リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Thermophysical and mechanical properties of LaB₆ and CeB₆ synthesized through spark plasma sintering」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Thermophysical and mechanical properties of LaB₆ and CeB₆ synthesized through spark plasma sintering

Sun, Yifan Ohishi, Yuji Higaki, Junya Muta, Hiroaki Kurosaki, Ken 京都大学 DOI:10.1080/00223131.2023.2192728

2023.11

概要

Following the Fukushima Daiichi nuclear power plant accident in 2011, the development of accident tolerant fuels (ATFs) has become an integral part of the promotion of nuclear safety. Of the many design criteria, a high thermal conductivity reduces a fuel pellet's peak temperature and radial temperature gradient. Although various uranium borides such as UB₂ and UB₄ are promising ATFs that have high-temperature stability, high uranium density, and good thermal conductivity, little is known about UB₆, as it has yet to be fabricated under normal conditions. As a metal hexaboride, UB₆ may have excellent electrical conductivity, likely giving it a much higher thermal conductivity than that of UO₂. In this work, we investigate the thermophysical and mechanical properties of non-radioactive LaB₆ and CeB₆ to estimate the potential properties of UB₆, as it has yet to be successfully fabricated. The thermophysical properties of UB₆ are compared with those of UO₂, UB₂, and UB₄ to help clarify whether future attempts at fabricating UB₆ under high pressure or with other dopants are worthwhile for the development of ATFs.

この論文で使われている画像

参考文献

[1] Carmack J, Goldner F, Bragg-Sitton SM, et al. Overview of the US DOE accident tolerant

fuel development program. Idaho National Lab.(INL), Idaho Falls, ID (United States);

2013.

[2] Zinkle SJ, Terrani KA, Gehin JC, et al. Accident tolerant fuels for LWRs: A perspective.

J Nucl Mater. 2014;448(1-3):374–379.

[3] Karoutas Z, Brown J, Atwood A, et al. The maturing of nuclear fuel: Past to accident

tolerant fuel. Prog Nucl Energy. 2018;102:68–78.

[4] White JT, Nelson AT, Dunwoody JT, et al. Thermophysical properties of U3 Si2 to 1773

k. J Nucl Mater. 2015;464:275–280.

[5] White JT, Travis AW, Dunwoody JT, et al. Fabrication and thermophysical property

characterization of UN/U3 Si2 composite fuel forms. J Nucl Mater. 2017;495:463–474.

[6] Muta H, Kurosaki K, Uno M, et al. Thermal and mechanical properties of uranium nitride

prepared by SPS technique. J Mater Sci. 2008;43(19):6429–6434.

[7] Kardoulaki E, White JT, Byler DD, et al. Thermophysical and mechanical property

assessment of UB2 and UB4 sintered via spark plasma sintering. J Alloys Compd. 2020;

818:153216.

11

[8] Frazer D, Maiorov B, Carvajal-Nunez U, et al. High temperature mechanical properties

of fluorite crystal structured materials (CeO2 , ThO2 , and UO2 ) and advanced accident

tolerant fuels (U3 Si2 , UN, and UB2 ). J Nucl Mater. 2021;554:153035.

[9] Costa DR, Hedberg M, Middleburgh SC, et al. UN microspheres embedded in UO2 matrix:

an innovative accident tolerant fuel. J Nucl Mater. 2020;540:152355.

[10] Gong B, Yao T, Lei P, et al. U3 Si2 and UO2 composites densified by spark plasma sintering

for accident-tolerant fuels. J Nucl Mater. 2020;534:152147.

[11] Terrani KA, Wang D, Ott LJ, et al. The effect of fuel thermal conductivity on the behavior

of LWR cores during loss-of-coolant accidents. J Nucl Mater. 2014;448(1-3):512–519.

[12] Kardoulaki E, Frazer DM, White JT, et al. Fabrication and thermophysical properties of

uo2-ub2 and uo2-ub4 composites sintered via spark plasma sintering. Journal of Nuclear

Materials. 2021;544:152690.

[13] Wang BT, Zheng JJ, Qu X, et al. Thermal conductivity of UO2 and PuO2 from firstprinciples. J Alloys Compd. 2015;628:267–271.

[14] Momma K, Izumi F. Vesta 3 for three-dimensional visualization of crystal, volumetric

and morphology data. Journal of applied crystallography. 2011;44(6):1272–1276.

[15] Etourneau J, Hagenmuller P. Structure and physical features of the rare-earth borides.

Philos Mag B. 1985;52(3):589–610.

[16] Eick HA, Mulford R. Americium and neptunium borides. J Inorg Nucl Chem. 1969;

31(2):371–375.

[17] Nichols M, Mar R, Johnson Q. Questions concerning the existence of erbium hexaboride:

The crystal structure of (er0. 8ca0. 2) b6. Journal of the Less Common Metals. 1973;

33(2):317–320.

[18] Kasaya M, Iga F, Yashima H, et al. Susceptibility, liii absorption and specific heat across

the mixed valence range in r1- xlaxb6 and r1- yybyb6 (r= tm, sm). Journal of Magnetism

and Magnetic Materials. 1983;31:389–390.

[19] Berrada A, Mercurio JP, Etourneau J, et al. Synthese et etude cristallochimique et magnetique des solutions solides laxho1- xb6. Materials Research Bulletin. 1976;11(8):947–951.

[20] Matar S, Etourneau J. The electronic structures of uranium borides from local spin density

functional calculations. Int J Inorg Mater. 2000;2(1):43–51.

[21] Johnson RW, Daane AH. Electron requirements of bonds in metal borides. J Chem Phys.

1963;38(2):425–432.

[22] Longuet-Higgins HC, Roberts MDV, Randall JT. The electronic structure of the borides

MB6 . Proc R Soc Lond, A. 1954;224(1158):336–347.

[23] Lipscomb WN, Britton D. Valence structure of the higher borides. J Chem Phys. 1960;

33(1):275–280.

[24] Auskern A, Aronson S. Electrical properties of thorium borides. J Chem Phys. 1968;

49(1):172–176.

[25] Cahill JT, Graeve OA. Hexaborides: a review of structure, synthesis and processing. J

Mater Res Technol. 2019;8(6):6321–6335.

[26] Jain A, Ong SP, Hautier G, et al. Commentary: The materials project: A materials genome

approach to accelerating materials innovation. APL Mater. 2013;1(1):011002.

[27] Toby B; 2008. Argonne National Laboratory, Lemont, IL, USA. Private Communication.

[28] Blomberg M, Merisalo M, Korsukova M, et al. X-ray structure refinement of single crystals

of Ceb6 and Ce0.75 La0.25 B6 solid solution grown by the solution method. J Less-Common

Met. 1989;146:309–318.

[29] Shi D, Song J, Qin Y, et al. Evolutionary search for novel thorium borides toward advanced

nuclear fuels. J Phys Chem C. 2022;.

[30] Samsonov GV. Plenum press handbooks of high-temperature materials. no. 2. properties

index. Plenum Press, Inc., New York; 1964.

[31] Tanaka T. The thermal and electrical conductivities of Lab6 at high temperatures. J Phys

C: Solid State Phys. 1974;7(9):L177.

[32] Muratov V, Bolgar A, Loboda P, et al. Enthalpy and heat capacity of CeB6 , PrB6 and

EuB6 within wide temperature range. Poroshkovaya Metall. 1988;:70–75.

12

[33] Ivashchenko V, Turchi P, Shevchenko V, et al. Electronic, thermodynamics and mechanical properties of LaB6 from first-principles. Physica B. 2018;531:216–222.

[34] Tanaka T, Suzuki H. Thermal conductivity of carbon materials at high temperatures by

a modulated electron beam technique. Tokyo Inst. of Tech.; 1972.

[35] Brandes EA, Brook G. Smithells metals reference book. Elsevier; 2013.

[36] Lihong B, Zhang J, Shenlin Z. Effect of particle size on the polycrystalline CeB6 cathode

prepared by spark plasma sintering. J Rare Earths. 2011;29(6):580–584.

[37] Zhou S, Zhang J, Liu D, et al. Synthesis and properties of nanostructured dense LaB6 cathodes by arc plasma and reactive spark plasma sintering. Acta Mater. 2010;58(15):4978–

4985.

[38] Takeda M, Fukuda T, Miura T. Thermoelectric properties of metal-hexaborides. In:

Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT’02.;

IEEE; 2002. p. 173–176.

[39] Williams M, Jackson L, Kippenhan D, et al. Lanthanum hexaboride (Lab6 ) resistivity

measurement. Appl Phys Lett. 1987;50(25):1844–1845.

[40] Storms EK. The emissivity of LaB6 at 650 nm. J Appl Phys. 1979;50(6):4450–4450.

[41] Paderno YB, Novikov V, Garf E. Electrical properties of hexaborides of the alkaline-and

rare-earth metals at low temperatures. Soviet Powder Metallurgy and Metal Ceramics.

1969;8(11):921–923.

[42] Nishi Y, Arita Y, Matsui T, et al. Thermoelectric properties of UB5 from 300 to 850 k.

J Phys Chem Solids. 2005;66(2-4):652–654.

[43] Yamamoto E, Haga Y, Honma T, et al. De Haas-van Alphen Effect and Energy Band

Structure in UB2 . J Phys Soc Jpn. 1998;67(9):3171–3175.

[44] Bates J, Hinman C, Kawada T. Electrical conductivity of uranium dioxide. J Am Ceram

Soc. 1967;50(12):652–656.

[45] Edward S, Anderson O, Schreiber S. Elastic constants and their measurement ; 1974.

[46] Anderson OL. A simplified method for calculating the Debye temperature from elastic

constants. J Phys Chem Solids. 1963;24(7):909–917.

[47] Tanaka T, Yoshimoto J, Ishii M, et al. Elastic constants of LaB6 at room temperature.

Solid State Commun. 1977;22(3):203–205.

[48] L¨

uthi B, Blumenr¨

oder S, Hillebrands B, et al. Elastic and magnetoelastic effects in CeB6 .

Z Phys B. 1984;58(1):31–38.

[49] Kato M, Matsumoto T. Thermal and mechanical properties of UO2 and Pu2 ; 2015.

[50] Serebrennikov D, Clementyev E, Alekseev PA. Analysis of the crystal lattice instability for

cage–cluster systems using the superatom model. J Exp Theor Phys. 2016;123(3):452–460.

[51] Kunii S, Effantin JM, Rossat-Mingnod J. Lattice dynamics in Ceb6 studied by neutronscattering and specific-heat measurements. J Phys Soc Jpn. 1997;66(4):1029–1032.

[52] Niihara K, Morena R, Hasselman D. Evaluation of K IC of brittle solids by the indentation

method with low crack-to-indent ratios. J Mater Sci Lett. 1982;1(1):13–16.

[53] Kurosaki K, Saito Y, Muta H, et al. Nanoindentation studies of UO2 and (U, Ce)O2 . J

Alloys Compd. 2004;381(1-2):240–244.

[54] Sonber J, Sairam K, Murthy TC, et al. Synthesis, densification and oxidation study of

lanthanum hexaboride. J Eur Ceram Soc. 2014;34(5):1155–1160.

[55] Sonber J, Murthy TC, Sairam K, et al. Effect of TiSi2 addition on densification of cerium

hexaboride. Ceram Int. 2016;42(1):891–896.

[56] Li-Hong B, Jiu-Xing Z, Shen-Lin Z, et al. Preparation and characterization of grain size

controlled LaB6 polycrystalline cathode material. Chin Phys Lett. 2010;27(10):107901.

[57] 田中公美子, 西山勝廣. TiB2 –CeB6 系複合セラミックスの創製と機械的性質. 粉体およ

び粉末冶金. 2015;62(1):10–17.

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る