リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Unusual effects of a nanoporous gold substrate on cell adhesion and differentiation because of independent multi-branch signaling of focal adhesions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Unusual effects of a nanoporous gold substrate on cell adhesion and differentiation because of independent multi-branch signaling of focal adhesions

Wu, Peizheng Yanagi, Kazuya Yokota, Kazuki Hakamada, Masataka Mabuchi, Mamoru 京都大学 DOI:10.1007/s10856-023-06760-0

2023.10.26

概要

A variety of cell behaviors, such as cell adhesion, motility, and fate, can be controlled by substrate characteristics such as surface topology and chemistry. In particular, the surface topology of substrates strongly affects cell behaviors, and the topological spacing is a critical factor in inducing cell responses. Various works have demonstrated that cell adhesion was enhanced with decreasing topological spacing although differentiation progressed slowly. However, there are exceptions, and thus, correlations between topological spacing and cell responses are still debated. We show that a nanoporous gold substrate affected cell adhesion while it neither affected osteogenic nor adipogenic differentiation. In addition, the cell adhesion was reduced with decreasing pore size. These do not agree with previous findings. A focal adhesion (FA) is an aggregate of modules comprising specific proteins such as FA kinase, talin, and vinculin. Therefore, it is suggested that because various extracellular signals can be independently branched off from the FA modules, the unusual effects of nanoporous gold substrates are related to the multi-branching of FAs.

この論文で使われている画像

参考文献

1. Murphy WL, McDevitt TC, Engler AJ. Materials as stem cell

regulators. Nat Mater. 2014;13:547–57. https://doi.org/10.1038/

nmat3937

2. Chen W, Shao Y, Li X, Zhao G, Fu J. Nanotopographical surfaces

for stem cell fate control: engineering mechanobiology from the

bottom. Nano Today. 2014;9:759–84. https://doi.org/10.1016/j.na

ntod.2014.12.002

3. Klymov A, Prodanov L, Lamers E, Jansen JA, Walboomers XF.

Understanding the role of nano-topography on the surface of a

bone-implant. Biomater Sci. 2013;1:135–51. https://doi.org/10.

1039/c2bm00032f

4. Dalby MJ, Gadegaard N, Oreffo ROC. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate.

Nat Mater. 2014;13:558–69. https://doi.org/10.1038/nmat3980

5. Ventre M, Causa F, Netti PA. Determinants of cell-material

crosstalk at the interface: towards engineering of cell instructive

materials. J R Soc Interface. 2012;9:2017–32. https://doi.org/10.

1098/rsif.2012.0308

6. Zhang K, Xiao X, Wang X, Fan Y, Li X. Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate,

updated applications in tissue engineering, and improvement

strategies. J Mater Chem B Mater Biol Med. 2019;7:7090–109.

https://doi.org/10.1039/c9tb01682a

7. Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH,

Cadarso VJ. (2022) The Bumpy road to stem cell therapies:

rational design of surface topographies to dictate stem cell

mechanotransduction and fate. ACS Appl Mater Interfaces 2020.

https://doi.org/10.1021/acsami.1c22109

8. Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and

vitality: TiO2 nanotube diameter directs cell fate. Nano Lett.

2007;7:1686–91. https://doi.org/10.1021/nl070678d

9. Dalby MJ, Giannaras D, Riehle MO, Gadegaard N, Affrossman S,

Curtis AS. Rapid fibroblast adhesion to 27 nm high polymer

demixed nano-topography. Biomaterials. 2004;25:77–83. https://

doi.org/10.1016/s0142-9612(03)00475-7

10. Huang J, Grater SV, Corbellini F, Rinck S, Bock E, Kemkemer R,

et al. Impact of order and disorder in RGD nanopatterns on cell

adhesion. Nano Lett. 2009;9:1111–6. https://doi.org/10.1021/

nl803548b

11. Chen W, Villa-Diaz LG, Sun Y, Weng S, Kim JK, Lam RH, et al.

Nanotopography influences adhesion, spreading, and self-renewal

of human embryonic stem cells. ACS Nano. 2012;6:4094–103.

https://doi.org/10.1021/nn3004923

12. Oh S, Brammer KS, Li YS, Teng D, Engler AJ, Jin S. et al. Stem

cell fate dictated solely by altered nanotube dimension. Proc Natl

Acad Sci USA. 2009;106:2130–5. https://doi.org/10.1073/pnas.

0813200106.

13. Xia J, Yuan Y, Wu H, Huang Y, Weitz DA. Decoupling the

effects of nanopore size and surface roughness on the attachment,

spreading and differentiation of bone marrow-derived stem cells.

Biomaterials. 2020;248:120014. https://doi.org/10.1016/j.bioma

terials.2020.120014

14. Arnold M, Cavalcanti-Adam EA, Glass R, Blümmel J, Eck W,

Kantlehner M, et al. Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem. 2004;5:383–8.

https://doi.org/10.1002/cphc.200301014

15. Lee KY, Alsberg E, Hsiong S, Comisar W, Linderman J, Ziff R,

et al. Nanoscale adhesion ligand organization regulates osteoblast

proliferation and differentiation. Nano Lett. 2004;4:1501–6.

https://doi.org/10.1021/nl0493592

16. Abagnale G, Steger M, Nguyen VH, Hersch N, Sechi A, Joussen

S, et al. Surface topography enhances differentiation of

mesenchymal stem cells towards osteogenic and adipogenic

lineages. Biomaterials. 2015;61:316–26. https://doi.org/10.1016/j.

biomaterials.2015.05.030

17. Nouri-Goushki M, Angeloni L, Modaresifar K, Minneboo M,

Boukany PE, Mirzaali MJ, et al. 3D-printed submicron patterns

reveal the interrelation between cell adhesion, cell mechanics, and

osteogenesis. ACS Appl Mater Interfaces. 2021;13:33767–81.

https://doi.org/10.1021/acsami.1c03687

18. Swanson WB, Omi M, Zhang Z, Nam HK, Jung Y, Wang G, et al.

Macropore design of tissue engineering scaffolds regulates

mesenchymal stem cell differentiation fate. Biomaterials.

2021;272:120769.

https://doi.org/10.1016/j.biomaterials.2021.

120769

19. Keselowsky BG, Collard DM, García AJ. Surface chemistry

modulates focal adhesion composition and signaling through

changes in integrin binding. Biomaterials. 2004;25:5947–54.

https://doi.org/10.1016/j.biomaterials.2004.01.062

20. Barrias CC, Martins MC, Almeida-Porada G, Barbosa MA,

Granja PL. The correlation between the adsorption of adhesive

proteins and cell behaviour on hydroxyl-methyl mixed selfassembled monolayers. Biomaterials. 2009;30:307–16. https://doi.

org/10.1016/j.biomaterials.2008.09.048

21. Lin M, Wang H, Ruan C, Xing J, Wang J, Li Y, et al. Adsorption

force of fibronectin on various surface chemistries and its vital

role in osteoblast adhesion. Biomacromolecules. 2015;16:973–84.

https://doi.org/10.1021/bm501873g

22. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity

directs stem cell lineage specification. Cell. 2006;126:677–89.

https://doi.org/10.1016/j.cell.2006.06.044

23. Jiang L, Sun Z, Chen X, Li J, Xu Y, Zu Y, et al. Cells sensing

mechanical cues: stiffness influences the lifetime of cellextracellular matrix interactions by affecting the loading rate.

Journal of Materials Science: Materials in Medicine (2023)34:54

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

ACS Nano. 2016;10:207–17. https://doi.org/10.1021/acsnano.

5b03157

Yu J, Huang J, Jansen JA, Xiong C, Walboomers XF. Mechanochemical mechanism of integrin clustering modulated by

nanoscale ligand spacing and rigidity of extracellular substrates. J

Mech Behav Biomed Mater. 2017;72:29–37. https://doi.org/10.

1016/j.jmbbm.2017.04.018

Luo B-H, Springer TA. Integrin structures and conformational

signaling. Curr Opin Cell Biol. 2006;18:579–86. https://doi.org/

10.1016/j.ceb.2006.08.005

Hynes RO. Integrins: bidirectional, allosteric signaling machines.

Cell. 2002;110:673–87. https://doi.org/10.1016/s0092-8674(02)

00971-6

Romero S, Le Clainche C, Gautreau AM. Actin polymerization

downstream of integrins: signaling pathways and mechanotransduction. Biochem J. 2020;477:1–21. https://doi.org/10.

1042/BCJ20170719

Sun Z, Guo SS, Fässler R. Integrin-mediated mechanotransduction. J Cell Biol. 2016;215:445–56. https://doi.org/10.1083/jcb.

201609037

Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol.

2019;20:457–73. https://doi.org/10.1038/s41580-019-0134-2

Chapman CAR, Wang L, Chen H, Garrison J, Lein PJ, Seker E

(2017) Nanoporous gold biointerfaces: modifying nanostructure to

control neural cell coverage and enhance electrophysiological

recording performance. Adv Funct Mater 27. https://doi.org/10.

1002/adfm.201604631

Chapman CA, Chen H, Stamou M, Lein PJ, Seker E.

Mechanisms of Reduced Astrocyte Surface Coverage in Cortical Neuron-Glia Co-cultures on Nanoporous Gold Surfaces.

Cell Mol Bioeng. 2016;9:433–42. https://doi.org/10.1007/

s12195-016-0449-4

Seker E, Berdichevsky Y, Staley KJ, Yarmush ML.

Microfabrication-compatible nanoporous gold foams as biomaterials for drug delivery. Adv Healthc Mater. 2012;1:172–6.

https://doi.org/10.1002/adhm.201200002

Chapman CA, Chen H, Stamou M, Biener J, Biener MM, Lein PJ,

et al. Nanoporous gold as a neural interface coating: effects of

topography, surface chemistry, and feature size. ACS Appl Mater

Interfaces. 2015;7:7093–7100. https://doi.org/10.1021/acsami.

5b00410

Hampe AE, Li Z, Sethi S, et al. (2018) A Microfluidic Platform to

Study Astrocyte Adhesion on Nanoporous Gold Thin Films.

Nanomaterials (Basel) 8. https://doi.org/10.3390/nano8070452

Tan YH, Terrill SE, Paranjape GS, Stine KJ, Nichols MR. The

influence of gold surface texture on microglia morphology and

activation. Biomater Sci. 2014;2:110–20. https://doi.org/10.1039/

c3bm60096c

Hakamada M, Taniguchi S, Mabuchi M. Antibacterial activity of

nanoporous gold against Escherichia coli and Staphylococcus

epidermidis. J Mater Res. 2017;32:1787–95. https://doi.org/10.

1557/jmr.2017.157

Deguchi S, Hakamada M, Shingu J, Sakakibara S, Sugiyama H,

Mabuchi M. Inactivation of HeLa cells on nanoporous gold.

Materialia. 2019;7:100370. https://doi.org/10.1016/j.mtla.2019.

100370

Deguchi S, Yokoyama R, Maki T, Tomita K, Osugi R, Hakamada

M, et al. A new mechanism for reduced cell adhesion: Adsorption

dynamics of collagen on a nanoporous gold surface. Mater Sci

Eng C Mater Biol Appl. 2021;119:111461. https://doi.org/10.

1016/j.msec.2020.111461

Miyazawa N, Hakamada M, Mabuchi M. Antimicrobial mechanisms due to hyperpolarisation induced by nanoporous Au. Sci Rep.

2018;8:3870. https://doi.org/10.1038/s41598-018-22261-5

Page 15 of 16 54

40. Miyazawa N, Sakakibara S, Hakamada M, Mabuchi M. Electronic

origin of antimicrobial activity owing to surface effect. Sci Rep.

2019;9:1091. https://doi.org/10.1038/s41598-018-37645-w

41. Deguchi S, Kato A, Wu P, Hakamada M, Mabuchi M. Heterogeneous role of integrins in fibroblast response to small cyclic

mechanical stimulus generated by a nanoporous gold actuator.

Acta Biomater. 2021;121:418–30. https://doi.org/10.1016/j.actbio.

2020.12.014

42. Berginski ME, Vitriol EA, Hahn KM, Gomez SM. Highresolution quantification of focal adhesion spatiotemporal

dynamics in living cells. PLoS One. 2011;6:e22025. https://doi.

org/10.1371/journal.pone.0022025

43. Horzum U, Ozdil B, Pesen-Okvur D. Step-by-step quantitative

analysis of focal adhesions. MethodsX. 2014;1:56–59. https://doi.

org/10.1016/j.mex.2014.06.004

44. Cahn JW, Hilliard JE. Free energy of a nonuniform system. I.

Interfacial Free Energy. J Chem Phys. 1958;28:258–67. https://

doi.org/10.1063/1.1744102

45. Peng X, Huang J, Xiong C, Fang J. Cell adhesion nucleation

regulated by substrate stiffness: a Monte Carlo study. J Biomech.

2012;45:116–22. https://doi.org/10.1016/j.jbiomech.2011.09.013

46. Zhao T, Li Y, Dinner AR. How focal adhesion size depends on

integrin affinity. Langmuir. 2009;25:1540–6. https://doi.org/10.

1021/la8026804

47. Coyer SR, Singh A, Dumbauld DW, Calderwood DA, Craig SW,

Delamarche E, et al. Nanopatterning reveals an ECM area

threshold for focal adhesion assembly and force transmission that

is regulated by integrin activation and cytoskeleton tension. J Cell

Sci. 2012;125:5110–23. https://doi.org/10.1242/jcs.108035

48. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G,

Sabanay I, et al. Force and focal adhesion assembly: a close

relationship studied using elastic micropatterned substrates. Nat

Cell Biol. 2001;3:466–72. https://doi.org/10.1038/35074532

49. Brinkerhoff CJ, Linderman JJ. Integrin dimerization and ligand

organization: key components in integrin clustering for cell

adhesion. Tissue Eng. 2005;11:865–76. https://doi.org/10.1089/

ten.2005.11.865

50. Bidone TC, Skeeters AV, Oakes PW, Voth GA. Multiscale model

of integrin adhesion assembly. PLoS Comput Biol.

2019;15:e1007077. https://doi.org/10.1371/journal.pcbi.1007077

51. Li H, Deng Y, Sun K, Yang H, Liu J, Wang M, et al. Structural

basis of kindlin-mediated integrin recognition and activation. Proc

Natl Acad Sci USA. 2017;114:9349–54. https://doi.org/10.1073/

pnas.1703064114

52. Pujari-Palmer S, Lind T, Xia W, Tang L, Karlsson Ott M. Controlling osteogenic differentiation through nanoporous alumina. J

Biomater Nanobiotechnol. 2014;05:98–104. https://doi.org/10.

4236/jbnb.2014.52012

53. Zhang M, Sun Q, Liu Y, Chu Z, Yu L, Hou Y, et al. Controllable

ligand spacing stimulates cellular mechanotransduction and promotes stem cell osteogenic differentiation on soft hydrogels.

Biomaterials. 2021;268:120543. https://doi.org/10.1016/j.bioma

terials.2020.120543

54. Xie J, Zhang D, Zhou C, Yuan Q, Ye L, Zhou X. Substrate

elasticity regulates adipose-derived stromal cell differentiation

towards osteogenesis and adipogenesis through β-catenin transduction. Acta Biomater. 2018;79:83–95. https://doi.org/10.1016/

j.actbio.2018.08.018

55. Hakamada M, Yuasa M, Mabuchi M. Anomalous mechanical

characteristics of Au/Cu nanocomposite processed by Cu electroplating. Phil Mag. 2015;95:1499–510. https://doi.org/10.1080/

14786435.2015.1038333

56. Cavalcanti-Adam EA. Building nanobridges for cell adhesion. Nat

Mater. 2019;18:1272–3. https://doi.org/10.1038/s41563-0190537-7

54 Page 16 of 16

Journal of Materials Science: Materials in Medicine (2023)34:54

57. Stutchbury B, Atherton P, Tsang R, Wang DY, Ballestrem C.

Distinct focal adhesion protein modules control different aspects

of mechanotransduction. J Cell Sci. 2017;130:1612–24. https://

doi.org/10.1242/jcs.195362

58. Giancotti FG, Ruoslahti E. Integrin signaling. Science.

1999;285:1028–32.

https://doi.org/10.1126/science.285.5430.

1028

59. Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci.

2003;116:1409–16. https://doi.org/10.1242/jcs.00373

60. Ozaki I, Hamajima H, Matsuhashi S, Mizuta T. Regulation of

TGF-β1-induced pro-apoptotic signaling by growth factor receptors and extracellular matrix receptor integrins in the liver. Front

Physiol. 2011;2:78. https://doi.org/10.3389/fphys.2011.00078

61. Boppart MD, Mahmassani ZS. Integrin signaling: linking

mechanical stimulation to skeletal muscle hypertrophy. Am J

Physiol Cell Physiol. 2019;317:C629–C641. https://doi.org/10.

1152/ajpcell.00009.2019

62. Tamura M, Gu J, Tran H, Yamada KM. PTEN gene and integrin

signaling in cancer. J Natl Cancer Inst. 1999;91:1820–8. https://

doi.org/10.1093/jnci/91.21.1820

63. Legate KR, Wickström SA, Fässler R. Genetic and cell biological

analysis of integrin outside-in signaling. Genes Dev.

2009;23:397–418. https://doi.org/10.1101/gad.1758709

64. Ross RS. Molecular and mechanical synergy: cross-talk between

integrins and growth factor receptors. Cardiovasc Res.

2004;63:381–90. https://doi.org/10.1016/j.cardiores.2004.04.027

65. Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for

directing the differentiation of mesenchymal stem cells. Proc Natl

Acad Sci USA. 2010;107:4872–7. https://doi.org/10.1073/pnas.

0903269107

66. Shih YR, Tseng K-F, Lai H-Y, Lin CH, Lee OK. Matrix stiffness

regulation of integrin-mediated mechanotransduction during

osteogenic differentiation of human mesenchymal stem cells. J

Bone Miner Res. 2011;26:730–8. https://doi.org/10.1002/jbmr.

278

67. Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR,

Pittenger MF. Adult human mesenchymal stem cell differentiation

to the osteogenic or adipogenic lineage is regulated by mitogenactivated protein kinase. J Biol Chem. 2000;275:9645–52. https://

doi.org/10.1074/jbc.275.13.9645

68. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell

shape, cytoskeletal tension, and RhoA regulate stem cell lineage

commitment. Dev Cell. 2004;6:483–95. https://doi.org/10.1016/

s1534-5807(04)00075-9

69. Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE.

Focal adhesion kinase signaling pathways regulate the osteogenic

differentiation of human mesenchymal stem cells. Exp Cell Res.

2007;313:22–37. https://doi.org/10.1016/j.yexcr.2006.09.013

70. Khatiwala CB, Kim PD, Peyton SR, Putnam AJ. ECM compliance

regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J Bone Miner Res. 2009;24:886–98.

https://doi.org/10.1359/jbmr.081240

71. Xu B, Ju Y, Song G. Role of p38, ERK1/2, focal adhesion kinase,

RhoA/ROCK and cytoskeleton in the adipogenesis of human

mesenchymal stem cells. J Biosci Bioeng. 2014;117:624–31.

https://doi.org/10.1016/j.jbiosc.2013.10.018

72. Schnittert J, Bansal R, Storm G, Prakash J. Integrins in wound

healing, fibrosis and tumor stroma: high potential targets for

therapeutics and drug delivery. Adv Drug Deliv Rev.

2018;129:37–53. https://doi.org/10.1016/j.addr.2018.01.020

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る