リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「尿中nano-extracellular vesiclesの腎臓病における非侵襲バイオマーカーとしての有用性に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

尿中nano-extracellular vesiclesの腎臓病における非侵襲バイオマーカーとしての有用性に関する研究

藤高, 啓右 筑波大学 DOI:10.15068/0002000810

2021.07.29

概要

そこで,本研究では尿中に含まれる NVs 中の mRNA に着⽬し, CKD の主な原因疾患である⽷球体腎炎,糖尿病およびメタボリックシンドロームの動物モデルを⽤いて,病態における腎組織中の遺伝 ⼦発現の変化,腎機能の変化と NVs 中の遺伝⼦変化との相関を評価し, liquid biopsy および CKD の診断法としての応⽤可能性について

1) ⽷球体腎炎モデルを⽤いた尿中 NVs 中および腎組織中の mRNA発現変動の関連に関する検討,
2) ⽷球体腎炎モデルを⽤いた尿中 NVs 中 mRNA 発現量の薬効評価マーカーとしての可能性および腎機能との相関に関する検討および
3) 他の腎障害モデル( 糖尿病およびメタボリックシンドロームモデル)における汎⽤性に関する検討を⾏った.

この論文で使われている画像

参考文献

1. Davidson AJ: Mouse kidney development StemBook, ed. The Stem Cell Research Community, StemBook, doi/10.3824/stembook.1.34.1, http://www.stembook.org. 2009.

2. ⽇本腎臓学会: エビデンスに基づく CKD 診療ガイドライン 2018.

3. Glassock RJ, Warnock DG and Delanaye P: The global burden of chronic kidney disease: estimates, variability and pitfalls. Nat Rev Nephrol 13: 104-114, 2017.

4. 新⽥ 孝作,政⾦ ⽣⼈,花房 規男,後藤 俊介,阿部 雅紀,中井 滋,⾕⼝ 正智,⻑⾕川 毅,和⽥ 篤志,濱野 ⾼⾏,星野 純⼀,常喜 信彦,三浦 健⼀郎,⼭本 景⼀,中元 秀友: わが国の慢性透析療法の現況,透析会誌 52 (12): 679-754, 2019.

5. Wang V, Vilme H, Maciejewski ML and Boulware LE: The economic burden of chronic kidney disease and end-stage renal disease. Semin Nephrol 36: 319-330, 2016.

6. Takemoto Y and Naganuma T: Economic issues of chronic kidney disease and end-stage renal disease. Contrib Nephrol 198: 87-93, 2019.

7. Levin A and Stevens PE: Early detection of CKD: the benefits, limitations and effects on prognosis. Nat Rev Nephrol 7: 446-457, 2011.

8. Rysz J, Gluba-Brzózka A, Franczyk B, Jabłonowski Z and Ciałkowska-Rysz A: Novel biomarkers in the diagnosis of chronic kidney disease and the prediction of its outcome. Int J Mol Sci 18: 2017.

9. 今井 裕⼀: 腎⽣検ガイドブック ―より安全な腎⽣検を施⾏するために― 第2章 腎⽣検におけるインフォームド・コンセント,⽇腎会誌 47 (2): 76-82, 2005.

10. Hessvik NP and Llorente A: Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75: 193-208, 2018.

11. Raposo G and Stoorvogel W: Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200: 373-383, 2013.

12. Stephanie B and Suresh M: Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin Appl 9(3- 4): 358–367, 2005.

13. Yun Z and Xiao FW: A niche role for cancer exosomes in metastasis. Nat. Cell Biol. 17: 709–711, 2015.

14. Tarja M, Sanna L and Katja MK: Exosomes in Alzheimer's disease. Neurochem International 97: 193-199, 2016.

15. Gabriele DR, Sabna RK and Mary B: Liquid biopsies in cancer diagnosis, monitoring and prognosis. Trends in Pharmacol Sci. 40: 172- 186, 2019.

16. Rares D, Leonie FO, Ioana BN, Klaus P and George AC: MicroRNAs from liquid biopsy derived extracellular vesicles: recent advances in detection and characterization methods. Cancers 12: 1-23, 2020.

17. Braun F and Muller RU: Urinary extracellular vesicles as a source of biomarkers reflecting renal cellular biology in human disease. Methods Cell Biol 154: 43-65, 2019.

18. De Palma G, Di Lorenzo VF, Krol S and Paradiso AV: Urinary exosomal shuttle RNA: Promising cancer diagnosis biomarkers of lower urinary tract. Int J Biol Markers 34: 101-107, 2019.

19. Gardiner C, Ferreira YJ, Dragovic RA, Redman CW and Sargent IL: Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2: 2013.

20. Li B, Yao J, Morioka T and Oite T: Nitric oxide increases albumin permeability of isolated rat glomeruli via a phosphorylation-dependent mechanism. J Am Soc Nephrol 12: 2616-2624, 2001.

21. Kakimoto T, Okada K, Hirohashi Y, Relator R, Kawai M, Iguchi T, Fujitaka K, Nishio M, Kato T, Fukunari A, et al: Automated image analysis of a glomerular injury marker desmin in spontaneously diabetic Torii rats treated with losartan. J Endocrinol 222: 43-51, 2014.

22. Pippin JW, Brinkkoetter PT, Cormack-Aboud FC, Durvasula RV, Hauser PV, Kowalewska J, Krofft RD, Logar CM, Marshall CB, Ohse T, et al: Inducible rodent models of acquired podocyte diseases. Am J Physiol Renal Physiol 296: F213-229, 2009.

23. Floege J, Alpers CE, Sage EH, Pritzl P, Gordon K, Johnson RJ and Couser WG: Markers of complement-dependent and complement-independent glomerular visceral epithelial cell injury in vivo. Expression of antiadhesive proteins and cytoskeletal changes. Lab Invest 67: 486- 497, 1992.

24. Hoshi S, Shu Y, Yoshida F, Inagaki T, Sonoda J, Watanabe T, Nomoto K and Nagata M: Podocyte injury promotes progressive nephropathy in zucker diabetic fatty rats. Lab Invest 82: 25-35, 2002.

25. Sonoda H, Yokota-Ikeda N, Oshikawa S, Kanno Y, Yoshinaga K, Uchida K, Ueda Y, Kimiya K, Uezono S, Ueda A, et al: Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 297: F1006-1016, 2009.

26. Fukuda A, Wickman LT, Venkatareddy MP, Sato Y, Chowdhury MA, Wang SQ, Shedden KA, Dysko RC, Wiggins JE and Wiggins RC: Angiotensin II-dependent persistent podocyte loss from destabilized glomeruli causes progression of end stage kidney disease. Kidney Int 81: 40-55, 2012.

27. The International Society for Extracellular Vesicles: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7: 1-43, 2018

28. He L, Zhu D, Wang J and Wu X: A highly efficient method for isolating urinary exosomes. Int J Mol Med 43: 83-90, 2019.

29. Baranyai T, Herczeg K, Onodi Z, Voszka I, Modos K, Marton N, Nagy G, Mager I, Wood MJ, El Andaloussi S, et al: Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One 10: e0145686, 2015.

30. Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, Chen C, Li H, Li P, Quinn D, Dao M, et al: Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A 114: 10584-10589, 2017.

31. Feng Y, Lv LL, Wu WJ, Li ZL, Chen J, Ni HF, Zhou LT, Tang TT, Wang FM, Wang B, et al: Urinary exosomes and exosomal CCL2 mRNA as biomarkers of active histologic injury in IgA nephropathy. Am J Pathol 188: 2542-2552, 2018.

32. Kobina E, Liwang Y, Xiaohong W,Wei H, Dongze Q, Jiukuan H, Yigang W, Basilia Z, Tianqing P and Guo-Chang F: Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochimica et Biophysica Acta 1852: 2362-2371, 2015.

33. Teresa J, Maja MJ, Karolina S and Tadeusz J: Mechanisms of RNA loading into exosomes. FEBS Letters 589: 1391-1398, 2015.

34. Li Z, Mericskay M, Agbulut O, Butler-Browne G, Carlsson L, Thornell LE, Babinet C and Paulin D: Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J Cell Biol 139: 129–44, 1997.

35. Aurélie P, Fabien N, Ernie LE, Dalia R, Olivier G, Marie-Josèphe T, Chantal L, Jacques D, Michel F, Claire P, Stéphane D, Martin H, Thomas B, Marina C, Patrick N and Corinne A: Nephrin mutations can cause childhood-onset steroid-resistant nephrotic syndrome. J Am Soc Nephrol 19: 1871–1878, 2008.

36. Puneet G: A review of podocyte biology. Am J Nephrol 47: 3-13, 2018.

37. Vesa R, Päivi L, Jorma W, Ulla L, Marjo K, Hannu J, Christer H and Karl T: Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc Natl Acad Sci U S A 96: 7962-7967, 1999.

38. Tobias BH, Matias S, Björn H, Leonie S, Miriam S, Enken G, Moin AS, Gerd W and Thomas B: Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum Mol Genet 12: 397-405, 2003.

39. Fukuda A, Wickman LT, Venkatareddy MP, Wang SQ, Chowdhury MA, Wiggins JE, Shedden KA and Wiggins RC: Urine podocin:nephrin mRNA ratio (PNR) as a podocyte stress biomarker. Nephrol Dial Transplant 27: 4079-4087, 2012.

40. Soren N, Jorgen F, David M, Tae-Hwan K, Peter A and Mark AK: Aquaporins in the kidney: From molecules to medicine Physiol Rev 82: 205-244, 2002.

41. Xia L, Zhou M, Kalhorn TF, Ho HT and Wang J: Podocyte- specific expression of organic cation transporter PMAT: implication in puromycin aminonucleoside nephrotoxicity. Am J Physiol Renal Physiol 296: F1307-1313, 2009.

42. Spanu S, van Roeyen CR, Denecke B, Floege J and Muhlfeld AS: Urinary exosomes: a novel means to non-invasively assess changes in renal gene and protein expression. PLoS One 9: e109631, 2014.

43. Yatsu T, Aoki M and Tanaka A: Effect of zelandopam, a dopamine D1-like receptor agonist, in puromycin aminonucleoside nephrosis rats. Eur J Pharmacol 510: 121-126, 2005.

44. Wang Y, Jarad G, Tripathi P, Pan M, Cunningham J, Martin DR, Liapis H, Miner JH and Chen F: Activation of NFAT signaling in podocytes causes glomerulosclerosis. J Am Soc Nephrol 21: 1657-1666, 2010.

45. Jin-Song H, Kayo H, Satoshi H, Kazuhiko F, Isao S and Yasuhiko T: Identification of cellular origin of type 1 collagen in glomeruli of rats with crescentic glomerulonephritis induced by anti-glomerular basement membrane antibody. Nephrol dial Transplant 16: 704-711, 2001.

46. Ayesha G and Peter JM: Transforming growth factor-beta and the glomerular filtration barrier. Kidney Res Clin Pract 32: 3-10, 2013.

47. Charles EP, Stewart F, Colin GM, Christopher OB, Michael L, Lee S, John M, Nicholas DH and Martin LH: Murine Denys–Drash syndrome: evidence of podocyte de-differentiation and systemic mediation of glomerulosclerosis. Human Molecular Genetics 12: 2379 - 2394, 2003.

48. Zana SN, Merica GD, Livia P, Marijan S, Dragan L, Tomislav F, Zvonimir P, Antonia B and Katarina V: The interstitial expression of alpha-smooth muscle actin in glomerulonephritis is associated with renal function. Med Sci Monit 18: 235-240, 2012.

49. Keisuke S, Kohei M, Takuji E, Tomoki M, Yuishi M, Rina O, Tsukasa T and Mitsuru O: Role of cathepsin L in idiopathic nephrotic syndrome in children. Medical Hypotheses 141: 1-3, 2020.

50. Samejima K, Nakatani K, Suzuki D, Asai O, Sakan H, Yoshimoto S, Yamaguchi Y, Matsui M, Akai Y, Toyoda M, Iwano M and Saito Y: Clinical significance of fibroblast-specific protein-1 expression on podocytes in patients with focal segmental glomerulosclerosis. Nephron Clin Pract 120: c1-c7, 2012.

51. Gerald RC and Eric NO: NFAT signaling. Cell 109: S67-S79, 2002

52. Zhang K, Sun W, Zhang L, Xu X, Wang J and Hong Y: miR-499 ameliorates podocyte injury by targeting calcineurin in minimal change disease. Am J Nephrol 47: 94-102, 2018.

53. Spurney RF: Non-immunologic actions of calcineurin inhibitors in proteinuric kidney diseases. Front Endocrinol (Lausanne) 5: 181, 2014.

54. Ding F, Li X, Li B, Guo J, Zhang Y and Ding J: Calpain-mediated cleavage of calcineurin in puromycin aminonucleoside-induced podocyte injury. PLoS One 11: e0155504, 2016.

55. Shen X, Jiang H, Ying M, Xie Z, Li X, Wang H, Zhao J, Lin C, Wang Y, Feng S, et al: Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models. Sci Rep 6: 32087, 2016.

56. Sipka S, Szücs K, Szántó S, Kovács I, Lakos G, Antal-Szalmás P, Szegedi G and Gergely P: Inhibition of calcineurin activity and protection against cyclosporine A induced cytotoxicity by prednisolone sodium succinate in human peripheral mononuclear cells. Immunopharmacology 48: 87-92, 2000.

57. Sipka S, Szucs K, Szántó S, Kovács I, Lakos G, Kiss E, Antal- Szalmás P, Szegedi G and Gergely P: Glucocorticosteroid dependent decrease in the activity of calcineurin in the peripheral blood mononuclear cells of patients with systemic lupus erythematosus. Ann Rheum Dis 60: 380-384, 2001.

58. Jun Z, Eishin Y, Yusuke W, Yutaka Y, Masaaki N, Huiping L, Zhenyun Q and Tadashi Y: Upregulation of nestin, vimentin, and desmin in rat podocytes in response to injury. European J Pathol 448: 485-492, 2006.

59. Nicole E, Kai RK, Jochen R, Dietmar U, Wilhelm K, Peter M and Karlhans E: Podocytes respond to mechanical stress In vitro. J Am Soc Nephrol 12: 413-422, 2001.

60. Michio N: Podocyte injury and its consequences. Kidney Int 89: 1221-1230 2016.

61. Barrett AJ and Kirschke H: Cathepsin B, cathepsin H and cathepsin L. Methods Enzymol 80: 535–561, 1981

62. Ayano K, Isao S, Teruo H, Miyuki T, Yu S, Katsuhiko A, Kazumi I, and Yusuke S: Expression of cathepsin L and its intrinsic inhibitors in glomeruli of rats with puromycin aminonucleoside nephrosis. J Hischem Cytochem 66: 863-877, 2018.

63. Jochen R, Jun O, Isao S, Katsuhiko A, Andreas H, Thomas MM, Karen H, Kazumi I, Eiki K, Jordan AK Yasuhiko T and Peter M: Podocyte migration during nephrotic syndrome requires a coordinated interplay between cathepsin L and alpha-3 integrin. J Bio Chem 279: 34827-34832, 2004.

64. Marjolein G, Angelique LWMMR, Henry D, Brigith W, Toin H van K, Frans GR, Ton JR, Jo HMB, Thomas R and Johan van der V: Cathepsin L is crucial for the development of early experimental diabetic nephropathy. Kidney Int 90: 1012-1022, 2016

65. Yingjian L, Young SK, Chunsun D, Lawrence PK, Xiaoyan W and Youhua L: Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am J Pathol 172: 299- 308, 2008.

66. Lina J, Hong C, Jie D, Aijun Y and Yingchao Z: Puromycin aminonucleoside‐induced podocyte injury is ameliorated by the Smad3 inhibitor SIS3. FEBS Open Bio 10: 1601-1611, 2020.

67. Chen-an C, Jyh-Chang H, Jinn-Yuh G, Jer-Chia T and Hung-Ghun C: TGF-beta 1 and integrin synergistically facilitate the differentiation of rat podocytes by increasing alpha-smooth muscle actin expression. Translational Res 148: 134-141, 2006.

68. Benito AY, Emmanuel C, Dieter H and Fokko J van der W: Regulation of endothelin-1 and transforming growth factor-beta 1 production in cultured proximal tubular cells by albumin and heparan sulphate glycosaminoglycans. Nephrol Dial Transplant 16: 1769-1775, 2001.

69. Morikawa Y, Takahashi N, Kamiyama K, Nishimori K, Nishikawa Y, Morita S, Kobayashi M, Fukushima S, Yokoi S, Mikami D, Kimura H, Kasuno K, Yashiki T, Naiki H, Hara M and Iwano M: Elevated levels of urinary extracellular vesicle fibroblast-specific protein 1 in patients with active crescentic glomerulonephritis. Nephron 141: 177-187, 2019.

70. Hidehiko T, Masao S and Fujio K: Effect of gamma-aminobutyric acid (GABA) on normotensive or hypertensive rats and men. Japanese J Physiol. 11: 89-95, 1961.

71. Funk J, Ott V, Herrmann A, Rapp W, Raab S, Riboulet W, Vandjour A, Hainaut E, Benardeau A, Singer T, et al: Semiautomated quantitative image analysis of glomerular immunohistochemistry markers desmin, vimentin, podocin, synaptopodin and WT-1 in acute and chronic rat kidney disease models. Histochem Cell Biol 145: 315-326, 2016.

72. Masaomi N, Yuko I, Nobuteru U, Reiko I, Takeo S, Satoshi S, Kiyoshi K, Charles van Y de S and Toshio M: In a type 2 diabetic nephropathy rat model, the improvement of obesity by a low calorie diet reduces oxidative/carbonyl stress and prevents diabetic nephropathy. Nephrol Dial Transplant 20: 2661-2669, 2005.

73. Shzuyo T, Yurie Y, Tohru Y, Atsushi M, Daisuke K, Naomi K and Yoichi K: Characterization of fatty acid profile in the liver of SHR/NDmcr-cp (cp/cp) rats, a model of the metabolic syndrome. Biol Pharm Bull 35: 184-191, 2012.

74. Alimirzaie S, Bagherzadeh M and Akbari MR: Liquid biopsy in breast cancer: A comprehensive review. Clin Genet 95: 643-660, 2019.

75. Cui S, Cheng Z, Qin W and Jiang L: Exosomes as a liquid biopsy for lung cancer. Lung Cancer 116: 46-54, 2018.

76. Nuzhat Z, Kinhal V, Sharma S, Rice GE, Joshi V and Salomon C: Tumour-derived exosomes as a signature of pancreatic cancer - liquid biopsies as indicators of tumour progression. Oncotarget 8: 17279- 17291, 2017.

77. Perez-Hernandez J, Forner MJ, Pinto C, Chaves FJ, Cortes R and Redon J: Increased urinary exosomal microRNAs in patients with systemic lupus erythematosus. PLoS One 10: e0138618, 2015.

78. Lv LL, Cao YH, Ni HF, Xu M, Liu D, Liu H, Chen PS and Liu BC: MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol 305: F1220-1227, 2013.

79. Chun-Yan L, Zi-Yi Z, Tian-Lin Y, Yi-Li W, Bao L, Jiao L and Wei-Jun D: Liquid biopsy biomarkers of renal interstitial fibrosis based on urinary exosome. Exp Mol Pathol 105: 223-228, 2018.

80. Perez-Hernandez J, Olivares D, Forner MJ, Ortega A, Solaz E, Martinez F, Chaves FJ, Redon J and Cortes R: Urinary exosome miR- 146a is a potential marker of albuminuria in essential hypertension. J Transl Med 16: 228, 2018.

81. Abe H, Sakurai A, Ono H, Hayashi S, Yoshimoto S, Ochi A, Ueda S, Nishimura K, Shibata E, Tamaki M, et al: Urinary exosomal mRNA of WT1 as diagnostic and prognostic biomarker for diabetic nephropathy. J Med Invest 65: 208-215, 2018.

82. Feng Y, Lv LL, Wu WJ, Li ZL, Chen J, Ni HF, Zhou LT, Tang TT, Wang FM, Wang B, et al: Urinary exosomes and exosomal CCL2 mRNA as biomarkers of active histologic injury in IgA nephropathy. Am J Pathol 188: 2542-2552, 2018.

83. Birgitte SP, Kristine RJ, Rikke B, Birgitte HF, Torben RR, Peter M, Kim V, Malene MJ and Boe SS: Exosomal proteins as diagnostic biomarkers in lung cancer. J Thoracic Oncol 11: 1701-1710, 2016.

84. https://clinicaltrials.gov/ct2/show/NCT04529915

85. Mohsen N, Shiva K, Shiva S, Mostafa RT, Dorothea R and Roman AZ: The novel diagnostic biomarkers for focal segmental glomerulosclerosis. Inter J Nephrol: 574261, 2014.

86. Shiva S, Shiva K, Mohsen N, Dorothea R, Mostafa RT, Mahmud P, Roman AZ: Diognostic urinary proteome profile for immunoglobulin A nephropathy. Iranian J Kidney Diseases 9: 239-248, 2015.

87. Taku M, Melanie O, Mieko O, Vivian T, Cindy Y and Masato M: Development of glomerulus-, tubule-, and collecting duct-specific mRNA assay in human urinary exosomes and microvesicles. PLoS One 9: e109074, 2014.

88. 平⽅ 秀樹: 腎⽣検ガイドブック ―より安全な腎⽣検を施⾏するために― 第 1 章 腎⽣検の適応と禁忌,⽇腎会誌 47 (2): 73-75, 2005.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る