リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「極端紫外線/X線光源用反射型光学素子の開発技術高度化に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

極端紫外線/X線光源用反射型光学素子の開発技術高度化に関する研究

市丸 智 Satoshi ICHIMARU 東京理科大学 DOI:info:doi/10.20604/00003623

2021.06.09

概要

極端紫外線区 線は観察・分析・加工等広く応用利用されており、現在もその研究開発は盛んである。応用技術の研究開発では、その要素技術(光源・光学素子・試料・検出器)の高度化が重要である。近年、光源技術の高度化が著しく、光源と密接な関係にある光学素子に対して高効率化だけでなく耐久性・光源の利用効率向上・多波長化・光源利用の安定化等、要求の多様化が生じていおり、これを解決することが急務である。本論文では、(1)多層膜作製技術、(2)反射型光学素子設計技術、(3)反射型光学素子・技術開発の3つの観点において反射光学素子の開発技術を高度化させ、その要求を解決し、応用技術発展に貢献する。

多層膜作製技術については、多波長利用のための高反射率多層膜作製技術、応力制御による高積層多層膜形成技術開発による光源メンテナンスサイクル向上、多波長同時利用のための広波長域用多層膜形成技術の高度化、の3点を実施した。この結果、多波長化・高強度化する光源からの要求を解決することが可能になった。

反射型光学素子設計技術の高度化については以下の3点を実施した。新規✕線光学系を考案し、発散光源高効率利用を可能にした。軟X線発光高高調波光源用ビームセパレー夕設計技術を確立し、単色化を可能にした。高強度化する波長13.5mmm光源照射時の反射膜損傷軽減のため反射膜材料選定を実施し、反射鏡長寿命化を可能にした。

反射型光学素子・技術の開発について2点実施した。ビーム強度モニタを目的としたビームスプリッタを開発し種々の光学系において可能にした。また反射鏡表面に堆積する炭素膜厚のその場観察手法を開発し、反射鏡メンテナンスの効率化に貢献する。

以上の反射光学素子の開発技術の高度化は、多様化する光学素子への要求を解決し、応用技術発展に貢献するものである。

参考文献

第一章

[1] A. Takeuchi and Y. Suzuki, “Recent progress in synchrotron radiation 3D–4D nano-imaging based on X-ray full-field microscopy,” Microscopy 69, 259 (2020).

[2] Y. Takahashi, A. Suzuki, N. Zettsu, Y. Kohmura, Y. Senba, H. Ohashi, K. Yamauchi, and T. Ishikawa, “Towards high-resolution ptychographic Xray diffraction microscopy,” Phys. Rev. B 83, 214109 (2011).

[3] 渡邉俊哉, “走査電子顕微鏡の原理と応用 (観察, 分析),” 精密工学会 77, 1021 (2011).

[4] A. Momose, “Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys. 44, 6355 (2005).

[5] E. W. Becker, W. Ehrfeld, D. Münchmeyer, H. Betz, A. Heuberger, S. Pogratz, W. Glashauser, H. J. Michel, and R. v. Siemens, “Production of separation-nozzle systems for uranium enrichment by a combination of X-ray lithography and galvanoplastics,” Naturwissenschaften 69, 520 (1982).

[6] H. Kinoshita, Extreme Ultraviolet Lithography: Principles and Basic Technologies (LAMBERT Academic Publishing, 2016).

[7] 大型放射光施設 SPring-8, http://www.spring8.or.jp/ja/

[8] 石川哲也, “2. 放射光照射装置(線源)の進歩 自由電子レーザー・放射 光,”放射線化学 100, 56 (2015)

[9] 国立研究開発法人 理化学研究所 放射光科学研究センター X 線自由電子 レーザー施設 SACLA, http://xfel.riken.jp/users/bml01-11.html

[10] I. Fomenkov, “EUV source for lithography in HVM: performance and prospects,” EUV Source Workshop, S1, Amsterdam, The Netherlands, November 4-6 (2019).

[11] A. Bartnik, “Laser-plasma extreme ultraviolet and soft X-ray sources based on a double stream gas puff target: interaction of the radiation pulses with matter,” Opto-electronics Review 23, 172 (2015).

[12] KMLABSTM inc., https://www.kmlabs.com/product/xuus/

[13] キヤノン電子管デバイス株式会社, https://etd.canon/ja/product/ category/xray/analysis.html

[14] 国立研究開発法人 量子科学技術研究開発機構, 関西光研究所, https://www.qst.go.jp/site/kansai/2525.html

[15] 原田健太郎“第4 , 世代蓄積リング型放射光源の性能と設計,”表面科学 38, 571 (2017).

[16] 日本放射光学会編, 「放射光が解き明かす驚異のナノ世界」(講談社, 2011).

[17] 雨宮慶幸, “X 線自由電子レーザーの原理,世界における開発動向,”真空 49, 673 (2015)

[18] V. Bakshi, EUV Sources for Lithography (SPIE press, 2006), Chap. 2.

[19] A. Yen, “Continued scaling in semiconductor manufacturing with EUV lithography,” 2018 EUVL Workshop, P3, Berkley, California, June 11-14 (2018).

[20] Y. Teramoto, B. Santos, G. Mertens, R. Kops, M. Kops, A. von Wezyk, K. Bergmann, H. Yabuta, A. Nagano, N. Ashizawa, Y. Taniguchi, T. Shirai, K. Nakamura, K. Aoki, and K. Kasama, “High-radiance LDP source: clean, reliable, and stable EUV source for mask inspection,” Proc. SPIE 9776, Extreme Ultraviolet (EUV) Lithography VII, 97760L (18 March 2016).

[21] K. Midorikawa, “High-order harmonic generation and attosecond science,” Jpn. J. Appl. Phys. 50, 090001 (2011).

[22] A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, “Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases,” J. Opt. Soc. Am. B 4, 595 (1987).

[23] P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett. 62, 1259 (1989)

[24] H. Kinoshita, T. Harada, Y. Nagata, T. Watanabe and K. Midorikawa, “Development of EUV mask inspection system using high-order harmonic generation with a femtosecond laser,” Jpn. J. Appl. Phys. 53, 086701 (2014).

[25] 五十嵐裕紀, 谷峻太郎, 小林正和, 柿崎弘司, 小林洋平, “高次高調波光源 を用いた Mo/Si 多層膜ミラーの反射率評価装置の開発,” 第 64 回応用物 理学会春季学術講演会 講演予稿集, 15p-318-8 (2017).

[26] 池田泰,“X 線による非破壊検査,” RADIOISOTOPES 52, 567 (2003).

[27] M. Ishino, T. H. Dinh, Y. Hosaka, N. Hasegawa, K. Yoshimura, H. Yamamoto, T. Hatano, T. Higashiguchi, K. Sakaue, S. Ichimaru, M. Hatayama, A. Sasaki, M. Washio, M. Nishikino, and Y. Maekawa, “The soft x-ray laser beamline for surface processing and damage studies,” Appl. Opt. 59, 3692 (2020).

[28] 浪岡武・山下廣順 共編, 「X 線結像光学」(培風館, 1999), 第 4 章.

[29] D. H. Bilderback, “Reflectance of x-ray mirrors from 3.8 to 50 keV (3.3 to 0.25Å),” Proc. SPIE 0315, Reflecting Optics for Synchrotron Radiation, 90 (1982).

[30] T. W. Tonnessen, A. M. Khounsary, W. Yun, and D. Shu, “Design and fabrication of a 1.2-m long internally cooled silicon x-ray mirror for APS,” Proc. SPIE 2855, High Heat Flux Engineering III, 187 (1996).

[31] 石川哲也, 森勇藏, 遠藤勝義,“EEM (Elastic Emission Machining) およ びプラズマ CVM (Chemical Vaporization Machining) による高精度 X 線全反射ミラーの開発,” 放射光 17, 3, (2004).

[32] S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution,” Opt. Express 20, 10310 (2012).

[33] G. Bianucci, G. L. Cassol, J. Kools, M. Prea, G. Salmaso, G. Valsecchi, F. E. Zocchi, D. Bolshukhin, M. Schürmann, G. Schriever, A. Mader, and P. Zink, “Design and fabrication considerations of EUVL collectors for HVM,” Proc. SPIE 7271, Alternative Lithographic Technologies, 72710C (2009).

[34] E. Spiller, “Low-loss reflection coatings using absorbing materials,” Appl. Phys. Lett. 20, 365 (1972).

[35] Center of X-ray Optics, Lawrence Berkeley National Laboratory, https://henke.lbl.gov/multilayer/survey.html

[36] 竹中久貴, 市丸智, 畑山雅俊, “軟 X 線/極端紫外線用光学素子の現状,”レー ザー研究 42, 60 (2014).

[37] S. Bajt, J. B. Alameda, T. W. Barbee Jr., W. M. Clift, J. A. Folta, B. B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo/Si multilayers,” Opt. Eng. 41, 1797 (2002).

[38] 山本正樹, 柳原美廣, 木村洋昭, 渡邊誠, “軟 X 線多層膜光学素子-放射光 科学への応用―,” 放射光 9, 106 (1996).

[39] V. Bakshi, EUV Sources for Lithography (SPIE Press Monograph Vol. PM149), 第1章.

[40] 山下廣順,“硬 X 線光学系と画像記録の現状および将来展望,” レーザー研 究 27, 30 (1999).

[41] M. Kishimoto, M. Tanaka, R. Tai, K. Sukegawa, M. Kado, N. Hasegawa, H. Tang, T. Kawachi, P. Lu, K. Nagashima, H. Daido, Y. Kato, K. Nagai, and H. Takenaka, “Development of soft X-ray microscopy System using X-ray laser in JAERI Kansai,” J. Phys. IV France 104, 141 (2003).

[42] 西原功修, 西村博明, “極端紫外光源プラズマの放射流体特性,“ レーザー 研究 32, 769 (2004) .

[43] M. Hatayama, S. Ichimaru, T. Ohchi, E. J. Takahashi, K. Midorikawa, and S. Oku, “Wide-range narrowband multilayer mirror for selecting a single-order harmonic in the photon energy range of 40–70 eV,” Opt. Express, 24, 14546 (2016).

[44] T. Haga, Y. Utsumi, and S. Itabashi, “Soft x-ray ellipsometer using transmission multilayer polarizers,” Proc. SPIE 3443, X-Ray and Ultraviolet Spectroscopy and Polarimetry II, 117 (1998).

[45] P. J. Schieldsa, D. M. Gibson, W. M. Gibson, N. Gao, H. Huang, and I. Y. Ponomarev, “Overview of polycapillary X-ray optics,” Powder Diffr. 17, 70 (2002).

[46] T. Namioka, “17. Diffraction Gratings,” Exp. Methods Phys. Sci. 31, 347, (1998).

[47] 山崎裕史, 後藤俊治,“光のエネルギーを切り出す (X 線編),”放射光 19, 106 (2006).

[48] J. Kirz, “Phase zone plates for x rays and the extreme uv,” J. Opt. Soc. Am. 64, 301 (1974).

[49] T. Tomie, “The birth of the X-ray refractive lens,” Spectrochim. Acta, Part B 65, 192 (2010).

[50] F. R. Powell, P. W. Vedder, J. F. Lindblom, and S. F. Powell, “Thin film filter performance for extreme ultraviolet and x-ray applications,” Opt. Eng. 29, 614 (1990).

[51] M. Hatayama, H. Takenaka, E. M. Gullikson, A. Suda and K. Midorikawa, “High-transmittance free-standing aluminum extreme ultraviolet filter,” Jpn. J. Appl. Phys. 48, 122202 (2009).

[52] F. Powell and T. A. Johnson, “Filter windows for EUV lithography,” Proc. SPIE 4343, Emerging Lithographic Technologies V, 585 (2001).

[53] V. Bakshi, EUV Sources for Lithography (SPIE Press Monograph Vol. PM149) 第 6A 章.

[54] F. Barkusky, A. Bayer, S. Döring, P. Grossmann, and K. Mann, “Damage threshold measurements on EUV optics using focused radiation from a table-top laser produced plasma source,” Opt. Express 18, 4346 (2010).

[55] W. Schweinberger, A. Sommer, E. Bothschafter, J. Li, F. Krausz, R. Kienberger, and M. Schultze, “Waveform-controlled near-single cycle milli-joule laser pulses generate sub-10 nm extreme ultraviolet continua,” Opt. Lett. 37, 3573 (2012).

[56] T. Higashiguchi, T. Otsuka, T. Ugomori, S. Fujioka, H. Nishimura, C. Suzuki, K. Sakaue, M. Washio and A. Endo, “5. Shorter wavelength light sources by plasmas and quantum beams,” J. Plasma Fusion Res. 89, 669 (2013).

第二章

[1] E. Spiller, Soft X-Ray Optics (SPIE press, 1994), Chap. 8.

[2] 竹中久貴,“多層膜軟 X 線ミラー小史 I-70 年代の発見から 80 年代の発展 状況について―,”レーザー研究 25, 339 (1997).

[3] 竹中久貴,“多層膜軟 X 線ミラー小史 II-90 年代における多層膜軟 X 線ミ ラーの発展状況と将来の動向―,”レーザー研究 25, 348 (1997).

[4] H. Takenaka, K. Nagai, H. Ito, S. Ichimaru, T. Ohchi, Y. Muramatsu and E. M. Gullikson, “Highly reflective CoxCr1-x/C multilayer mirror for use in X-ray photoemission spectroscopy in the wavelength region around 6 nm,” J. Phys. IV France 104, 251 (2003).

[5] M. Hatayama, S. Ichimaru, T. Ohchi, E. J. Takahashi, K. Midorikawa, and S. Oku, “Wide-range narrowband multilayer mirror for selecting a single-order harmonic in the photon energy range of 40–70 eV,” Opt. Express 24, 14546 (2016).

[6] H. Takenaka, S. Ichimaru, T. Ohchi and E. M. Gullikson, “Soft-X-ray reflectivity and heat resistance of SiC/Mg multilayer,” J. Electron. Spectros. Relat. Phenomena 144-147, 1047 (2005).

[7] A. B. C. Walker Jr., J. F. Lindblom, T. W. Barbee Jr., R. B. Hoover, “Soft X-ray images of the solar corona with a normal-incidence Cassegrain multilayer telescope,” Science 241, 1783 (1988).

[8] T. Kuhlmann, S. A. Yulin, T. Feigl, and N. Kaiser, “EUV multilayer mirrors with tailored spectral reflectivity,” Proc. SPIE 4782, X-Ray Mirrors, Crystals, and Multilayers II, 196 (2002).

[9] A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, R. Rakowski and M. Szczurek, “EUV emission from solids illuminated with a laser-plasma EUV source,” Appl. Phys. B 93, 737 (2008).

[10] T. Okajima, K. Tamura, Y. Ogasaka, K. Haga, S. Takahashi, S. Ichimaru, H. Kito, S. Fukuda, A. Goto, K. Nomoto, H. Satake, S. Kato, Y. Kamata, A. Furuzawa, F. Akimoto, T. Yoshioka, K. Kondo, Y. Haba, T. Tanaka, K. Wada, N. Hamada, M. Hudaverdi, Y. Tawara, K. Yamashita, P. J. Serlemitsos, Y. Soong, K. W. Chan, S. M. Owens, F. B. Berendse, J. Tueller, K. Misaki, R. Shibata, H. Mori, K. Itoh, H. Kunieda, and Y. Namba, “Characterization of the supermirror hard-x-ray telescope for the InFOCS balloon experiment,” Appl. Opt. 41, 5417 (2002).

[11] A. L. Aquila, F. Salmassi, F. Dollar, Y. Liu, and E. M. Gullikson, “Developments in realistic design for aperiodic Mo/Si multilayer mirrors,” Opt. Express 14, 10073 (2006).

[12] M. Hatayama, H. Takenaka, E. M. Gullikson, A. Suda, and K. Midorikawa, “Broadband extreme ultraviolet multilayer mirror for supercontinuum light at a photon energy of 35–65 eV,” Appl. Opt. 48, 5464 (2009)

[13] P. van Loevezijn, R. Schlatmann, J. Verhoeven, B. A. van Tiggelen, and E. M. Gullikson, “Numerical and experimental study of disordered multilayers for broadband x-ray reflection,” Appl. Opt. 35, 3614 (1996).

[14] J. A. Folta, S. Bajt, T. W. Barbee Jr., R. F. Grabner, P. B. Mirkarimi, T. D. Nguyen, M. A. Schmidt, E. A. Spiller, C. C. Walton, M. Wedowski, and C. Montcalm, “Advances in multilayer reflective coatings for extreme ultraviolet lithography,” Proc. SPIE 3676, Emerging Lithographic Technologies III, 702 (1999).

[15] D. Attwood, Soft X-Ray and Extreme Ultraviolet Radiation (Cambridge University, 1999), Chaps. 3.

[16] B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50– 30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181 (1993).

[17] H. Kinoshita, Extreme Ultraviolet Lithography: Principles and Basic Technologies (LAMBERT Academic Publishing, 2016).

[18] J. H. Underwood and T. W. Barbee, Jr., “Synthetic multilayers as Bragg diffractors for x-rays and extreme ultraviolet: calculations of performance,” AIP Conf. Proc. 75, 170 (1981).

[19] Center of X-ray Optics, Lawrence Berkeley National Laboratory, https://henke.lbl.gov/optical_constants/multi2.html

[20] D. L. Windt, “IMD—Software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360 (1998).

[21] 浪岡武・山下廣順 共編,「X 線結像光学」(培風館, 1999)第 4 章 3 節 2 項.

[22] 菊田惺志,「X 線回折・散乱技術〈上〉(物理工学実験)」(東京大学出版会, 1992) 第 3 章 4 節 8 項.

[23] K. H. Müller, “Dependence of thin‐film microstructure on deposition rate by means of a computer simulation,” J. Appl. Phys. 58, 2573 (1985).

[24] J. Dalla Torre, G. H. Gilmer, D. L. Windt, R. Kalyanaraman, F. H. Baumann, P. L. O’Sullivan, J. Sapjeta, T. Dıaz de la Rubia, ́ and M. Djafari Rouhani, “Microstructure of thin tantalum films sputtered onto inclined substrates: Experiments and atomistic simulations,” J. Appl. Phys. 94, 263 (2003).

[25] 和佐 清孝・早川 茂,「薄膜化技術 第 2 版」(共立出版, 1992).

[26] E. Spiller, Soft X-Ray Optics (SPIE press, 1994), Chap. 9.

[27] 桜井健次,「新版 X 線反射率法入門」(講談社, 2018).

[28] X’Pert PRO, Malvern Panalytical Ltd., https://www.

[29] E. M. Gullikson, S. Mrowka, and B. B. Kaufmann, “Recent developments in EUV reflectometry at the Advanced Light Source,” Proc. SPIE 4343, Emerging Lithographic Technologies V, 363 (2001).

[30] E. Gullikson, “High accuracy EUV reflectometry and scattering at the Advanced Light Source,” 2009 International Workshop on EUV Lithography, Honolulu, Hawaii, July 14-17 (2009).V. Bakshi, EUV Sources for Lithography (SPIE Press Book, 2006), Chap. 37.

[31] 伊庭斉志,「遺伝的アルゴリズムと進化のメカニズム」(岩波書店, 2002).

[32] SCHOTT AG, https://www.schott.com/advanced_optics/english/ products/optical-materials/zerodur-extremely-low-expansion-glassceramic/zerodur/index.html

[33] Y. Tsusaka, H. Suzuki, K. Yamashita, H. Kunieda, Y. Tawara, Y. Ogasaka, Y. Uchibori, H. Honda, M. Itoh, H. Awaki, H. Tsunemi, K. Hayashida, S. Nomoto, M. Wada, E. Miyata, P. J. Serlemitsos, L. Jalota, and Y. Soong, “Characterization of the advanced satellite for cosmology and astrophysics x-ray telescope: Preflight calibration and ray tracing,” Appl. Opt. 34, 4848 (1995).

第三章

[1] E. Spiller, “Low-loss reflection coatings using absorbing materials,” Appl. Phys. Lett. 20, 365 (1972).

[2] I. Lovas, W. Santy, E. Spiller, R. Tibbetts, J. Wilczynski, “Design And Assembly Of A High Resolution Schwarzschild Microscope For Soft X Rays,” Proc. SPIE 0316, High Resolution Soft X-Ray Optics, pg 90 (24 March 1982).

[3] J. P. Henry, E. Spiller, M. Weisskopf, “Imaging Performance Of A Normal Incidence X-Ray Telescope Measured At 0.18 keV,” Proc. SPIE 0316, High Resolution Soft X-Ray Optics, 166 (1982).

[4] E. Ziegler, Y. Lepêtre, S. Joksch, V. Saile, S. Mourikis, P. J. Viccaro, G. Rolland and F. Laugier, “Performance of multilayers in intense synchrotron x‐ray beams,” Rev. Sci. Instrum. 67, 3356 (1996).

[5] M. Yanagihara, K. Mayama, Y. Goto, I. Kusunoki, S. Asaoka, and H. Maezawa, “Stability of sputtered Mo/BN, W/BN, Mo/B4C, and W/B4C soft X-ray multilayers under exposure to multipole-wiggler radiation,” Nucl. Instrum. Methods. Phys. Res. A 334, 638 (1993).

[6] V. V. Kondratenko, Yu. P. Pershin, O. V. Poltseva, A. I. Fedorenko, E. N. Zubarev, S. A. Yulin, I. V. Kozhevnikov, S. I. Sagitov, V. A. Chirkov, V. E. Levashov, and A. V. Vinogradov, “Thermal stability of soft x-ray Mo–Si and MoSi2-Si multilayer mirrors,” App. Opt. 32, 1881 (1993).

[7] H. Takenaka, T. Kawamura, and Y. Ishii, “Heat resistance of Mo/Si, MoSi2/Si, and Mo5Si3/Si multilayer soft x-ray mirrors,” J. Appl. Phys. 78, 5227 (1995).

[8] H. Takenaka, T. Kawamura, and T. Haga, “Heat-resistance of Mo/Si multilayer EUV mirrors with interleaved carbon barrier-layers,” OSA Proc. Extreme Ultraviolet Lithogr., Proc. Top. Meet. 4, 169 (1996).

[9] 石川哲也, “2. 放射光照射装置(線源)の進歩 自由電子レーザー・放射 光,”放射線化学 100, 56 (2015).

[10] A. R. Khorsand, R. Sobierajski, E. Louis, S. Bruijn, E.D. van Hattum, R. W. E. van de Kruijs, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, T. Burian, J. Chalupsky, J. Cihelka, V. Hajkova, L. Vysin, U. Jastrow, N. Stojanovic, S. Toleikis, H. Wabnitz, K. Tiedtke, K. Sokolowski-Tinten, U. Shymanovich, J. Krzywinski, S. Hau-Riege, R. London, A. Gleeson, E. M. Gullikson, and F. Bijkerk, “Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure,” Opt. Express 18, 700 (2010).

[11] M. Ishino, T. H. Dinh, Y. Hosaka, N. Hasegawa, K. Yoshimura, H. Yamamoto, T. Hatano, T. Higashiguchi, K. Sakaue, S. Ichimaru, M. Hatayama, A. Sasaki, M. Washio, M. Nishikino, and Y. Maekawa, “Soft x-ray laser beamline for surface processing and damage studies,” Appl. Opt. 59, 3692 (2020).

[12] R. Sobierajski, S. Bruijn, A. R. Khorsand, E. Louis, R. W. E. van de Kruijs, T. Burian, J. Chalupsky, J. Cihelka, A. Gleeson, J. Grzonka, E.M. Gullikson, V. Hajkova, S. Hau-Riege, L. Juha, M. Jurek, D. Klinger, J. Krzywinski, R. London, J. B. Pelka, T. Płociński, M. Rasiński, K. Tiedtke, S. Toleikis, L. Vysin, H. Wabnitz, and F. Bijkerk, “Damage mechanisms of MoN/SiN multilayer optics for nextgeneration pulsed XUV light sources,” Opt. Express 19, 193 (2011).

[13] V. Bakshi, EUV Sources for Lithography (SPIE Press Book, 2006), Chap. 37.

[14] N. Felix, D. Attwood, “EUV Lithography Perspective: from the beginning to HVM (Conference Presentation),” Proc. SPIE 11323, Extreme Ultraviolet (EUV) Lithography XI, 113232O (2020).

[15] X. Bozec, L. Moine, R. Wevers, S. Djidel, R. Mercier Ythier, R. Geyl, V. Patoz, “Cooled EUV collector optics for LPP and DPP sources,” Proc. SPIE 7969, Extreme Ultraviolet (EUV) Lithography II, 79690A (2011).

[16] F. R. Powell, P. W. Vedder, J. F. Lindblom, and S. F. Powell, “Thin film filter performance for extreme ultraviolet and x-ray applications,” Opt. Eng. 29, 614 (1990).

[17] S. Fujioka, H. Nishimura, Y. Izawa, K. Nishihara, T. Aota, N. Ueda, T. Ando, M. Murakami, Y. G. Kang, T. Norimatsu, K. Nagai, Q. Gu, Y. Yasuda, N. Miyanaga, K. Mima, Y. Shimada, K. Hashimoto, M. Yamaura, A. Sunahara, H. Furukawa, S. Uchida, and S. Nanba, “Development of Minimum Mass EUV Light Source Plasma for the Next Generation Lithography,” J. Plasma Fusion Res. 82, 609 (2006).

[18] F. Poweland and T. A. Johnson, “Filter windows for EUV lithography,” Proc. SPIE 4343, Emerging Lithographic Technologies V, 585 (2001).

[19] Y. Ueno, G. Soumagne, A. Sumitani, A. Endo, T. Higashiguchi, and N. Yugami, “Reduction of debris of a CO2 laser-produced Sn plasma extreme ultraviolet source using a magnetic field,” Appl. Phys. Lett. 92, 211503 (2008).

[20] I. Song, R. S. Mohanty, M. Watanabe, T. Kawamura, A. Okino, K. Horikawa, and E. Hotta, “Development of gas jet type Z-pinch EUV light source for lithography,” J. Plasma Fusion Res. 81, 647 (2005).

[21] Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, and F. Najmabadi, “Investigation of the interaction of a laser pulse with a preformed Gaussian Sn plume for an extreme ultraviolet lithography source,” J. Appl. Phys. 101, 023305 (2007).

[22] D. L. Windt, “IMD—Software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360 (1998).

[23] Center of X-ray Optics, Lawrence Berkeley National Laboratory, https://henke.lbl.gov/optical_constants/getdb2.html.

[24] M. Nishikino, N. Hasegawa, T. Kawachi, H. Yamatani, K. Sukegawa, and K. Nagashima, “Characterization of a high-brilliance soft x-ray laser at 13.9 nm by use of an oscillator-amplifier configuration,” Appl. Opt. 47, 1129 (2008).

[25] W. H. Wang, H. Y. Bai, M. Zhang, J. H. Zhao, X. Y. Zhang, and W. K. Wang, “Interdiffusion in nanometer-scale multilayers investigated by in situ low-angle x-ray diffraction,” Phys. Rev. B 59, 10811 (1999).

[26] M. Ishino, A. Y. Faenov, M. Tanaka, S. Tamotsu, N. Hasegawa, M. Nishikino, T. A. Pikuz, T. Kaihori, and T. Kawachi, “Observations of surface modifications induced by the multiple pulse irradiation using a soft picosecond x-ray laser beam,” Appl. Phys. A 110, 179 (2013).

[27] E. Zoethout, G. Sipos, R. W. E. V. D. Kruijs, A. E. Yakshin, E. Louis, S. Muellender, and F. Bijkerk, "Stress mitigation in Mo/Si multilayers for EUV lithography", Proc. SPIE 5037, Emerging Lithographic Technologies VII, 872 (2003).

[28] D. L. Windt, S. Donguy, C. J. Hailey, J. Koglin, V. Honkimaki, E. Ziegler, F. E. Christensen, C. M. H. Chen, F. A. Harrison, and W. W. Craig, “W/SiC X-ray multilayers optimized for use above 100 keV,” App. Opt. 42, 2415 (2003).

[29] SCHOTT AG, https://www.schott.com/advanced_optics/japanese/products/opticalmaterials/thin-glass/thin-glass-d-263-t-eco/index.html.

[30] 金原粲, 藤原英夫,「薄膜 (応用物理学選書)」(裳華房, 1979) 第 3 章 3 節 2 項.

[31] J. Strong, “On the cleaning of surfaces,” Rev. Sci. Instrum. 6, 97 (1935).

[32] P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photonics 7, 1 (2015).

[33] Zygo Corporation, https://zygo.jp/?/met/profilers/newview8000/

第四章

[1] R. W. Falcone and J. Bokor, “Dichroic beam separator for extreme ultraviolet and visible radiation,” Opt. Lett. 8, 21 (1983).

[2] E. J. Takahashi, H. Hasegawa, Y. Nabekawa, and K. Midorikawa, “Highthroughput, high-damage-threshold broadband beam separator for high-order harmonics in the extreme-ultraviolet region,” Opt. Lett. 29, 507 (2004).

[3] Y. Nagata, Y. Nabekawa, and K. Midorikawa, “Development of highthroughput, high-damage-threshold beam separator for 13 nm highorder harmonics,” Opt. Lett. 31, 1316 (2006).

[4] M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge University, 1999), Chap. 1.

[5] D. Attwood, Soft X-Ray and Extreme Ultraviolet Radiation (Cambridge University, 1999), Chap. 3.

[6] H. A. Macleod, Thin-Film Optical Filters, 2nd edition (CRC Press, 1986), Chap. 8.

[7] F. Abelès, “Optical properties of very thin films,” Thin Solid Films 34, 291 (1976).

[8] Reflectiveindex.INFO database, http://refractiveindex.info/

[9] E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

[10] Canter for Nanolithography Research Labs, the Rochester Institute of technology, https://www.rit.edu/~wlith/thinfilms/thinfilms/thinfilms.html

[11] D. L. Windt, “IMD—Software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360 (1998).

[12] Lawrence Berkeley National Laboratory, https://henke.lbl.gov/optical_constants/getdb2.html

[13] JASCO Co., http://www.jascoinc.com/spectroscopy/v‑ 770‑ uv‑ visspectrophotometer

[14] JASCO Co., http://www.jascoinc.com/spectroscopy/uv‑ visible‑ nir/ accessories/absolute‑ reflectance

[15] 表和彦、伊藤義泰、“X 線反射率による膜構造測定における不確かさ,” 表 面科学 27, 642 (2006).

[16] 藤原裕之,「分光エリプソメトリ―」(丸善, 2003).

第五章

[1] A. Hornstrup, F. E. Christensen, J. Garnaes, E. Jespersen, S. H. Zhu, and H. W. Schnopper, “Measurements of x-ray reflectivities of Aucoatings at several energies,” Proc. SPIE 1333, Advanced Optical Manufacturing and Testing, 257 (1990).

[2] E. Zocchi, E. Buratti, and V. Rigato, “Design and optimization of collectors for extreme ultraviolet lithography,” Proc. SPIE 6151, Emerging Lithographic Technologies X, 61510T (2006).

[3] P. J. Serlemitsos, Y. Soong, K. W. Chan, T. Okajima, J. P. Lehan, Y. Maeda, K. Itoh, H. Mori, R. Iizuka, A. Itoh, H. Inoue, S. Okada, Y. Yokoyama, Y. Itoh, M. Ebara, R. Nakamura, K. Suzuki, M. Ishida, A. Hayakawa, C. Inoue, S. Okuma, R. Kubota, M. Suzuki, T. Osawa, K. Yamashita, H. Kunieda, Y. Tawara, Y. Ogasaka, A. Furuzawa, K. Tamura, R. Shibata, Y. Haba, M. Naitou, and K. Misaki, “The X-Ray Telescope onboard Suzaku,” Publ. Astron. Soc. Jpn. Nihon Tenmon Gakkai 59, 59 (2007).

[4] G. Bianucci, G. L. Cassol, N. M. Ceglio, G. Valsecchi, and F. Zocchi, “Grazing Incidence Collectors for both DPP and LPP EUV Lithography,” 2011 International Symposium on Extreme Ultraviolet Lithography, Session 6-3, Miami, Florida, October 17-19 (2011).

[5] D. Brings and M. P. Seah, Practical Surface Analysis, Auger and X-ray Photoelectron Spectroscopy (Wiley, 1990).

[6] For example, Toshiba Electron Tubes & Devices Co., Ltd., http://www. toshiba-tetd.co.jp/eng/product/category/xray/analysis.htm

[7] T. Hatsui, E. Shigemasa, and N. Kosugi, “Design of a transmission grating spectrometer and an undulator beamline for soft x-ray emission studies,” AIP Conference Proceedings 705, 921 (2004)

第六章

[1] V. Jindal, R. Garg, G. Denbeaux, and A. Wüest, “Assumptions and tradeoffs of extreme ultraviolet optics contamination modeling,”Proc. SPIE 7271, Alternative Lithographic Technologies, 72713Q (2009).

[2] D. L. Windt, “IMD—Software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360 (1998).

[3] G. Bianucci, G. L. Cassol, N. M. Ceglio, G. Valsecchi, and F. Zocchi,“Low CoO grazing incidence collectors for EUVL HVM,”Proc. SPIE 8322, Extreme Ultraviolet (EUV) Lithography III, 832216 (2012).

[4] Center for X-Ray Optics, Lawrence Berkeley National Laboratory, http://henke.lbl.gov/optical_constants/pert_form.html

[5] H. Oizumi, H. Yamanashi, I. Nishiyama, K. Hashimoto, S. Ohsono, A. Masuda, A. Izumi, and H. Matsumura, “Contamination Removal for EUV Multilayer Optics Utilizing Atomic Hydrogen by Generated Heated Catalyzer,” 3rd International EUVL Symposium, Co09, Miyazaki, JAPAN (2004).

[6] C. G. Morgan, P. P. Naulleau, S. B. Rekawa, P. E. Denham, B. H. Hoef, M. S. Jones, and R. Vane,“Removal of surface contamination from EUV mirrors using low-power downstream plasma cleaning,” Proc. SPIE 7636, Extreme Ultraviolet (EUV) Lithography, 76361Q (2010).

[7] Bruker AXS LLC, https://www.bruker.com/products/surface-anddimensional-analysis/stylus-profilometers.html

[8] D. L. Gil and D. Windover, “Limitations of x-ray reflectometry in the presence of surface contamination,”J. Phys. D: Appl. Phys. 45, 235301 (2012).

[9] R. Garg, A. Wüest, E. Gullikson, S. Bajt, and G. Denbeaux,“EUV optics contamination studies in presence of selected hydrocarbons,”Proc. SPIE 6921, Emerging Lithographic Technologies XII, 692136 (2008).

[10] J. Chen, E. Louis, C. J. Lee, H. Wormeester, R. Kunze, H. Schmidt, D. Schneider, R. Moors, W. V. Schaik, M. Lubomska, and F. Bijkerk, “ Detection and characterization of carbon contamination on EUV multilayer mirrors,”Opt. Express 17, 16969 (2009).

[11] B. Kuswandi, Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: A review,”Anal. Chim. Acta 601, 141 (2007).

[12] E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).

[13] M. Arifin, T. Matsumoto, A. M. Pradipto, T. Akiyama, T. Ito, K. Nakamura, “First Principles Calculation of Optical Properties of Transition Metals for Surface Plasmon Resonance Application,” e-J. Surf. Sci. Nanotechnol. 18, 133 (2020).

[14] 大塚電子株式会社, https://www.otsukael.jp/product/detail/productid/111

[15] 大塚電子株式会社, https://www.otsukael.com/product/detail/productid/ 21/category1id/3/category2id/7/category3id/4

[16] 大塚電子株式会社, https://www.otsukael.jp/product/detail/productid/26

[17] 植田和茂, “照明の化学 2 —放電ランプ,蛍光灯,LED 照明の仕組みと進 歩—,” 化学と教育 65, 578 (2017).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る