リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A study on radio-resistance mechanism of cancer stem-like cells using a property of low proteasome activity in canine tumor cell lines」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A study on radio-resistance mechanism of cancer stem-like cells using a property of low proteasome activity in canine tumor cell lines

Sung, Koangyong 北海道大学

2022.03.24

概要

Cancer stem-like cells (CSCs) form a distinct subpopulation of tumor cells with self-renewal capacity, asymmetric cell division, and tumorigenic potential. In addition to the stem-like properties of CSCs, radio-resistance of CSCs makes it difficult to eradicate tumor cells by radiation therapy as survived CSCs after irradiation cause tumor recurrence. Research for targeting canine CSCs has been tried using several methods such as sphere formation or side population, but there are still problems for identification and isolation of the small population. Recently, visualization of CSCs has been realized in human tumor cells using a property of low proteasome activity in CSCs. However, applicability of the system in canine tumor cells is not clear.

Radio-resistance and survival of tumor cells causing recurrence of tumor are main challenges in veterinary radiation therapy. Among heterogenous tumor cells, particularly, CSCs are the main reason of the radio-resistance of tumors. Therefore, radio-resistance related factors were examined in human tumors including degree of DNA double-strand break after irradiation, DNA contents, mitochondrial respiration, level of reactive species accumulation, glutathione (GSH) synthesis, and so forth. Nevertheless, effective molecular target of CSCs for radiation therapy is still vague, especially, in isolated CSCs using the property of low proteasome activity.

Thus, the present dissertation was planned to evaluate the radiosensitivity and radio-resistance mechanism of canine CSCs for targeting CSCs in radiation therapy. The first objective was to visualize canine CSCs using a property of low proteasome activity. The second objective was to assess radiosensitivity of the visualized CSCs and to find a molecular target for radiosensitization of the visualized CSCs.

The first study imaged canine tumor cells with low proteasome activity using canine osteosarcoma cells (HMPOS) and canine transitional carcinoma cells (MegTCC). Subsequently, CSC-like properties of the canine tumor cells with low proteasome activity were evaluated, and the visualized cells exhibited asymmetric cell division, up-regulation of CSC markers, and tumorigenic capacity. In the second study, the visualized canine CSCs were employed, and radiosensitivity and radio-resistance mechanism of the canine CSCs were evaluated. Then, radiosensitizing effects of sulfasalazine which inhibits function of xCT and synthesis of GSH were evaluated using the visualized canine CSCs. The visualized canine CSCs exhibited radio-resistance and high GSH contents compared with non-visualized cells. Application of sulfasalazine effectively radio-sensitized the visualized CSCs in canine osteosarcoma cells by reducing GSH contents.

The conclusion of the current dissertation was that canine CSCs were successfully visualized using low proteasome activity. This visualization system could be a valuable research tool for future CSC research to make CSC-targeting therapeutic approach. Moreover, the radio-resistance and high GSH contents of canine CSCs were revealed owing to high protein level of xCT at low proteasome activity. Also, Sulfasalazine effectively radiosensitized CSCs in canine osteosarcoma cells. These findings suggest the direction of radiation therapy targeting CSCs for successful tumor eradiation.

この論文で使われている画像

参考文献

Adams, J. 2003. The proteasome: Structure, function, and role in the cell. Cancer Treat. Rev. 29: 3–9.

Adikrisna, R., Tanaka, S., Muramatsu, S., Aihara, A., Ban, D., Ochiai, T., Irie, T., Kudo, A., Nakamura, N., Yamaoka, S. and Arii, S. 2012. Identification of Pancreatic Cancer Stem Cells and Selective Toxicity of Chemotherapeutic Agents. Gastroenterology. 143: 234-245.e7.

Aguilar-Gallardo, C. and Simón, C. 2013. Cells, stem cells, and cancer stem cells. Semin. Reprod. Med. 31: 5–13.

Ahmed, E. A., Rosemann, M. and Scherthan, H. 2018. NHEJ Contributes to the Fast Repair of Radiation-induced DNA Double-strand Breaks at Late Prophase I Telomeres. Health Phys. 115: 102–107.

Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. and Clarke, M. F. 2003. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. 100: 3983–3988.

Arnold, C. R., Mangesius, J., Skvortsova, I.-I. and Ganswindt, U. 2020. The Role of Cancer Stem Cells in Radiation Resistance. Front. Oncol. 10: 1–12.

Ayob, A. Z. and Ramasamy, T. S. 2018. Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci. 25: 20.

Barroga, E. F., Kadosawa, T., Okumura, M. and Fujinaga, T. 1999. Establishment and Characterization of the Growth and Pulmonary Metastasis of a Highly Lung Metastasizing Cell Line from Canine Osteosarcoma in Nude Mice. J. Vet. Med. Sci. 61: 361–367.

Basu-Roy, U., Basilico, C. and Mansukhani, A. 2013. Perspectives on cancer stem cells in osteosarcoma. Cancer Lett. 338: 158–167.

Batlle, E. and Clevers, H. 2017. Cancer stem cells revisited. Nat. Med. 23: 1124–1134.

Begicevic, R.-R. and Falasca, M. 2017. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. Int. J. Mol. Sci. 18: 2362.

Bonnet, D. and Dick, J. E. 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3: 730–737.

Brush, J. M., Kim, K., Sayre, J. W., McBride, W. H. and Iwamoto, K. S. 2009. Imaging of radiation effects on cellular 26S proteasome function in situ. Int. J. Radiat. Biol. 85: 483–94.

Bu, P., Chen, K., Lipkin, S. M. and Shen, X. 2013. Asymmetric division: a marker for cancer stem cells? Oncotarget. 4: 950–951.

Cao, L., Zhou, Y., Zhai, B., Liao, J., Xu, W., Zhang, R., Li, J., Zhang, Y., Chen, L., Qian, H., Wu, M. and Yin, Z. 2011. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol. 11: 71.

Chang, J. C. 2016. Cancer stem cells. Medicine (Baltimore). 95: S20–S25.

Chen, D., Jiao, Y. and Torquato, S. 2014. A Cellular Automaton Model for Tumor Dormancy: Emergence of a Proliferative Switch. PLoS One. 9: e109934.

Chen, Z. Y., Wang, X., Zhou, Y., Offner, G. and Tseng, C. C. 2005. Destabilization of Krüppel-like factor 4 protein in response to serum stimulation involves the ubiquitin- proteasome pathway. Cancer Res. 65: 10394–10400.

Chio, I. I. C. and Tuveson, D. A. 2017. ROS in Cancer: The Burning Question. Trends Mol. Med. 23: 411–429.

Cho, Y. and Kim, Y. K. 2020. Cancer Stem Cells as a Potential Target to Overcome Multidrug Resistance. Front. Oncol. 10: 1–10.

Cobler, L., Zhang, H., Suri, P., Park, C. and Timmerman, L. A. 2018. xCT inhibition sensitizes tumors to γ-radiation via glutathione reduction. Oncotarget. 9: 32280–32297.

Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. and Maitland, N. J. 2005. Prospective Identification of Tumorigenic Prostate Cancer Stem Cells. Cancer Res. 65: 10946–10951.

Collins, G. A. and Goldberg, A. L. 2017. The Logic of the 26S Proteasome. Cell. 169: 792– 806.

Combs, J. A. and Denicola, G. M. 2019. The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers (Basel). 11: 678.

Cooper, J. K., Sykes, G., King, S., Cottrill, K., Ivanova, N. V., Hanner, R. and Ikonomi, P. 2007. Species identification in cell culture: a two-pronged molecular approach. Vitr. Cell. Dev. Biol. - Anim. 43: 344–351.

Costa, C. D., Justo, A. A., Kobayashi, P. E., Story, M. M., Palmieri, C., Laufer Amorim, R. and Fonseca-Alves, C. E. 2019. Characterization of OCT3/4, Nestin, NANOG, CD44 and CD24 as stem cell markers in canine prostate cancer. Int. J. Biochem. Cell Biol. 108: 21–28.

Coward, J. and Harding, A. 2014. Size Does Matter: Why Polyploid Tumor Cells are Critical Drug Targets in the War on Cancer. Front. Oncol. 4: 1–15.

Crawford, L. J., Walker, B. and Irvine, A. E. 2011. Proteasome inhibitors in cancer therapy. J. Cell Commun. Signal. 5: 101–110.

Deguchi, T., Hosoya, K., Murase, Y., Koangyong, S., Kim, S. and Okumura, M. 2019. Analysis of radiosensitivity of cancer stem‐like cells derived from canine cancer cell lines. Vet. Comp. Oncol. 17: 119–129.

Delaney, G., Jacob, S., Featherstone, C. and Barton, M. 2005. The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 104: 1129–1137.

Della Donna, L., Lagadec, C. and Pajonk, F. 2012. Radioresistance of prostate cancer cells with low proteasome activity. Prostate. 72: 868–874.

Deng, L., Meng, T., Chen, L., Wei, W. and Wang, P. 2020. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct. Target. Ther. 5: 11.

Desouky, O., Ding, N. and Zhou, G. 2015. Targeted and non-targeted effects of ionizing radiation. J. Radiat. Res. Appl. Sci. 8: 247–254.

Diehn, M., Cho, R. W., Lobo, N. A., Kalisky, T., Dorie, M. J., Kulp, A. N., Qian, D., Lam, J. S., Ailles, L. E., Wong, M., Joshua, B., Kaplan, M. J., Wapnir, I., Dirbas, F. M., Somlo, G., Garberoglio, C., Paz, B., Shen, J., Lau, S. K., Quake, S. R., Brown, J. M., Weissman, I. L. and Clarke, M. F. 2009. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 458: 780–783.

Ding, S., Li, C., Cheng, N., Cui, X., Xu, X. and Zhou, G. 2015. Redox regulation in cancer stem cells. Oxid. Med. Cell. Longev. 2015: 1–11.

Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B. and Stockwell, B. R. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 149: 1060–72.

Enjoji, S., Yabe, R., Fujiwara, N., Tsuji, S., Vitek, M. P., Mizuno, T., Nakagawa, T., Usui, T., Ohama, T. and Sato, K. 2015. The therapeutic effects of SET/I2PP2A inhibitors on canine melanoma. J. Vet. Med. Sci. 77: 1451–1456.

Feng, H.-L., Liu, Y.-Q., Yang, L.-J., Bian, X.-C., Yang, Z.-L., Gu, B., Zhang, H., Wang, C.-J., Su, X.-L. and Zhao, X.-M. 2010. Expression of CD133 correlates with differentiation of human colon cancer cells. Cancer Biol. Ther. 9: 216–223.

Ferletta, M., Grawé, J. and Hellmén, E. 2011. Canine mammary tumors contain cancer stem- like cells and form spheroids with an embryonic stem cell signature. Int. J. Dev. Biol. 55: 791–799.

Franco, R. and Cidlowski, J. A. 2009. Apoptosis and glutathione: Beyond an antioxidant. Cell Death Differ. 16: 1303–1314.

Frisch, S. M. and Francis, H. 1994. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124: 619–626.

Furuyama, T., Tanaka, S., Shimada, S., Akiyama, Y., Matsumura, S., Mitsunori, Y., Aihara, A., Ban, D., Ochiai, T., Kudo, A., Fukamachi, H., Arii, S., Kawaguchi, Y. and Tanabe, M. 2016. Proteasome activity is required for the initiation of precancerous pancreatic lesions. Sci. Rep. 6: 27044.

Gan, B. 2019. DUBbing Ferroptosis in Cancer Cells. Cancer Res. 79: 1749–1750.

Gauwitz, M. D., Pollack, A., El-naggar, A. K., Terry, N. H. A., Eschenbach, A. C. and Zagars, G. K. 1994. The prognostic significance of DNA ploidy in clinically localized prostate cancer treated with radiation therapy. Int. J. Radiation Oncology Biol. Phys. 28: 821–828.

German, A. J., Halladay, L. J. and Noble, P. J. M. 2010. First-choice therapy for dogs presenting with diarrhoea in clinical practice. Vet. Rec. 167: 810–814.

Gil, M., Seshadri, M., Komorowski, M. P., Abrams, S. I. and Kozbor, D. 2013. Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proc. Natl. Acad. Sci. 110: E1291–E1300.

Goodell, M. A., Brose, K., Paradis, G., Conner, A. S. and Mulligan, R. C. 1996. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183: 1797–1806.

Gout, P. W., Buckley, A. R., Simms, C. R. and Bruchovsky, N. 2001. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the xC– cystine transporter: a new action for an old drug. Leukemia. 15: 1633–1640.

Hanot, M., Boivin, A., Malésys, C., Beuve, M., Colliaux, A., Foray, N., Douki, T., Ardail, D. and Rodriguez-Lafrasse, C. 2012. Glutathione depletion and carbon ion radiation potentiate clustered DNA lesions, cell death and prevent chromosomal changes in cancer cells progeny. PLoS One. 7: e44367.

Haryu, S., Saito, R., Jia, W., Shoji, T., Mano, Y., Sato, A., Kanamori, M., Sonoda, Y., Sampetrean, O., Saya, H. and Tominaga, T. 2018. Convection-enhanced delivery of sulfasalazine prolongs survival in a glioma stem cell brain tumor model. J. Neurooncol. 136: 23–31.

Hayashi, K., Tamari, K., Ishii, H., Konno, M., Nishida, N., Kawamoto, K., Koseki, J., Fukusumi, T., Kano, Y., Nishikawa, S., Miyo, M., Noguchi, K., Ogawa, H., Hamabe, A., Seo, Y., Doki, Y., Mori, M. and Ogawa, K. 2014. Visualization and characterization of cancer stem-like cells in cervical cancer. Int. J. Oncol. 45: 2468–2474.

He, X., Marchionni, L., Hansel, D. E., Yu, W., Sood, A., Yang, J., Parmigiani, G., Matsui, W. and Berman, D. M. 2009. Differentiation of a Highly Tumorigenic Basal Cell Compartment in Urothelial Carcinoma. Stem Cells. 27: 1487–1495.

Inoue, K., Ohashi, E., Kadosawa, T., Hong, S.-H., Matsunaga, S., Mochizuki, M., Nishimura, R. and Sasaki, N. 2004. Establishment and characterization of four canine melanoma cell lines. J. Vet. Med. Sci. 66: 1437–1440.

Itoh, H., Tani, K., Sunahara, H., Nakaichi, M., Iseri, T., Horikirizono, H. and Itamoto, K. 2021. Sphere-forming cells display stem cell-like characteristics and increased xCT expression in a canine hepatocellular carcinoma cell line. Res. Vet. Sci. 139: 25–31.

Jagust, P., Alcalá, S., Jr, B. S., Heeschen, C. and Sancho, P. 2020. Glutathione metabolism is essential for self-renewal and chemoresistance of pancreatic cancer stem cells. World J. Stem Cells 12: 1410–1428.

Jang, H. H. 2018. Regulation of protein degradation by proteasomes in cancer. J. Cancer Prev. 23: 153–161.

Jang, J. W., Song, Y., Kim, S. H., Kim, J. and Seo, H. R. 2017. Potential mechanisms of CD133 in cancer stem cells. Life Sci. 184: 25–29.

Jung, Y.-S., Vermeer, P. D., Vermeer, D. W., Lee, S.-J., Goh, A. R., Ahn, H.-J. and Lee, J. H. 2015. CD200: Association with cancer stem cell features and response to chemoradiation in head and neck squamous cell carcinoma. Head Neck. 37: 327–335.

Kamal, A. F., Pranatha, D. Y., Sugito, W., Rahman, F., Susanto, E., Mariya, S. and Chen, W. M. 2018. Isolation, Culture and Characterization of Cancer Stem Cells from Primary Osteosarcoma. Open Stem Cell J. 5: 1–13.

Kano, Y., Konno, M., Kawamoto, K., Tamari, K., Hayashi, K., Fukusumi, T., Satoh, T., Tanaka, S., Ogawa, K., Mori, M., Doki, Y. and Ishii, H. 2014. Novel drug discovery system for cancer stem cells in human squamous cell carcinoma of the esophagus. Oncol. Rep. 31: 1133–1138.

Karbanová, J., Missol-Kolka, E., Fonseca, A.-V., Lorra, C., Janich, P., Hollerová, H., Jászai, J., Ehrmann, J., Kolář, Z., Liebers, C., Arl, S., Šubrtová, D., Freund, D., Mokrý, J., Huttner, W. B. and Corbeil, D. 2008. The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J. Histochem. Cytochem. 56: 977–993.

Kawamura, K., Qi, F. and Kobayashi, J. 2018. Potential relationship between the biological effects of low-dose irradiation and mitochondrial ROS production. J. Radiat. Res. 59: ii91– ii97.

Kim, J., Jung, J., Lee, S. J., Lee, J. S. and Park, M. J. 2012. Cancer stem-like cells persist in established cell lines through autocrine activation of EGFR signaling. Oncol. Lett. 3: 607– 612.

Kim, W., Lee, S., Seo, D., Kim, D., Kim, K., Kim, E. G., Kang, J. H., Seong, K. M., Youn, H. S. and Youn, B. H. 2019. Cellular stress responses in radiotherapy. Cells. 8: 1105.

Kishimoto, T. E., Yashima, S., Nakahira, R., Onozawa, E., Azakami, D., Ujike, M., Ochiai, K., Ishiwata, T., Takahashi, K. and Michishita, M. 2017. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines. J. Vet. Med. Sci. 79: 1155–1162.

Koppula, P., Zhuang, L. and Gan, B. 2021. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12: 599–620.

Lagadec, C., Vlashi, E., Frohnen, P., Alhiyari, Y., Chan, M. and Pajonk, F. 2014a. The RNA- binding protein Musashi-1 regulates proteasome subunit expression in breast cancer- and glioma-initiating cells. Stem Cells. 32: 135–144.

Lagadec, C., Vlashi, E., Bhuta, S., Lai, C., Mischel, P., Werner, M., Henke, M. and Pajonk, F. 2014b. Tumor cells with low proteasome subunit expression predict overall survival in head and neck cancer patients. BMC Cancer. 14: 152.

Lathia, J. D., Gallagher, J., Myers, J. T., Li, M., Vasanji, A., McLendon, R. E., Hjelmeland, A. B., Huang, A. Y. and Rich, J. N. 2011. Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells. PLoS One. 6: e24807.

Lathia, J., Liu, H. and Matei, D. 2020. The clinical impact of cancer stem cells. Oncologist 25: 123–131.

Lee, J., Sung, C. O., Lee, E. J., Do, I.-G., Kim, H.-C., Yoon, S. H., Lee, W. Y., Chun, H. K., Kim, K.-M. and Park, Y. S. 2012. Metastasis of neuroendocrine tumors are characterized by increased cell proliferation and reduced expression of the ATM gene. PLoS One. 7: e34456.

Lenos, K. J. and Vermeulen, L. 2016. Cancer stem cells don’t waste their time cleaning—low proteasome activity, a marker for cancer stem cell function. Ann. Transl. Med. 4: 519–519.

Li, F., Zhou, K., Gao, L., Zhang, B., Li, W., Yan, W., Song, X., Yu, H., Wang, S., Yu, N. and Jiang, Q. 2016. Radiation induces the generation of cancer stem cells: A novel mechanism for cancer radioresistance (Review). Oncol. Lett. 12: 3059–3065.

Li, Y., Wang, Z., Ajani, J. A. and Song, S. 2021. Drug resistance and cancer stem cells. Cell Commun. Signal. 19: 19.

Lim, J. K. M., Delaidelli, A., Minaker, S. W., Zhang, H. F., Colovic, M., Yang, H., Negri, G. L., von Karstedt, S., Lockwood, W. W., Schaffer, P., Leprivier, G. and Sorensen, P. H. 2019. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc. Natl. Acad. Sci. U. S. A. 116: 9433–9442.

Linkous, A. G., Yazlovitskaya, E. M. and Hallahan, D. E. 2010. Cytosolic phospholipase A2 and lysophospholipids in tumor angiogenesis. JNCI J. Natl. Cancer Inst. 102: 1398–1412.

Liu, T., Jiang, L., Tavana, O. and Gu, W. 2019. The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res. 79: 1913–1924.

Lyakhovich, A. and Lleonart, M. E. 2016. Bypassing mechanisms of mitochondria-mediated cancer stem cells resistance to chemo- and radiotherapy. Oxid. Med. Cell. Longev. 2016: 1–10.

Ma, B., Lei, X., Guan, Y., Mou, L. S., Yuan, Y. F., Yue, H., Lu, Y., Xu, G. T. and Qian, J. 2011. Maintenance of retinal cancer stem cell-like properties through long-term serum-free culture from human retinoblastoma. Oncol. Rep. 26: 135–143.

Ma, X.-L., Sun, Y.-F., Wang, B.-L., Shen, M.-N., Zhou, Y., Chen, J.-W., Hu, B., Gong, Z.-J., Zhang, X., Cao, Y., Pan, B., Zhou, J., Fan, J., Guo, W. and Yang, X.-R. 2019. Sphere-forming culture enriches liver cancer stem cells and reveals Stearoyl-CoA desaturase 1 as a potential therapeutic target. BMC Cancer. 19: 760.

Majumdar, S. and Liu, S.-T. 2020. Cell division symmetry control and cancer stem cells. AIMS Mol. Sci. 7: 82–101.

Marková, E., Schultz, N. and Belyaev, I. Y. 2007. Kinetics and dose-response of residual 53BP1/γ-H2AX foci: Co-localization, relationship with DSB repair and clonogenic survival. Int. J. Radiat. Biol. 83: 319–329.

McCann, E., O’Sullivan, J. and Marcone, S. 2021. Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Transl. Oncol. 14: 100905.

Michishita, M., Akiyoshi, R., Yoshimura, H., Katsumoto, T., Ichikawa, H., Ohkusu-Tsukada, K., Nakagawa, T., Sasaki, N. and Takahashi, K. 2011. Characterization of spheres derived from canine mammary gland adenocarcinoma cell lines. Res. Vet. Sci. 91: 254–260.

Morgan, M. A. and Lawrence, T. S. 2015. Molecular pathways: Overcoming radiation resistance by targeting DNA damage response pathways. Clin. Cancer Res. 21: 2898–2904.

Morrison, S. J. and Kimble, J. 2006. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 441: 1068–1074.

Mroczkiewicz, M., Winkler, K., Nowis, D., Placha, G., Golab, J. and Ostaszewski, R. 2010. Studies of the synthesis of all stereoisomers of MG-132 proteasome inhibitors in the tumor targeting approach. J. Med. Chem. 53: 1509–1518.

Munakata, K., Uemura, M., Tanaka, S., Kawai, K., Kitahara, T., Miyo, M., Kano, Y., Nishikawa, S., Fukusumi, T., Takahashi, Y., Hata, T., Nishimura, J., Takemasa, I., Mizushima, T., Ikenaga, M., Kato, T., Murata, K., Carethers, J. M., Yamamoto, H., Doki, Y. and Mori, M. 2016. Cancer stem-like properties in colorectal cancer cells with low proteasome activity. Clin. Cancer Res. 22: 5277–5286.

Nagane, M., Kanai, E., Shibata, Y., Shimizu, T., Yoshioka, C., Maruo, T. and Yamashita, T. 2018. Sulfasalazine, an inhibitor of the cystine-glutamate antiporter, reduces DNA damage repair and enhances radiosensitivity in murine B16F10 melanoma. PLoS One. 13: e0195151.

Nemoto, Y., Maruo, T., Sato, T., Deguchi, T., Ito, T., Sugiyama, H., Ishikawa, T., Madarame, H., Watanabe, T., Shida, T. and Sahara, H. 2011. Identification of cancer stem cells derived from a canine lung adenocarcinoma cell line. Vet. Pathol. 48: 1029–1034.

Ning, X., Du, Y., Ben, Q., Huang, L., He, X., Gong, Y., Gao, J., Wu, H., Man, X., Jin, J., Xu, M. and Li, Z. 2016. Bulk pancreatic cancer cells can convert into cancer stem cells (CSCs) in vitro and 2 compounds can target these CSCs. Cell Cycle. 15: 403–412.

O’Brien, C. A., Pollett, A., Gallinger, S. and Dick, J. E. 2007. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 445: 106–110.

Olivares-Urbano, M. A., Griñán-Lisón, C., Marchal, J. A. and Núñez, M. I. 2020. CSC radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells. 9: 1651.

Palorini, R., Votta, G., Balestrieri, C., Monestiroli, A., Olivieri, S., Vento, R. and Chiaradonna, F. 2014. Energy metabolism characterization of a novel cancer stem cell-like line 3AB-OS. J. Cell. Biochem. 115: 368–379.

Pan, J., Zhang, Q., Wang, Y. and You, M. 2010. 26S Proteasome activity is down-regulated in lung cancer stem-like cells propagated in vitro. PLoS One. 5: e13298.

Pang, L. Y., Gatenby, E. L., Kamida, A., Whitelaw, B. A., Hupp, T. R. and Argyle, D. J. 2014. Global gene expression analysis of canine osteosarcoma stem cells reveals a novel role for COX-2 in tumour initiation. PLoS One. 9: e83144.

Panier, S. and Boulton, S. J. 2014. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 15: 7–18.

Patrawala, L., Calhoun, T., Schneider-Broussard, R., Zhou, J., Claypool, K. and Tang, D. G. 2005. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2 + and ABCG2 − cancer cells are similarly tumorigenic. Cancer Res. 65: 6207–6219.

Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G. and Migliaccio, A. 2020. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52: 192–203.

Pinho, S. S., Carvalho, S., Cabral, J., Reis, C. A. and Gärtner, F. 2012. Canine tumors: a spontaneous animal model of human carcinogenesis. Transl. Res. 159: 165–172.

Plosker, G. L. and Croom, K. F. 2005. Sulfasalazine a review of its use in the management of rheumatoid arthritis. Drugs. 65: 1825–1849.

Pradhan, M., Abeler, V. M., Danielsen, H. E., Sandstad, B., Tropé, C. G., Kristensen, G. B. and Risberg, B. Å. 2012. Prognostic importance of DNA ploidy and DNA index in stage I and II endometrioid adenocarcinoma of the endometrium. Ann. Oncol. 23: 1178–1184.

Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., Weissman, I. L., Clarke, M. F. and Ailles, L. E. 2007. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. 104: 973–978.

Quintana, E., Shackleton, M., Sabel, M. S., Fullen, D. R., Johnson, T. M. and Morrison, S. J. 2008. Efficient tumour formation by single human melanoma cells. Nature. 456: 593–598.

Raybaud, H., Fortin, A., Bairati, I., Morency, R., Monteil, R. A., Nuclear, B. T., Raybaud, H., Fortin, A., Bairati, I., Morency, R., Monteil, R. A. and Bernard, T. 2000. Nuclear DNA content , an adjunct to p53 and Ki-67 as a marker of resistance to radiation therapy in oral cavity and phawngeal squamous cell carcinoma. Int. J. oral Maxillofac. Surg. 36–41.

Reczek, C. R. and Chandel, N. S. 2017. The Two Faces of Reactive Oxygen Species in Cancer. Annu. Rev. Cancer Biol. 1: 79–98.

Reynolds, B. A. and Weiss, S. 1992. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 255: 1707–1710.

Ribas, V., GarcÃa-Ruiz, C. and Fernández-Checa, J. C. 2014. Glutathione and mitochondria. Front. Pharmacol. 5: 1–19.

Rogez, B., Pascal, Q., Bobillier, A., Machuron, F., Lagadec, C., Tierny, D., Le Bourhis, X. and Chopin, V. 2019. CD44 and CD24 Expression and Prognostic Significance in Canine Mammary Tumors. Vet. Pathol. 56: 377–388.

Roos, W. P., Binder, A. and Bohm, L. 2000. Determination of the initial DNA damage and residual DNA damage remaining after 12 hours of repair in eleven cell lines at low doses of irradiation. INT. J. RADIAT. Biol. 76: 1493–1500.

Rozemuller, H., Prins, H.-J., Naaijkens, B., Staal, J., Bühring, H.-J. and Martens, A. C. 2010. Prospective isolation of mesenchymal stem cells from multiple mammalian species using cross-reacting anti-human monoclonal antibodies. Stem Cells Dev. 19: 1911–1921.

Rycaj, K. and Tang, D. G. 2014. Cancer stem cells and radioresistance. Int. J. Radiat. Biol. 90: 615–621.

Salerno, M., Avnet, S., Bonuccelli, G., Eramo, A., De Maria, R., Gambarotti, M., Gamberi, G. and Baldini, N. 2013. Sphere-forming cell subsets with cancer stem cell properties in human musculoskeletal sarcomas. Int. J. Oncol. 43: 95–102.

Santos, J. H., Hunakova, L., Chen, Y., Bortner, C. and Van Houten, B. 2003. Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J. Biol. Chem. 278: 1728–1734.

Sato, K., Shimokawa, T. and Imai, T. 2019. Difference in acquired radioresistance induction between repeated photon and particle irradiation. Front. Oncol. 9: 1–12.

Schaaf, M. B., Garg, A. D. and Agostinis, P. 2018. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 9: 115.

Schmid, I. and Sakamoto, K. M. 2001. Analysis of DNA content and green fluorescent protein expression. Curr. Protoc. Cytom. 16: 1–10.

Schwartz, J. L., Murnane, J. and Weichselbaum, R. R. 1999. The contribution of DNA ploidy to radiation sensitivity in human tumour cell lines. Br. J. Cancer. 79: 744–747.

Sekhar, K. R., Wang, J., Freeman, M. L. and Kirschner, A. N. 2019. Radiosensitization by enzalutamide for human prostate cancer is mediated through the DNA damage repair pathway. PLoS One. 14: e0214670.

Shaikh, M. V., Kala, M. and Nivsarkar, M. 2016. CD90 a potential cancer stem cell marker and a therapeutic target. Cancer Biomarkers. 16: 301–307.

Shen, Y., Wang, C., Hsieh, Y., Chen, Y. and Wei, Y. 2015. Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle. 14: 86–98.

Shi, C. J., Gao, J., Wang, M., Wang, X., Tian, R., Zhu, F., Shen, M. and Qin, R. Y. 2011. Cd133+ gallbladder carcinoma cells exhibit self-renewal ability and tumorigenicity. World J. Gastroenterol. 17: 2965–2971.

Shimamura, M., Yamamoto, K., Kurashige, T. and Nagayama, Y. 2018. Intracellular redox status controls spherogenicity, an in vitro cancer stem cell marker, in thyroid cancer cell lines. Exp. Cell Res. 370: 699–707.

Shitara, K., Doi, T., Nagano, O., Imamura, C. K., Ozeki, T., Ishii, Y., Tsuchihashi, K., Takahashi, S., Nakajima, T. E., Hironaka, S., Fukutani, M., Hasegawa, H., Nomura, S., Sato, A., Einaga, Y., Kuwata, T., Saya, H. and Ohtsu, A. 2017. Dose-escalation study for the targeting of CD44v+ cancer stem cells by sulfasalazine in patients with advanced gastric cancer (EPOC1205). Gastric Cancer. 20: 341–349.

Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D. and Dirks, P. B. 2004. Identification of human brain tumour initiating cells. Nature. 432: 396–401.

Snyder, V., Reed-Newman, T. C., Arnold, L., Thomas, S. M. and Anant, S. 2018. Cancer stem cell metabolism and potential therapeutic targets. Front. Oncol. 8: 1–9.

Song, Z., Pearce, M. C., Jiang, Y., Yang, L., Goodall, C., Miranda, C. L., Milovancev, M., Bracha, S., Kolluri, S. K. and Maier, C. S. 2020. Delineation of hypoxia-induced proteome shifts in osteosarcoma cells with different metastatic propensities. Sci. Rep. 10: 727.

Song, Y., Jang, J., Shin, T.-H., Bae, S. M., Kim, J., Kim, K. M., Myung, S.-J., Choi, E. K. and Seo, H. R. 2017. Sulfasalazine attenuates evading anticancer response of CD133-positive hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res. 36: 38.

Stipanuk, M. H., Dominy, J. E., Lee, J. I. and Coloso, R. M. 2006. Mammalian cysteine metabolism: New insights into regulation of cysteine metabolism. J. Nutr. 136: 1652S-1659S.

Stockley, J. H., Evans, K., Matthey, M., Volbracht, K., Agathou, S., Mukanowa, J., Burrone, J. and Káradóttir, R. T. 2017. Surpassing light-induced cell damage in vitro with novel cell culture media. Sci. Rep. 7: 849.

Stoica, G., Lungu, G., Martini-STOICA, H., Waghela, S., Levine, J. and Smith, R. 2009. Identification of cancer stem cells in dog glioblastoma. Vet. Pathol. 46: 391–406.

Sun, L., Moritake, T., Ito, K., Matsumoto, Y., Yasui, H., Nakagawa, H., Hirayama, A., Inanami, O. and Tsuboi, K. 2017. Metabolic analysis of radioresistant medulloblastoma stem- like clones and potential therapeutic targets. PLoS One. 12: e0176162.

Syrios, J., Kechagias, G., Agrogiannis, G., Xynos, I. D., Kavantzas, N., Lazaris, A. C., Amptoulach, S., Mourati, A., Sougioultzis, S., Patsouris, E. S. and Tsavaris, N. 2013. DNA ploidy: a prognostic factor of response to chemotherapy and survival in metastatic gastric adenocarcinoma. Anticancer Res. 33: 1209–14.

Takagi, S., Kitamura, T., Hosaka, Y., Ohsaki, T., Bosnakovski, D., Kadosawa, T., Okumura, M. and Fujinaga, T. 2005. Molecular Cloning of Canine Membrane-Anchored Inhibitor of Matrix Metalloproteinase, RECK. J. Vet. Med. Sci. 67: 385–391.

Tamari, K., Hayashi, K., Ishii, H., Kano, Y., Konno, M., Kawamoto, K., Nishida, N., Koseki, J., Fukusumi, T., Hasegawa, S., Ogawa, H., Hamabe, A., Miyo, M., Noguchi, K., Seo, Y., Doki, Y., Mori, M. and Ogawa, K. 2014. Identification of chemoradiation-resistant osteosarcoma stem cells using an imaging system for proteasome activity. Int. J. Oncol. 45: 2349–2354.

Tanabe, A., Deguchi, T., Sato, T., Nemoto, Y., Maruo, T., Madarame, H., Shida, T., Naya, Y., Ogihara, K. and Sahara, H. 2016. Radioresistance of cancer stem-like cell derived from canine tumours. Vet. Comp. Oncol. 14: e93–e101.

Tanabe, A., Kimura, K., Tazawa, H., Maruo, T., Taguchi, M. and Sahara, H. 2021. Functional analysis of CD44 variants and xCT in canine tumours. Vet. Med. Sci. 7: 577–585.

Tanaka, K. 2009. The proteasome: Overview of structure and functions. Proc. Japan Acad. Ser. B. 85: 12–36.

Thamm, K., Graupner, S., Werner, C., Huttner, W. B. and Corbeil, D. 2016. Monoclonal antibodies 13A4 and AC133 Do not recognize the canine ortholog of mouse and human stem cell antigen Prominin-1 (CD133). PLoS One. 11: e0164079.

Thanee, M., Padthaisong, S., Suksawat, M., Dokduang, H., Phetcharaburanin, J., Klanrit, P., Titapun, A., Namwat, N., Wangwiwatsin, A., Sa-ngiamwibool, P., Khuntikeo, N., Saya, H. and Loilome, W. 2021. Sulfasalazine modifies metabolic profiles and enhances cisplatin chemosensitivity on cholangiocarcinoma cells in in vitro and in vivo models. Cancer Metab. 9: 11.

Tirino, V., Desiderio, V., D’Aquino, R., De Francesco, F., Pirozzi, G., Galderisi, U., Cavaliere, C., De Rosa, A. and Papaccio, G. 2008. Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLoS One. 3: e3469.

Trachootham, D., Alexandre, J. and Huang, P. 2009. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8: 579–591.

Tsvetkova, A., Ozerov, I. V., Pustovalova, M., Grekhova, A., Eremin, P., Vorobyeva, N., Eremin, I., Pulin, A., Zorin, V., Kopnin, P., Leonov, S., Zhavoronkov, A., Klokov, D. and Osipov, A. N. 2017. γH2AX, 53BP1 and Rad51 protein foci changes in mesenchymal stem cells during prolonged X-ray irradiation. Oncotarget. 8: 64317–64329.

Tuy, K., Rickenbacker, L. and Hjelmeland, A. B. 2021. Reactive oxygen species produced by altered tumor metabolism impacts cancer stem cell maintenance. Redox Biol. 44: 101953.

Urnauer, S., Müller, A. M., Schug, C., Schmohl, K. A., Tutter, M., Schwenk, N., Rödl, W., Morys, S., Ingrisch, M., Bertram, J., Bartenstein, P., Clevert, D.-A., Wagner, E. and Spitzweg, C. 2017. EGFR-targeted nonviral NIS gene transfer for bioimaging and therapy of disseminated colon cancer metastases. Oncotarget. 8: 92195–92208.

Vlashi, E., Kim, K., Lagadec, C., Donna, L. Della, McDonald, J. T., Eghbali, M., Sayre, J. W., Stefani, E., McBride, W. and Pajonk, F. 2009. In vivo imaging, tracking, and targeting of cancer stem cells. JNCI J. Natl. Cancer Inst. 101: 350–359.

Vlashi, E., Lagadec, C., Chan, M., Frohnen, P., McDonald, A. J. and Pajonk, F. 2013. Targeted elimination of breast cancer cells with low proteasome activity is sufficient for tumor regression. Breast Cancer Res. Treat. 141: 197–203.

Voutsadakis, I. A. 2017. Proteasome expression and activity in cancer and cancer stem cells. Tumor Biol. 39.

Walcher, L., Kistenmacher, A. K., Suo, H., Kitte, R., Dluczek, S., Strauß, A., Blaudszun, A. R., Yevsa, T., Fricke, S. and Kossatz-Boehlert, U. 2020. Cancer stem cells—origins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol. 11: 1–33.

Walsh, H. R., Cruickshank, B. M., Brown, J. M. and Marcato, P. 2019. The flick of a switch: Conferring survival advantage to breast cancer stem cells through metabolic plasticity. Front. Oncol. 9: 1–7.

Walter, M. A., Peters, G. E. and Peiper, S. C. 1991. Predicting radioresistance in early glottic squamous cell carcinoma by DNA content. Ann Otol Rhinol Laryngol. 100: 523–526.

Wang, H., Jiang, H., Van De Gucht, M. and De Ridder, M. 2019. Hypoxic radioresistance: Can ROS be the key to overcome it? Cancers (Basel). 11: 112.

Wang, T.-C., Cheng, C.-Y., Yang, W.-H., Chen, W.-C. and Chang, P.-J. 2015. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma. Mol. Med. Rep. 12: 6435–6444.

Wang, V. M. Y., Ferreira, R. M. M., Almagro, J., Evan, T., Legrave, N., Zaw Thin, M., Frith, D., Carvalho, J., Barry, D. J., Snijders, A. P., Herbert, E., Nye, E. L., MacRae, J. I. and Behrens, A. 2019. CD9 identifies pancreatic cancer stem cells and modulates glutamine metabolism to fuel tumour growth. Nat. Cell Biol. 21: 1425–1435.

Webster, J. D., Yuzbasiyan-Gurkan, V., Trosko, J. E., Chang, C.-C. and Kiupel, M. 2007. Expression of the Embryonic Transcription Factor Oct4 in Canine Neoplasms: A Potential Marker for Stem Cell Subpopulations in Neoplasia. Vet. Pathol. 44: 893–900.

Weis, S. M. and Cheresh, D. A. 2011. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17: 1359–1370.

Wilson, H., Huelsmeyer, M., Chun, R., Young, K. M., Friedrichs, K. and Argyle, D. J. 2008. Isolation and characterisation of cancer stem cells from canine osteosarcoma. Vet. J. 175: 69– 75.

Xiao and Meierhofer 2019. Glutathione metabolism in renal cell carcinoma progression and implications for therapies. Int. J. Mol. Sci. 20: 3672.

Xu, H., Fu, J., Ha, S.-W., Ju, D., Zheng, J., Li, L. and Xie, Y. 2012. The CCAAT box-binding transcription factor NF-Y regulates basal expression of human proteasome genes. Biochim. Biophys. Acta - Mol. Cell Res. 1823: 818–825.

Yamamori, T., Yasui, H., Yamazumi, M., Wada, Y., Nakamura, Y., Nakamura, H. and Inanami, O. 2012. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic. Biol. Med. 53: 260–270.

Yamazaki, H., Iwano, T., Otsuka, S., Kagawa, Y., Hoshino, Y., Hosoya, K., Okumura, M. and Takagi, S. 2015. SiRNA knockdown of the DEK nuclear protein mRNA enhances apoptosis and chemosensitivity of canine transitional cell carcinoma cells. Vet. J. 204: 60–65.

Yang, L., Chen, P., Zhang, L., Wang, L., Sun, T., Zhou, L., Li, Z. and Wu, A. 2020. Prognostic value of nucleotyping, DNA ploidy and stroma in high-risk stage II colon cancer. Br. J. Cancer. 123: 973–981.

Ye, P., Mimura, J., Okada, T., Sato, H., Liu, T., Maruyama, A., Ohyama, C. and Itoh, K. 2014. Nrf2- and ATF4-dependent upregulation of xCT modulates the sensitivity of T24 bladder carcinoma cells to proteasome inhibition. Mol. Cell. Biol. 34: 3421–3434.

Yi, H.-G., Jeong, Y. H., Kim, Y., Choi, Y.-J., Moon, H. E., Park, S. H., Kang, K. S., Bae, M., Jang, J., Youn, H., Paek, S. H. and Cho, D.-W. 2019. A bioprinted human-glioblastoma-on-a- chip for the identification of patient-specific responses to chemoradiotherapy. Nat. Biomed. Eng. 3: 509–519.

Yin, S., Li, J., Hu, C., Chen, X., Yao, M., Yan, M., Jiang, G., Ge, C., Xie, H., Wan, D., Yang, S., Zheng, S. and Gu, J. 2007. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int. J. Cancer. 120: 1444–1450.

Zaidi, M., Fu, F., Cojocari, D., McKee, T. D. and Wouters, B. G. 2019. Quantitative visualization of hypoxia and proliferation gradients within histological tissue sections. Front. Bioeng. Biotechnol. 7: 1–9.

Zhong, Y., Guan, K., Guo, S., Zhou, C., Wang, D., Ma, W., Zhang, Y., Li, C. and Zhang, S. 2010. Spheres derived from the human SK-RC-42 renal cell carcinoma cell line are enriched in cancer stem cells. Cancer Lett. 299: 150–160.

Zhu, X., Chen, H. H., Gao, C. Y., Zhang, X. X., Jiang, J. X., Zhang, Y., Fang, J., Zhao, F. and Chen, Z. G. 2020. Energy metabolism in cancer stem cells. World J. Stem Cells. 12: 448–461.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る