Publishing Company, Tokyo, 355-364.

Koike, T., 1996. Skeletal apparatuses of Triassic conodonts of Cornudina. Prof. H. Igo Comm. Vol. Geol. Paleontol. Japan and Southeast Asia. Gakugei Tosho Insatsu Co., Tokyo, 113-120.

Koike, T., 1998. Triassic coniform conodont genera Aduncodina and Neostrachanognathus. Paleontol. Res., 2, 120-129.

Koike, T., 2004. Early Triassic Neospathodus (Conodonta) apparatuses from the Taho Formation, southwest Japan. Paleontol. Res., 8, 129-140.

Koike, T., 2016. Multielement conodont apparatuses of the Ellisonidae from Japan. Paleontol. Res., 20, 161-175.

Koike, T., Yamakita, S., Kadota, N., 2004: A natural assemblage of Ellisonia sp. cf. E. triassica Müller (Vertebrata: Conodonta) from the uppermost Permian in the Suzuka Mountains, central Japan. Paleontol. Res., 8, 241-253.

Kojima, S., Hayasaka, Y., Yoshikunihiroi, A., Sano, H., Sugamori, Y., Suzuki, N. and Takemura, S., 2016. 2b Pre-Cretaceous accretionary complexes. In Moreno, T., et al., eds., The Geology of Japan, 61-100. The Geological Society of London, London.

Komatsu, T., Takashima, R., Shigeta, Y., Maekawa, T., Tran, H. D., Cong, T. D., Sakata, S., Doan, D. H., Takahashi, O., 2016. Carbon isotopic excursions and detailed ammonoid and conodont biostratigraphies around Smithian–Spathian boundary in the Bac Thuy Formation, Vietnam. Palaeogeogr., Palaeoclimatol., Palaeoecol., 454, 65-74.

Kovács, S., 1994. Conodonts of stratigraphical importance from the Anisian/Ladinian boundary interval of the Balaton Highland, Hungary. Rivista Italiana di Paleontologia e Stratigrafia, 99, 473-514.

Kovács, S., Rálisch-Felgenhauer, E., 2005. Middle Anisian (Pelsonian) platform conodonts from the Triassic of the Mecsek Mts (South Hungary)-Their taxonomy and stratigraphic significance. Acta Geologica Hungarica, 48, 69-105.

Kozur, H., 1968. Neue Conodonten aus dem Oberen Muschelkalk des germanischen Binnenbeckens. Monats. deutsch. Akad. Wissenschaften Berlin, 10, 130-142.

Kozur, H., 1980. Revision der Conodontenzonierung der Mittel- und Obertrias des tethyalen Faunenreichs. Geologisch-Paläontologische Mitteilungen Innsbruck, 10, 79-112 (in German).

Kozur, H., 2003. Integrated ammonoid, conodont and radiolarian zonation of the Triassic and some remarks to stage/substage subdivision and the numeric age of the Triassic stages. Albertiana, 28, 57-74.

Kozur, H., Mostler, H., 1970. Neue conodonten aus der Trias. Ber. Naturwissen.-medizin. Ver. Inns., 58, 429-464.

Kozur, H., Mock, R., 1972. Neue Conodonten aus der Trias der Slowakei und ihre stratigraphische Bedeutung. Geologisch Paläontologische Mitteilungen Innsbruck, 2, 1-20 (in German).

Kozur, H. W., Mostler, H., 1972. Die Conodonten der Trias und ihr stratigraphischer Wert. I: Die Zahnreihen-Conodonten der Mittel- und Obertrias. Abhandlungen der Geologischen Bundesanstalt, 28, 1-53.

Kozur, H., Mostler, H., 1982. Neue Conodontenarten aus dem Illyr und Fassan der Profile Fellbach und Karalm (Gailtaler Alpen, Kärnten, Österreich). Geologisch Paläontologische Mitteilungen Innsbruck, 11, 291-298 (in German).

Kozur, H., Krainer, K., Lutz, D., 1994. Middle Triassic conodonts from the Gartnerkofel—Zielkofel area, Carnic Alps (Carinthia, Austria). Jahrbuch der Geologischen Bundesanstalt, 137, 275-287.

Krystyn, L., Richoz, S.,Bhargava, O. N., 2007. The Induan- Olenekian boundary (IOB) in Mud—an update of the candidate GSSP section M04. Albertiana, 36, 33-45.

Kubo, K., Isozaki, Y., Matsuo, M., 1996, Color of bedded chert and redox condition of depositional environment: 57Fe Mossbauer spectroscopic study on chemical state of iron in Triassic deep-sea pelagic chert. Jour. Geol. Soc. Japan, 102, 40-48.

Kumar, N., Anderson, R. F., Mortlock, R. A., Froelich, P. N., Kubik, P., Dittrich-Hannen, B., Suter, M., 1995. Increased biological productivity and export production in the glacial Southern Ocean. Nature, 378, 675–680.

Kurimoto, C., Matsuura, H., Yoshikawa, T., 1993. Geology of the Sasayama district. With Geological sheet Map at 1:50,000, Geol. Surv. Japan, 93p. (in Japanese with English abstract 5p.).

Kuroda, J., Hori, R. S., Suzuki, K., Gröcke, D. R., Ohkouchi, N., 2010. Marine osmium isotope record across the Triassic-Jurassic boundary from a Pacific pelagic site. Geology, 38, 1095-1098.

Kusunoki, T., Imoto, N., 1996. Early Triassic (Spathian) radiolarians in chert from Southern Kameoka City, Kyoto Prefecture. Earth Science (Chikuyu Kagaku), 50, 184-188 (in Japanese with English abstract).

Kuwahara, K., 1997. Upper Permian radiolarian biostratigraphy: Abundance zones of Albailella. News Osaka Micropaleontol., Spec. vol. 10, 55-75 (in Japanese with English abstract).

Kuwahara, K., Yamakita, S., 2001. Microbiostratigraphy on chert facies of Upper Permian in the Northern Chichibu Belt, Shikoku, Southwest Japan. News Osaka Micropaleontol., Spec. vol. 12, 51-59 (in Japanese with English abstract).

Kuwahara, K., Nakae, S., Yao, A., 1991. Late Permian “Toishi-type” siliceous mudstone in the Mino-Tamba Belt. Jour. Geol. Soc. Japan, 97, 1005-1008 (in Japanese with English abstract).

Kuwahara, K., Yao, A., Yamakita, S., 1998. Reexamination of Upper Permian radiolarian biostratigraphy. Earth Science (Chikyu Kagaku), 52, 391-404.

Lawrence, C. L., Neff, J. C., 2009, The contemporary physical and chemical flux of aeolian dust: A synthesis of direct measurements of dust deposition. Chemical Geology, 267, 46-63.

Lee, C., 1992. Controls on organic carbon preservation: the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim. Cosmochim. Acta, 56, 3323-3335.

Lehrmann, D. J., Stepchinski, L., Altiner, D., Orchard, M. J., Montgomery, P., Enos, P., Ellwood, B. B., Bowring, S. A., Ramezani, J., Wang, H., Wei, J., Yu, M., Griffiths, J. D., Minzoni, M., Schaal, E. K., Li, X., Meyer, K. M., Payne, J. L., 2015. An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian-Upper Triassic strata of Guandao section, Nanpanjiang Basin, south China. Jour. Asian Earth Sci., 108, 117-135.

Liang, D., Tong, J. N., Zhao, L. S., 2011. Lower Triassic Smithian- Spathian boundary at West Pingdingshan section in Chaohu, Anhui Province. Science China Earth Sciences, 54, 372-379.

Linol, B., Bercovici, A., Bourquin, S., Diez, J. B., López-Gómez, J., Broutin, J., Durand., M., Villanueva-Amadoz, U., 2009. Late Permian to Middle Triassic correlations and palaeogeographical reconstructions in south-western European basins: new sedimentological data from Minorca (Balearic Islands, Spain). Sed. Geol., 220, 77-94.

López-Gómez, J., Arche, A., Marzo, M., Durand, M., 2005. Stratigraphical and palaeogeographical significance of the continental sedimentary transition across the Permian–Triassic boundary in Spain. Palaeogeogr Palaeoclimatol Palaeoecol., 229, 3-23.

Maeda, H., Kamata, Y., Karasawasan, Project Research Group, 2000. Lithostratigraphy and conodont fossils of Lower Triassic siliceous sediments in the Ashio Belt, central Japan. Abstract of the 7th Meeting of Radiolarian Symposium, 9 (in Japanese).

Maekawa, T., Igo, H., 2014. Conodonts. In: Shigeta, Y., Komatsu, T., Mekawa, T., Dang, H. T., eds. Olenekian (Early Triassic) Stratigraphy and Fossils Assemblages in Northeastern Vietnam, National Museum of Nature and Science Monographs, 45, 190-271.

Maekawa, T., Komatsu, T., Koike, T., 2018. Early Triassic Conodonts from the Tahogawa Member of the Taho Formation, Ehime Prefecture, Southwest Japan. Paleontol. Res., 22, 1-62.

Matsuda, T., 1982. Early Triassic conodonts from Kashmir, India, part 2: Neospathodus 1. Journal of Geosciences, Osaka City University, 25, 87-102.

Matsuda, T., 1983: Early Triassic conodonts from Kashmir, India, part 3: Neospathodus 2. Journal of Geosciences, Osaka City University, 27, 87-102.

Matsuda, T., Isozaki, Y., 1991. Well-documented travel history of Mesozoic pelagic chert in Japan: from remote ocean to subduction zone. Tectonics, 10, 475-499.

Matsuoka, A., 1986 Mesozoic strata of the Southern Chichibu Terrane in the Tsukumi area, Oita Prefecture. News Osaka Micropaleontol., Spec. Vol., no. 7, 219-223.

Matsuoka, A., 1995. Jurassic and Lower Cretaceous radiolarian zonation in Japan and in the western Pacific. Island Arc, 4, 140-153.

Matsuoka, A., Yao, A., 1986. A newly proposed radiolarian zonation for the Jurassic of Japan. Marine Micropaleontol., 11, 91-106.

Matsuoka, A., Yamakita, S., Sakakibara, M., Hisada, K., 1998. Unit division of the Chichibu Composite Belt from a view point of accretionary tectonics and geology of western Shikoku, Japan. Jour. Geol. Soc. Japan, 104, 634-653 (in Japanese with English abstract).

Matsuoka, A., Aita, Y., Wakita, K., Shen, G., Ujilé, H., Sashida, K., Vishnevskaya, V. S., Bragin, N. Y., Cordey, F., 1996. Mesozoic radiolarians and radiolarian-bearing sequences in the circum-Pacific regions: A report of the symposium-‘Radiolarians and Orogenic Belts’. Island Arc, 5, 203-213.

Metcalfe, I., Nicoll, R. S., Willink, R., Ladjavadi, M., Grice, K., 2013. Early Triassic (Induan–Olenekian) conodont biostratigraphy, global anoxia, carbon isotope excursions and environmental perturbations: New data from Western Australian Gondwana. Gondwana Res., 23, 1136-1150.

Middleton, N. J., Goudie, A. S., 2001. Saharan dust: sources and trajectories. Trans. the Inst. Brit. Geograph., 26, 165-181.

Miyachi,Y., Kusunoki,T., Musashino,M., Tainosho,Y., Imoto,N., 2005 Geology of the Kyoto-Seinambu district. Quadrangle Series, 1:50,000, Geological Survey of Japan, AIST, 90p (in Japanese with English abstract 4p).

Miyamura, M., Mimura, K., Yokoyama, T., 1976. Geology of the Hikonetobu district, Quadrangle series, scale 1:50,000, Kyoto (11) No. 18, Geol. Surv. Japan.

Mizutani, A., 2015MS. [A completely continuous reconstruction of the deep-sea stratigraphy of the Permian-Triassic boundary and the elucidation of oceanic environments based on pyrite] (translated from original title in Japanese)

Masters Thesis, Univ. Tokyo (in Japanese with English abstract). Mizutani, S., 1964. Superficial folding of the Paleozoic system of central Japan. Jour. Earth Sci., Nagoya Univ., 12, 17-83.

Mizutani, S., Koike, T., 1982. Radiolarians in the Jurassic siliceous shale and in the Triassic bedded chert of Unuma, Kakamigahara City, Gifu Prefeture, central Japan. News Osaka Micropalaeontol., Spec. vol. 5, 117-134 (in Japanese with English abstract).

Mosher, L. C., 1968a. Triassic conodonts from western North America and Europe and their correlation. Jour. Paleontol., 42, 895-946.

Mosher, L. C., 1968b. Evolution of Triassic platform conodonts. Jour. Paleontol., 42, 947-954.

Mosher, L. C., 1970. New conodont species as Triassic guide fossils. Jour. of Paleontol., 44, 737-742.

Motoki, H., Sashida, K., 2004. Preliminary report on the chronological and lithostratigraphical studies of the Toishi-type shale (siliceous claystone) in the Ashio Mountains, central Japan. New Osaka Micropaleontol., spec. vol., no. 13, 47-57 (in Japanese with English abstract).

Müller, K. J., 1956. Triassic conodonts from Nevada. Jour. Paleontol., 30, 818-830.

Mundil, R., Pálfy, J., Renne, P. R., Brack, P., 2010. The Triassic timescale: new constraints and a review of geochronological data. Geological Society, London, Special Publications, 334, 41-60.

Murray, R. W., 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sed. Geol., 90, 213-232.

Musashino, M., 1993. Chemical compositions of the “Toishi-type” siliceous shale—Part 1—. Bull. Geol. Soc. Jap., 44, 699-705.

Muttoni, G., Nicora, A., Brack, P., Kent, D. V., 2004. Integrated Anisian–Ladinian boundary chronology. Palaeogeogr., Palaeoclimatol., Palaeoecol., 208, 85-102.

Nakada, R., Ogawa, K., Suzuki, N., Takahashi, S., Takahashi, Y., 2014. Late Triassic compositional changes of aeolian dusts in the pelagic Panthalassa: response to the continental climatic change. Palaeogeogr., Palaeoclimatol., Palaeoecol., 393, 61-75.

Nakae, S., 1993. The Permo-Triassic boundary as a decollement zone within pelagic siliceous sediments, with reference to Jurassic accretion of the Tamba Terrane, SW Japan. Bull Geol Soc Japan, 44, 471-481 (in Japanese with English abstract).

Nakae, S., 2000. Regional correlation of the Jurassic accretionary complex in the Inner Zone of Southwest Japan. Mem. Geol. Soc. Jap., 55, 73–98 (in Japanese with English abstract).

Nakao, K., Isozaki, Y., 1994, Recovery history from the P/T boundary deep-sea anoxia recorded in pelagic chert in the Inuyama area, Mino Belt, Japan. Jour. Geol. Soc. Japan, 100, 505–508.

Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717.

Nesbitt, H. W., Young, G. M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, 48, 1523-1534.

Newell, A. J., Sennikov, A. G., Benton, M. J., Molostovskaya, I. I., Golubev, V. K., Minikh, A. V., Minikh, M. G., 2010. Disruption of playa–lacustrine depositional systems at the Permo-Triassic boundary: evidence from Vyazniki and Gorokhovets on the Russian Platform. Jour. Geol. Soc., 167, 695-716.

Nicora, A., 1976. Conodont-fauna, stratigraphic position and relations to the Tethyan successions of the Shoshonensis Zone (Pelsonian) of Nevada. Rivista Italiana di Paleontologia e Stratigrafia, 82, 627-650.

Nicora, A., 1977. Lower Anisian platform-conodonts from the Tethys and Nevada: Taxonomic and stratigraphic revision. Palaeontograph. Abteil. A, 88-107.

Nicora, A., Kozur, H., Mietto, P., 1981. Gondolella pridaensis sp. n.: A new conodont species from the Middle Triassic. Rivista Italiana di Paleontologia e Stratigrafia, 86, 761-768.

Nishi, T., 1994. Geology and tectonics of the Sambosan Terrane in eastern Kyushu, southwest Japan—stratigraphy, sedimentological features of the depositional setting of the Shakumasan Group. Jour. Geol. Soc. Japan, 100, 199-215.

Nishikane, Y., Kaiho, K., Takahashi, S., Henderson, C. M., Suzuki, N., Kanno, M., 2011. The Guadalupian-Lopingian boundary (Permian) in a pelagic sequence from Panthalassa recognized by integrated conodont and radiolarian biostratigraphy. Mar. Micropaleontol., 78, 84-95.

Nishizono, Y., 1996. Mesozoic convergent process of the Southern Chichibu Terrane in West Kyushu, Japan, on the basis of Triassic and Early Cretaceous radiolarian biostratigraphy. Mem. Fac. Sci., Kumamoto Univ. (Earth Science), 14, 45-226 (in Japanese with English abstract).

Nishizono, Y., Yoshida, H., Murata, M., 1996. The siliceous rock facies near the Permo-Triassic (P/T) boundary in the Southern Chichibu Terrane, Kyushu. Jour. Geol. Soc. Japan, 102, 591-608 (in Japanese with English abstract).

Nogami, Y., 1968. Trias-Conodonten von Timor, Malaysien und Japan (Palaeontological Study of Portuguese Timor, 5). Mem. Fac. Sci., Kyoto Univ., Ser. Geol. Mineral., 34, 115-136 (in German with English abstract).

Oda, H., Suzuki, H., 2000. Paleomagnetism of Triassic and Jurassic red bedded chert of the Inuyama area, central Japan. Jour. Geophys. Res: Solid Earth (1978–2012) 105, 25743-25767.

O'Dogherty, L., Carter, E. S., Goričan, Š., Dumitrica, P., 2010. Triassic radiolarian biostratigraphy. Geol. Soc. London, Spec. Pub., 334, 163-200.

Ogg, J. G., 2012. The Triassic period. In Gradstein, F. M., et al., eds., A Geologic Time Scale. Cambridge Univ. Press, Cambridge, UK, 681-730.

Onoue, T., Nakamura, T., Haranosono, T., Yasuda, C., 2011. Composition and accretion rate of fossil micrometeorites recovered in Middle Triassic deep-sea deposits. Geology, 39, 567-570.

Onoue, T., Sato, H., Yamashita, D., Ikehara, M., Yasukawa, K., Fujinaga, K., Kato, S., Matsuoka, A., 2016. Bolide impact triggered the Late Triassic extinction event in equatorial Panthalassa. Scientific reports, 6, 29609.

Orchard, M. J., 1995. Taxonomy and correlation of Lower Triassic (Spathian) segminate conodonts from Oman and revision of some species of Neospathodus. Jour.Paleontol., 69, 110-122.

Orchard, M. J., 2005. Multielement conodont apparatuses of Triassic Gondolelloidea. Special Papers in Palaeontol., 73, 73-101.

Orchard, M. J., 2007. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr., Palaeoclimatol., Palaeoecol., 252, 93-117.

Orchard, M. J., 2008. Lower Triassic conodonts from the Canadian Arctic, their intercalibration with ammonoid-based stages and a comparison with other North American Olenekian faunas. Polar Research, 27, 393-412.

Orchard, M. J., 2010. Triassic conodonts and their role in stage boundary definition. Geol. Soc. London, Spec. Pub., 334, 139-161.

Orchard, M. J., Krystyn, L., 1998. Conodonts of the lowermost Triassic of Spiti, and new zonation based on Neogondolella successions. Rivista Italiana di Paleontologia e Stratigrafia), 104, 341-368.

Orchard, M. J., Krystyn, L., 2007. Conodonts from the Induan- Olenekian boundary interval at Mud, Spiti. Albertiana, 35, 30-34.

Orchard, M. J., Tozer, E. T., 1997. Triassic conodont biochronology, its intercalibration with the ammonoid standard, and a biostrati- graphic summary for the Western Canada Sedimentary Basin. Bull. Canad. Petrol. Geol., 45, 675-692.

Orchard, M. J., Zonneveld, J. P., 2009. The Lower Triassic Sulphur Mountain Formation in the Wapiti Lake area: lithostratigraphy, conodont biostratigraphy, and a new biozonation for the lower Olenekian (Smithian). Canad. Jour. Earth Sci.e, 46, 757-790.

Orchard, M. J., Gradinaru, E., Nicora, A., 2007a. A summary of the conodont succession around the Olenekian-Anisian boundary at Desli Caira, Dobrogea, Romania. New Mexico Mus. Nat. His. Sci. Bull., 41, 341-346.

Orchard, M. J., Lehrmann, D. J., Wei, J., Wang, H., Taylor, H. J., 2007b. Conodonts from the Olenekian-Anisian boundary beds, Guandao, Guizhou Province, China. New Mexico Mus. Nat. His. Sci. Bull., 41, 347-354.

Ovtcharova, M., Bucher, H., Schaltegger, U., Galfetti, T., Brayard, A., Guex, J., 2006. New Early to Middle Triassic U–Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth Planet. Sci. Lett., 243, 463-475.

Ovtcharova, M., Goudemand, N., Hammer, Ø., Guodun, K., Cordey, F., Galfetti, T., Schaltteger, U., Bucher, H., 2015. Developing a strategy for accurate definition of a geological boundary through radio-isotopic and biochronological dating: The Early–Middle Triassic boundary (South China). Earth Sci. Rev., 146, 65-76.

Payne, J. L., Kump, L. R., 2007. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth. Planet. Sci. Lett., 256, 264-277.

Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P., Knoll, A. H., 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 305, 506-509.

Payne, J. L., Summers, M., Rego, B. L., Altiner, D., Wei, J., Yu, M., Lehrmann, D. J., 2011. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in South China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction. Paleobiol, 37, 409-425.

Pedersen, T. F., Calvert, S. E., 1990. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary Rocks?. AAPG Bull., 74, 454-466.

Piper, D. Z., Calvert, S. E., 2009. A marine biogeochemical perspective on black shale deposition. Earth Sci. Rev., 95, 63-96.

Pisa, G., Perri, C., Veneri, P., 1980. Upper Anisian conodonts from Dont and M. Bivera Formations, Southern Alps (Italy). Rivista Italiana di Paleontologia e Stratigrafia, 85, 807-828.

Pruss, S. B., Bottjer, D. J., 2005. The reorganization of reef communities following the end-Permian mass extinction. Comptes Rendus Palevol, 4, 553-568. Rea, D. K., Leinen, M., Janecek, T. R., 1985. Geologic approach to the long-term history of atmospheric circulation. Science, 227, 721-725.

Reichow, M. K., Saunders, A. D., White, R. V., Pringle, M. S., Al'Mukhamedov, A. I., Medvedev, A. I., Kirda, N. P., 2002. 40Ar/39Ar dates from the West Siberian Basin: Siberian flood basalt province doubled. Science, 296, 1846-1849.

Reichow, M. K., Pringle, M. S., Al'Mukhamedov, A. I., Allen, M. B., Andreichev, V. L., Buslov, M. M., Davies, C. E., Fedoseev, G. S., Fitton, J. G., Inger, S., Medvedev, A. Y., Mitchell, C., Puchkov, V. N., Safonova, I. Y., Scott, R. A., Saunders, A. D.,2009. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth. Planet. Sci. Lett., 277, 9-20.

Retallack, G. J., Jahren, A. H., 2008. Methane release from igneous intrusion of coal during Late Permian extinction events. Jour. Geol., 116, 1-20.

Retallack, G. J., Veevers, J. J., Morante, R., 1996. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. Geol. Soc. Am. Bull., 108, 195-207.

Sakuma, H., 2010MS. High-resolution reconstruction of the deep-water environment and its relation with shallow-water environment during the End-Permian to the Early Triassic: Implication for the cause and consequence of ocean anoxia at the P/T boundary. Dissertation, Univ. Tokyo.

Sakuma, H., Tada, R., Ikeda, M., Kashiyama, Y., Ohkouchi, N., Ogawa, N. O., Watanabe, S., Tajika, E., Yamamoto, S., 2012. High-resolution lithostratigraphy and organic carbon isotope stratigraphy of the Lower Triassic pelagic sequence in central Japan. Island Arc, 21, 79-100.

Sano, H., 2018. Stratigraphy and age of the Permian to Triassic chert-dominant succession of the Mino Belt in the eastern part of the Funabuseyama rock mass, western Gifu Prefecture. Jour. Geol. Soc. Jap., 124, 449-467 (in Japanese with English abstract).

Sano, H., Kuwahara, K., Yao, A., Agematsu, S., 2010. Stratigraphy and age of the Permian-Triassic boundary siliceous rocks of the Mino terrane in the Mt. Funabuseyama area, central Japan. Paleontol. Res., 16, 124-145.

Sano, H., Wada, T., Naraoka, H., 2012a. Late Permian to Early Triassic environmental changes in the Panthalassic Ocean: Record from the seamount-associated deep-marine siliceous rocks, central Japan. Palaeogeogr., Palaeoclimatol., Palaeoecol. 363, 1-10.

Sano, H., Kuwahara, K., Yao, A., Agematsu, S., 2012b. Stratigraphy and age of the Permian-Triassic boundary siliceous rocks of the Mino terrane in the Mt. Funabuseyama area, central Japan. Paleontol. Res., 16, 124-145.

Sashida, K., Kamata, Y., Igo, Hy., 1992. " Toishi-type shale" in the Ashio mountains, central Japan. Ann. Rep., Inst. Geosci., Univ. Tsukuba, 18, 59-66.

Sashida, K., Nishimura, H., Igo, Hy., Kazama, S., Kamata, Y., 1993,. Triassic radiolarian faunas from Kiso-fukushima, Kiso Mountains, central Japan. Sci. Rep. Inst. Geosci. Univ. Tsukuba, Sec. B, 14, 77-97.

Sashida, K., Kamata, Y., Adachi, S., Munasri, 1999. Middle Triassic radiolarians from West Timor, Indonesia. Jour. Paleontol., 73, 765-786.

Schobben, M., Joachimski, M. M., Korn, D., Leda, L., Korte, C., 2014. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res., 26, 675-683.

Schroeder, D., 1978. Structure and weathering of potassium containing minerals. Proc. 11th Congr. Int. Potash Institute 1978.

Sedlacek, A. R., Saltzman, M. R., Algeo, T. J., Horacek, M., Brandner, R., Foland, K., Denniston, R. F., 2014. 87Sr/86Sr stratigraphy from the Early Triassic of Zal, Iran: Linking temperature to weathering rates and the tempo of ecosystem recovery. Geology, 42, 779-782.

Shen, J., Schoepfer, S. D., Feng, Q., Zhou, L., Yu, J., Song, H.,Wei, H., Algeo, T. J., 2015. Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth Sci. Rev., 149, 136-162.

Shen, S.-Z., Crowley, J.L., Wang, Y., Bowring, S.A., Erwin, D.H., Sadler, P.M., Cao, C.Q., Rothman, D.H., Henderson, C.M., Ramezani, J., Zhang, H., Shen, Y., Wang, X.-D., Wang, W., Mu, L., Li, W.-Z., Tang, Y.-G., Liu, X.-L., Liu, L.-J., Zeng, Y., Jiang, Y.-F., Jin, Y.-G., 2011. Calibrating the end-Permian mass extinction. Science, 334, 1367-1372.

Siever, R., 1991. Silica in the oceans: Biological-geochemical interplay. Scientists on gaia. MIT Press, Cambridge, MA, 287-295.

Smith, R. M. H., Eriksson, P. G., Botha, W. J., 1993. A review of the stratigraphy and sedimentary environments of the Karoo-aged basins of Southern Africa. Jour. African Earth Sci. (and the Middle East), 16, 143-169.

Soda, K., Onoue, T., Ikeda, M., 2015. Cyclostratigraphic examination of Middle Triassic (Anisian) bedded chert in the Chichibu Belt from Tsukumi area, eastern Kyushu, Japan. Jour. Geol. Soc. Japan, 121, 147-152 (in Japanese with English abstract).

Solien, M. A., 1979. Conodont biostratigraphy of the Lower Triassic Thaynes FGormation, Utah. Jour. Paleontol., 53, 276-306.

Song, Hj., Wignall, P. B., Chen, Z. Q., Tong, J., Bond, D. P. G., Lai, X., Zhao, X., Jiang, H., Yan, C., Niu, Z., Chen, J., Yang, H., Wang, Y., 2011. Recovery tempo and pattern of marine ecosystems after the end-Permian. Geology, 39, 739-742.

Song, Hj., Yang, L., Tong, J., Chen, J., Tian, L., Song, Hy., Chu, D., 2015a. Recovery dynamics of foraminifers and algae following the Permian-Triassic extinction in Qingyan, South China. Geobios., 48, 71-83.

Song, Hj., Wignall, P. B., Tong, J., Song, H., Chen, J., Chu, D., Tian, L., Luo, M., Zhong, K., Chen, Y., Lai, X., Zhang, K., Wang, H., 2015b. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth. Planet. Sci. Lett., 424, 140-147.

Song, Hy., Tong, J., Algeo, T. J., Horacek, M., Qiu, H., Song, Hj., Tian, L., Chen, Z. Q. 2013. Large vertical δ13C DIC gradients in Early Triassic seas of the South China craton: implications for oceanographic changes related to Siberian Traps volcanism. Glob. Planet. Change, 105, 7-20.

Song, Hy., Tong, J., Algeo, T. J., Song, Hj., Qiu, H., Zhu, Y., Tian, L., Bates, S., Lyons, T., Luo, G., Kump, L. R., 2014. Early Triassic seawater sulfate drawdown. Geochim. Cosmochim. Acta, 128, 95-113.

Spasov, C., Ganev, M., 1960. Karnski konodonti ot ludokamchiyskaya drlya na iztochna stara plapina. Trudove Byrkhu Geologiyata na Bylgariya, Ser. Paleontol. [Trav. Géol. Bulagrie Sér. Paléonto.], 2, 77-95.

Sperling, E. A., Ingle, J. C., 2006. A Permian–Triassic boundary section at Quinn River Crossing, northwestern Nevada, and implications for the cause of the Early

Triassic chert gap on the western Pangean margin. Geol. Soc. Am. Bull., 118, 733-746.

Stow, D. A., Piper, D. J. W., 1984. Deep-water fine-grained sediments: facies models. Geol. Soc. London, Spec. Pub., 15, 611-646.

Strasser, A., Hilgen, F. J., Heckel, P. H., 2006. Cyclostratigraphy–concepts, definitions, and applications. Newslett. Stratigr., 42, 75-114.

Sudar, M. N., Budurov, K., 1979. New conodonts from the Triassic in Yugoslavia and Bulgaria. Geologica Balcanica, 9, 47-52.

Sugimoto, M., 1974. Stratigraphical study in the outer belt of Kitakami massif, Northeast Japan. Contributions from the institute of geology and paleontology Tohoku University, 74, 1-48 (in Japanese with English abstract).

Sugitani, K., Mimura, K., 1998. Redox change in sedimentary environments of Triassic bedded cherts, central Japan: possible reflection of sea-level change. Geol. mag., 135, 735-753.

Sugiyama, K., 1992. Lower and Middle Triassic radiolarians from Mt. Kinkazan, Gifu Prefecture, central Japan. Trans. Proc. Palaeont. Soc. Japan, NS, 167, 1180-1223.

Sugiyama, K., 1997. Triassic and Lower Jurassic radiolarian biostratigraphy in the siliceous claystone and bedded chert units of the southeastern Mino Terrane, Central Japan. Bull. Mizunami Fossil Mus., 24, 79-193.

Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., Lai, X., 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338, 366-370.

Suzuki, Nt., Aita, Y., Campbell, H. J., Hori, R. S., Kamata, K., Kodama, K., Nakamura, Y., Nasu, Y., Sakai, T., Sakakibara, M., Spörli, K. B., Takemura, A., Takemura, S., Yamakita, S., 2007. Lithostratigraphy of the Oruatemanu Formation, Waipapa terrane, at Arrow Rocks, Northland, New Zealand. GNS Science Monograph, 24, 17-44.

Suzuki, Ny., Ishida, K., Shinomiya, Y., Ishiga, H., 1998. High productivity in the earliest Triassic ocean: black shales, Southwest Japan. Palaeogeogr., Palaeoclimatol., Palaeoecol., 141, 53-65.

Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y., Jamtveit, B., 2009. Siberian gas venting and the end-Permian environmental crisis. Earth. Planet. Sci. Lett., 277, 490-500.

Sweet, W. C., 1970: Uppermost Permian and Lower Triassic conodonts of the Salt Range and Trans-Indus Ranges, West Pakistan. In, Kummel, B. and Teichert, C. eds., Stratigraphic Boundary Problems: Permian and Triassic of West Pakistan, p. 207–275. University of Kansas Special Publications, 4, the University Press of Kansas, Kansas.

Sweet, W., 1971. Conodont biostratigraphy of the Triassic. Geol. Soc. Amer. Mem., 127.

Sweet, W. C., 1988. The Conodonta: morphology, taxonomy, paleoecology, and evolutionary history of a long-extinct animal phylum. Oxford Monogr. Geol. Geophys, 10. Clarendon Press, Oxford 212 pp.

Szabo, F., Kheradpir, A., 1978. Permian and Triassic stratigraphy, Zagros basin, south-west Iran. Jour. Petrol. Geol., 1, 57-82.

Tada, R., 1991. Compaction and cementation in siliceous rocks and their possible effect on bedding enhancement, in: Einsele, G., Ricken, W., Seilacher, A. (Eds.), Cycles Events Stratig., Berlin, Springer-Verlag, 480-491.

Tada, R., 1995. Re-evaluation of the depositional environment of the source rocks in Japan. Jour. Japanese Ass. Petrol. Tech., 60, 5–14 (in Japanese with English abstract).

Tada, R., Iijima, A., 1983. Petrology and diagenetic changes of Neogene siliceous rocks in northern Japan. Jour. Sediment. Petrol. 53, 911-930.

Tada, R., Watanabe, S., Kashiyama, Y., Tajika, E., Kato, T., Yamamoto, S., Isozaki, Y., Sakuma, H., 2005. High-resolution analysis of Late Paleozoic-Early Mesozoic variability of paleoceanographic system recorded in bedded chert sequence in the inner zone of Southwest Japan. Jour. Geogr., 114, 638-642 (in Japanese).

Takahashi, O., Kawarazaki, T., Ishii, A., 1998. Middle Triassic radiolarians from the Tsukumi area, eastern Kyushu, southwest Japan. News Osaka Micropaleontol., Spec. Vol., 11, 115-121.

Takahashi, S., Yamakita, S., Muto, S., 2017. Field Excursion 3 (Akkamori) pelagic deep-sea Permian-Triassic boundary at North Kitakami Belt, Northeast Japan. IGCP 630, Permian-Triassic climatic and environmental extremes and biotic response, Scientific meeting, Field excursion guide.

Takahashi, S., Yamasaki, S., Ogawa, Y., 2014. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth Planet. Sci. Lett., 393, 94-104.

Takahashi, S., Kaiho, K., Oba, M., Kakegawa, T., 2010. A smooth negative shift of organic carbon isotope ratios at an end-Permian mass extinction horizon in central pelagic Panthalassa. Palaeogeogr. Palaeoclimatol. Palaeoecol., 292, 532-539.

Takahashi, S., Yamakita, S., Suzuki, N., Kaiho, K., Ehiro, M., 2009a. High organic carbon content and a decrease in radiolarians at the end of the Permian in a newly discovered continuous pelagic section: a coincidence? Palaeogeogr. Palaeoclimatol. Palaeoecol., 271, 1-12.

Takahashi, S., Oba, M., Kaiho, K., Yamakita, S., Sakata, S., 2009b. Panthalassic oceanic anoxia at the end of the Early Triassic: A cause of delay in the recovery of life after the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol., 274,185-195.

Takahashi, S., Yamasaki, S. I., Ogawa, K., Kaiho, K., Tsuchiya, N., 2015. Redox conditions in the end-Early Triassic Panthalassa. Palaeogeogr., Palaeoclimatol., Palaeoecol., 432, 15-28.

Takemura, A., Aita, Y., Sakai, T., Hori, S. R., Kodama, K., Yamakita, S., Kamata, Y., Suzuki, N., Spörli, K. B., Campbell, H. J., 2001. Radiolarians from the Waipapa

Terrane in North Island, New Zealand. Topics Palaeontol., 2, 17-24 (in Japanese).

Tamba Belt Research Group, 1979. Paleozoic and Mesozoic Systems in the Tamba Belt (Part 5)–Permian and Triassic conodont fossils in the northwestern hills of Kyoto City.–, Earth Science (Chikyu Kagaku), 33, 247–254 (in Japanese with English abstract).

Tanaka, K., 1980. Kanoashi Group, an olistostrome, in the Nichihara area, Shimane Prefecture. Jour. Geol. Soc. Japan, 86, 613-628 (in Japanese with English abstract).

Tatge, U., 1956. Conodonten aus dem germanischen Muschelkalk. Paläontologische Zeitschrift, 30, 108-147 (in German).

Taylor, S.R. and McLennan, S.M., 1985. The Continental Crust. Blackwell, Oxford.

Tekin, U.K., Bedi, Y., Okuyucu, C., Goncuoglu, M. C., Sayit, K., 2016. Radiolarian biochronology of upper Anisian to upper Ladinian (Middle Triassic) blocks and tectonic slices of volcano-sedimentary successions in the Mersin Melange, southern Turkey: New insights for the evolution of Neotheys. Jour. African Earth Sci., 124, 409-426.

Thomas, S. G., Tabor, N. J., Yang, W., Myers, T. S., Yang, Y., Wang, D., 2011. Palaeosol stratigraphy across the Permian–Triassic boundary, Bogda Mountains, NW China: Implications for palaeoenvironmental transition through earth's largest mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 41-64.

Tong, J., Zuo, J., Chen, Z.Q., 2007. Early Triassic carbon isotope excursions from South China: proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction. Geol. Jour., 42, 371-389.

Tozer, E. T., 1974. Definitions and limits of Triassic stages and substages: suggestions prompted by comparisons between North America and the Alpine-Mediterranean region. Schriftenreihe Erdwissenschaftlichen Kommissionen Osterreichische Akademie der Wissenschaften, 2, 195-206.

Tréguer, P. J., De La Rocha, C. L., 2013. The world ocean silica cycle. Annual review of marine science, 5, 477-501.

Tréguer, P., Nelson,D. M., Vanbennekom, A. J., DeMaster, D. J., Leynaert, A., Queguiner, B., 1995. The silica balance in the world ocean: A reestimate. Science, 268, 375-379.

Trotter, J. A., Williams, I. S., Nicora, A., Mazza, M., Rigo, M., 2015. Long-term cycles of Triassic climate change: a new δ18O record from conodont apatite. Earth. Planet. Sci. Lett., 415, 165-174.

Tverdokhlebov, V. P., Tverdokhlebova, G. I., Surkov, M. V., Benton, M. J., 2003.

Tetrapod localities from the Triassic of the SE of European Russia. Earth Sci. Rev., 60, 1-66.

Twitchett, R. J., Wignall, P. B., 1996. Trace fossils and the aftermath of the Permo-Triassic mass extinction: evidence from northern Italy. Palaeogeogr., Palaeoclimatol., Palaeoecol., 124, 137-151.

Uličný, D., 2004. A drying-upward aeolian system of the Bohdasi´ n Formation (Early Triassic), Sudetes of NE Czech Republic: record of seasonality and long-term palaeoclimate change. Sed. Geol., 167, 17-39.

Uno, K., Onoue, T., Hamada, K., Hamami, S., 2012. Palaeomagnetism of Middle Triassic red bedded cherts from southwest Japan: equatorial palaeolatitude of primary magnetization and widespread secondary magnetization. Geophys. Jour. Int., 189, 1383-1398.

Wakita, K., 1988. Origin of chaotically mixed rock bodies in the Early Jurassic to Early Cretaceous sedimentary complex of the Mino terrane, central Japan. Bull. Geol. Surv. Japan, 39, 675-757.

Wakita, K., Metcalfe, I., 2005. Ocean plate stratigraphy in East and Southeast Asia. Jour. Asian Earth Sci., 24, 679-702.

Wignall, P. B., Morante, R., Newton, R., 1998. The Permo-Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geological Magazine, 135, 47-62.

Winguth, C., Winguth, A. M., 2012. Simulating Permian–Triassic oceanic anoxia distribution: implications for species extinction and recovery. Geology, 40, 127-130.

Yamakita, S., 1987. Stratigraphic relationship between Permian and Triassic strata of chert facies in the Chichibu Terrane in eastern Shikoku. Jour. Geol. Soc. Japan, 93, 145-148 (in Japanese with English abstract).

Yamakita, S., 1988. Jurassic-Earliest Cretaceous allochthonous complexes related to gravitational slidings in the Chichibu Terrane of eastern and central Shikoku, Southwest Japan. Jour. Fac. Sci., Univ. Tokyo, Sec. II, 21, 467-514.

Yamakita S., Otoh S., 2000. Tectonostratigraphic division of accretionary-sedimentary complex of the Tamba-Mino-Ashio Belt and comparison with the Northern and Southern Chichibu Belts. Structural. Geol., 44, 5-32 (in Japanese with English abstract).

Yamakita, S., Takahashi, S., Kojima, S., 2010. Conodont-based age-determination of siliceous claystone in the lower part of the Momotaro-jinja section, Inuyama, central Japan. Abstract, The 2010 Annual Meeting of the Palaeontological Society of Japan, p. 47 (in Japanese).

Yamakita, S., Kaiho, K., Fujibayashi, M., Takahashi, S., Kojima, S., 2016. Smithian/Spathian boundary in the Lower Triassic ocean-floor sequence of the Momotaro-Jinja section, Inuyama, central Japan. Abstract, The 2016 Regular Meeting of the Palaeontological Society of Japan, p. 31 (in Japanese).

Yamakita, S., Takemura, A., Kamata, Y., Aita, Y., Hori, R. S., Campbell, H. J., 2007. A conodont biostratigraphic framework of a Permian/Triassic ocean-floor sequence in the accretionary Waipapa Terrane at Arrow Rocks, Northland, New Zealand. GNS Science Monograph, 24, 69-85.

Yamakita, S., Kadota, N., Kato, T., Tada, R., Ogihara, S., Tajika, E., Hamada, Y., 1999. Confirmation of the Permian/Triassic boundary in deep-sea sedimentary rocks; earliest Triassic conodonts from black carbonaceous claystone of the Ubara section in the Tamba Belt, Southwest Japan. Jour. Geol. Soc. Japan, 105, 895-898.

Yamashita, D., Kato, H., Onoue, T., Suzuki, N., 2018. Integrated Upper Triassic conodont and radiolarian biostratigraphies of the Panthalassa Ocean. Paleontol.l Res., 22, 167-197.

Yamashita, M., Ishida, K., Ishiga, H., 1992. Late Early to early Middle Triassic bedded chert in the Tamba Belt and organic mudstones in the P/T boundary, southwest Japan. Geol. Repts. Shimane Univ., 11, 87-96 (in Japanese with English abstract).

Yamashita, M., Ishiga, H., Dozen, K., Ishida, K., Musashino, M., 1996. Geochemical characteristics of organic black mudstones related to the Permian/Triassic boundary in pelagic sediments of Japan. Earth Science (Chikyu Kagaku), 50, 111-124.

Yanagimoto, Y., 1973. Stratigraphy and geological structure of the Paleozoic and Mesozoic formations in the vicinity of Kuzuu, Tochigi Prefecture. Jour. Geol. Soc. Japan, 79, 441-451 (in Japanese with English abctract).

Yao, A., Matsuda, T., Isozaki, Y., 1980. Triassic and Jurassic radiolarians from the Inuyama area, central Japan. Jour. Geosci. Osaka City Univ., 23, 135-154.

Yao, A., Kuwahara, K., 1997. Radiolarian faunal change from Late Permian to Middle Triassic times. News Osaka Micropalaeontol., Spec. vol. 10, 87-96 (in Japanese with English abstract).

Yin, H., Kexin, Z., Jinnan, T., Zunyi, Y., Shunbao, W., 2001. The global stratotype section and point (GSSP) of the Permian-Triassic boundary. Episodes, 24, 102-114.

Yin, H., Jinnan, T., Kexin, Z., 2005. A review on the Global Stratotype Section and Point of the Permian-Triassic boundary. Acta Geologica Sinica-English Edition, 79, 715-728.

Yoshida, M., Wakita, M., 1975. Triassic conodonts from the Tamba Belt at the Northwest of Kyoto, Southwest Japan. Monograph of the Association for the Geological Collaboration, 19, 43-48 (in Japanese with English abstract).

Yoshida, S., 1956. Stratigraphical and tectonical studies in the district neighbouring the Kuzu Machi, Tochigi Prefecture. Bull. Geol. Committee Hokkaido, 32, 1-9 (in Japanese with English abstract).

Zerfass, H., Lavina, E. L., Schultz, C. L., Garcia, A. J. V., Faccini, U. F., Chemale, F., 2003. Sequence stratigraphy of continental Triassic strata of southernmost Brazil: a contribution to Southwestern Gondwana palaeogeography and palaeoclimate. Sed. Geol., 161, 85-105.

Zhang, F., Romaniello, S. J., Algeo, T. J., Lau, K. V., Clapham, M. E., Richoz, S., Herrmann, A. D., Smith, H., Horacek, M., Anbar, A. D., 2018. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Science advances, 4, e1602921.

Zhang, H., Cao, C. Q., Liu, X. L., Mu, L., Zheng, Q. F., Liu, F., Xiang, L., Liu, L-j., Shen, S. Z., 2015. The terrestrial end-Permian mass extinction in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 108-124.

Zhang, L., Orchard, M. J., Algeo, T. J., Chen, Z. Q., Lyu, Z., Zhao, L., Kaiho, K., Ma, B., Liu, S., 2017. An intercalibrated Triassic conodont succession and carbonate carbon isotope profile, Kamura, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology., doi: 10.1016/j.palaeo.2017.09.001.

Zhang, S., Yang, Z., 1991. On multielement taxonomy of the Early Triassic conodonts. Stratigraphy and Paleontology of China, 1, 17-47.

Zhao, L., Orchard, M. J., Jinnan, T., Zhiming, S., Jinxun, Z., Suxin, Z., Ailing, Y., 2007. Lower Triassic conodont sequence in Chaohu, Anhui Province, China and its global correlation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 24-38.

Zhao, L. S., Tong, J. N., Sun, Z. M., Orchard, M. J., 2008. A detailed Lower Triassic conodont biostratigraphy and its implica- tions for the GSSP candidate of the Induan-Olenekian boundary in Chaohu, Anhui Province. Progress in Natural Science, 18, 79-90.

Zhou, X., Li, A., Jiang, F., Lu, J., 2015. Effects of grain size distribution on mineralogical and chemical compositions: a case study from size-fractional sediments of the Huanghe (Yellow River) and Changjiang (Yangtze River). Geological Journal, 50, 414-433.

Ziegler, A.M., Gibbs, M.T., Hulver, M.L., 1998. A mini-atlas of oceanic water masses in the Permian Period. Proc. Royal Soci. Victoria, 110, 323-343.

Ziegler, C. L., Murray, R. W., Hovan, S. A., Rea, D. K., 2007. Resolving eolian, volcanogenic, and authigenic components in pelagic sediment from the Pacific Ocean. Earth. Planet. Sci. Let., 254, 416-432.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る