リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Design and development of (Ti, Zr, Hf)-Al based medium entropy alloys and high entropy alloys」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Design and development of (Ti, Zr, Hf)-Al based medium entropy alloys and high entropy alloys

Nagase, Takeshi 大阪大学

2022.01.15

概要

The design and development of TiZrHfAl medium entropy alloy (MEA), and the TiZrHfAlNb0.2 and TiZrHfAlV0.2 high entropy alloys (HEAs) is described. The combination of 4th subgroup elements (Ti, Zr, and Hf) with Al is discussed based on the periodic table and taxonomy of HEAs. The alloys were designed using alloy parameters for HEAs, predicted ground state diagrams from the Materials Project, and the calculation of phase diagrams (CALPHAD). Rapid solidification was effective to suppress the formation of intermetallic compounds, resulting in BCC/B2 phase formation. Significant differences in the constituent phases and Vickers hardness between ingots and melt-spun ribbons were found among the TiZrHfAl MEA, TiZrHfAlNb0.2, and TiZrHfAlV0.2 HEAs.

参考文献

[1] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218, https://doi.org/10.1016/j.msea.2003.10.257.

[2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303, https://doi.org/10.1002/adem.200300567.

[3] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Curr. Sci. 85 (2003) 1404–1406. https://www.currentscience.ac.in/Downloads/article_id_085_10_1 404_1406_0.pdf.

[4] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liew, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10 (2008) 534–538, https:// doi.org/10.1002/adem.200700240.

[5] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511, https://doi.org/10.1016/j. actamat.2016.08.081.

[6] B.S. Murty, J.-W. Yeh, S. Ranganathan, High-Entropy Alloys, first ed., Elsevier, 2014.

[7] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys, Fundamentals and Applications, first ed., Springer, 2016.

[8] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153–1158, https://doi.org/10.1126/science.1254581.

[9] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual- phase alloys overcome the strength-ductility trade-off, Nature 534 (2016) 227–231, https://doi.org/10.1038/nature17981.

[10] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high- entropy alloys, Intermetallics 18 (2010) 1758–1765, https://doi.org/10.1016/j. intermet.2010.05.014.

[11] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19 (2011) 698–706, https://doi.org/10.1016/j. intermet.2011.01.004.

[12] O.N. Senkov, J.M. Scotta, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd. 509 (2011) 6043–6048, https://doi.org/10.1016/j. jallcom.2011.02.171.

[13] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C. F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci. 47 (2012) 4062–4074, https://doi.org/10.1007/ s10853-012-6260-2.

[14] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and exploration of refractory high entropy alloys-A review, J. Mater. Res. 33 (2018) 3092–3128, https://doi.org/10.1557/jmr.2018.153.

[15] M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, T. Nakano, Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials, Scripta Mater. 129 (2017) 65–68, https://doi.org/10.1016/j.scriptamat.2016.10.028.

[16] S.P. Wang, J. Xu, TiZrNbTaMo high-entropy alloy designed for orthopedic implants: as-cast microstructure and mechanical properties, Mater. Sci. Eng. C 73 (2017) 80–89, https://doi.org/10.1016/j.msec.2016.12.057.

[17] T. Nagase, M. Todai, T. Hori, T. Nakano, Microstructure of equiatomic and non- equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials, J. Alloys Compd. 753 (2018) 412–421, https://doi.org/10.1016/j.jallcom.2018.04.082.

[18] Y. Yuan, Y. Wu, Z. Yang, X. Liang, Z. Lei, H. Huang, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Formation, structure and properties of biocompatible TiZrHfNbTa high- entropy alloys, Mater. Res. Lett. 7 (2019) 225–231, https://doi.org/10.1080/21663831.2019.1584592.

[19] T. Hori, T. Nagase, M. Todai, A. Matsugaki, T. Nakano, Development of non- equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials, Scripta Mater. 172 (2019) 83–87, https://doi.org/10.1016/j.scriptamat.2019.07.011.

[20] T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama, T. Nakano, Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials, Mater. Sci. Eng. C 107 (2020), 110322, https://doi.org/10.1016/j. msec.2019.110322.

[21] T. Ishimoto, R. Ozasa, K. Nakano, M. Weinmann, C. Schnitter, M. Stenzel, A. Matsugaki, T. Nagase, T. Matsuzaka, M. Todai, H.S. Kim, T. Nakano, Development of TiNbTaZrMo bio–high entropy alloy (BioHEA) super–solid solution by selective laser melting, and its improved mechanical property and biocompatibility, Scripta Mater. 194 (2021), 113658, https://doi.org/10.1016/j.scriptamat.2020.113658.

[22] K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett. 3 (2015) 95–99, https://doi.org/10.1080/21663831.2014.985855.

[23] R. Feng, M.C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J.A. Hawk, Y. Zhang, P. K. Liaw, Design of light-weight high-entropy alloys, Entropy 18 (2016) 333, https://doi.org/10.3390/e18090333.

[24] Y. Qiu, Y.J. Hu, A. Taylor, M.J. Styles, R.K.W. Marceau, A.V. Ceguerra, M. A. Gibson, Z.K. Liu, H.L. Fraser, N. Birbilis, A lightweight single-phase AlTiVCr compositionally complex alloy, Acta Mater. 123 (2017) 115–124, https://doi.org/ 10.1016/j.actamat.2016.10.037.

[25] R. Feng, M.C. Gao, C. Zhang, W. Guo, J.D. Poplawsky, F. Zhang, J.A. Hawk, J. C. Neuefeind, Y. Ren, P.K. Liaw, Phase stability and transformation in a light- weight high-entropy alloy, Acta Mater. 146 (2018) 280–293, https://doi.org/10.1016/j.actamat.2017.12.061.

[26] T. Nagase, A. Terayama, T. Nagaoka, N. Fuyama, T. Sakamoto, Alloy design and fabrication of ingots of Al-Mg-Li-Ca light-weight medium entropy alloys, Mater. Trans. 61 (2020) 1369–1380, https://doi.org/10.2320/matertrans.F-M2020825.

[27] K.J. Laws, C. Crosby, A. Sridhar, P. Conway, L.S. Koloadin, M. Zhao, S. Aron-Dine, L.C. Bassman, High entropy brasses and bronzes - microstructure, phase evolution and properties, J. Alloys Compd. 650 (2015) 949–961, https://doi.org/10.1016/j.jallcom.2015.07.285.

[28] T. Nagase, A. Shibata, M. Matsumuro, M. Takemura, S. Semboshi, Alloy design and fabrication of ingots in Cu-Zn-Mn-Ni-Sn high-entropy and Cu-Zn-Mn-Ni medium- entropy brasses, Mater. Des. 181 (2019), 107900, https://doi.org/10.1016/j. matdes.2019.107900.

[29] L. Rogal, P. Bobrowski, F. Ko¨rmann, S. Divinski, F. Stein, B. Grabowski, Computationally-driven engineering of sublattice ordering in a hexagonal AlHfScTiZr high entropy alloy, Sci. Rep. 7 (2017) 2209, https://doi.org/10.1038/ s41598-017-02385-w.

[30] G.-Y. Gan, L. Ma, D.-M. Luo, S. Jiang, B.-Y. Tang, Influence of Al substitution for Sc on thermodynamic properties of HCP high entropy alloy Hf0.25Ti0.25Zr0.25Sc0.25- xAlx from first-principles investigation, Mater. Des. 593 (2020), 412272, https://doi.org/10.1016/j.physb.2020.412272.

[31] S.G. Steineman, in: G.D. Winter, J.L. Leray, K. de Groot (Eds.), Corrosion of Surgical Implants-In Vivo and Vitro Tests, Evaluation of Biomaterials, John Willey & Sons Ltd., 1980.

[32] M.F. Semlitsch, H.W. Robert, M.S. RolfSchon, Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy, Biomaterials 13 (1992) 781–788, https://doi.org/10.1016/0142-9612(92)90018-J.

[33] Y. Okazaki, Development of Ti alloy for medical implants, J. Jpn. Inst. Light Metals 49 (1999) 613–620, https://doi.org/10.2464/jilm.49.613.

[34] K. Maehara, K. Doi, T. Matsushita, Y. Sasaki, Application of vanadium-free titanium alloys to artificial hip joints, Mater. Trans. 43 (2002) 2936–2942, https:// doi.org/10.2320/matertrans.43.2936.

[35] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi- component alloys, Mater. Chem. Phys. 132 (2012) 233–238, https://doi.org/ 10.1016/j.matchemphys.2011.11.021.

[36] Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, M.C. Gao, Guidelines in predicting phase formation of high-entropy alloys, MRS Commun 4 (2014) 57–62, https://doi.org/10.1557/mrc.2014.11.

[37] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. 46 (2005) 2817–2829, https://doi.org/10.2320/matertrans.46.2817.

[38] U.R. Kattner, J.-C. Lin, Y.A. Chang, Thermodynamic assessment and calculation of the Ti-Al system, Metall. Trans. A 23 (1992) 2081–2090, https://doi.org/10.1007/ BF02646001.

[39] I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, K. Ishida, Phase equilibria in the Ti-Al binary system, Acta Mater. 48 (2000) 3113–3123, https:// doi.org/10.1016/S1359-6454(00)00118-X.

[40] M. Alatalo, M. Weinert, R.E. Watson, Stability of Zr-Al alloys, Phys. Rev. B 57 (1998) R2009–R2012, https://doi.org/10.1103/PhysRevB.57.R2009.

[41] T. Wang, Z. Jin, J.-C. Zhao, Thermodynamic assessment of the Al-Zr binary system, J. Phase Equil. 22 (2001) 544–551, https://doi.org/10.1007/s11669-001-0072-4.

[42] T. Wang, Z. Jin, J.-C. Zhao, Thermodynamic assessment of the Al-Hf binary system, J. Phase Equil. 23 (2002) 416–423, https://doi.org/10.1361/105497102770331361.

[43] L. L. Rokhlin, N. R. Bochvar, T. V. Dobatkina, V. G. Leontev: Al-rich portion of the Al-Hf phase diagram, Russ. Metall., 2009 (2009) 258-262., https://doi.org/ 10.1134/S0036029509030124.

[44] H. Okamoto, Al-V (Aluminum-Vanadium), J. Phase Equil. 33 (2012) 491, https:// doi.org/10.1007/s11669-012-0090-4.

[45] C. Colinet, A. Pasturel, D. Nguyen Manh, D.G. Pettifor, P. Miodownik, Phase- stability study of the Al-Nb system, Phys. Rev. B 56 (1997) 552–565, https://doi. org/10.1103/PhysRevB.56.552.

[46] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: the Materials Project: a materials genome approach to accelerating materials innovation, Apl. Mater. 1 (2013) 1, https://doi.org/10.1063/1.4812323, 011002.

[47] T. Nagase, M. Suzuki, T. Tanaka, Formation of amorphous phase with crystalline globules in Fe-Cu-Nb-B immiscible alloys, J. Alloys Compd. 619 (2015) 267–274, https://doi.org/10.1016/j.jallcom.2014.08.229.

[48] T. Nagase, P.D. Rack, J.H. Noh, T. Egami, In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM), Intermetallics 59 (2015) 32–42, https://doi.org/10.1016/j.intermet.2014.12.007.

[49] T. Nagase, M. Todai, T. Nakano, Development of Co-Cr-Mo-Fe-Mn-W and Co-Cr- Mo-Fe-Mn-W-Ag high-entropy alloys based on Co-Cr-Mo alloys, Mater. Trans. 61 (2020) 567–576, https://doi.org/10.2320/matertrans.MT-MK2019002.

[50] T. Nagase, M. Todai, T. Nakano, Development of Ti-Zr-Hf-Y-La high-entropy alloys with dual hexagonal-close-packed structure, Scripta Mater. 186 (2020) 242–246, https://doi.org/10.1016/j.scriptamat.2020.05.033.

[51] T. Nagase, M. Todai, T. Nakano, Liquid phase separation in Ag-Co-Cr-Fe-Mn-Ni, Co- Cr-Cu-Fe-Mn-Ni and Co-Cr-Cu-Fe-Mn-Ni-B high entropy alloys for biomedical application, Crystals 10 (2020) 527, https://doi.org/10.3390/cryst10060527.

[52] http://www.factsage.com/ assessed, August 25th, 2021.

[53] SGTE. http://www.crct.polymtl.ca/fact/documentation/SGTE2017/SGTE2017_Figs.htm (assessed, 2017. (Accessed 20 January 2020).

[54] E.W. Collings, Materials Properties Handbook Titanium Alloys, ASM International, 1994, p. 10.

[55] K. Ishida, Schaeffler-type phase diagram of Ti-based alloys, Metall. Mater. Trans. 48 (2017) 4990–4998, https://doi.org/10.1007/s11661-017-4218-3.

[56] T. Nagase, K. Mizuuchi, T. Nakano, Solidification microstructures of the ingots obtained by arc melting and cold crucible levitation melting in TiNbTaZr medium- entropy alloy and TiNbTaZrX (X = V, Mo, W) high-entropy alloys, Entropy 21 (2019) 483, https://doi.org/10.3390/e21050483.

[57] T. Nagase, M. Takemura, M. Matsumuro, T. Maruyama, Solidification microstructure of AlCoCrFeNi2.1 eutectic high entropy alloy ingots, Mater. Trans. 59 (2018) 255–264, https://doi.org/10.2320/matertrans.F-M2017851.

[58] R.W. Cahn, Physical Metallurgy, third ed., Elsevier Science Publishers, 1996, ISBN 9780444898753.

[59] H. Miyake, A. Furusawa, T. Ariyasu, A. Okada, Optical measurement of cooling rate during splat cooling process, J. Jpn. Foundrymen’s Soc. 66 (1994) 734–738, https://doi.org/10.11279/imono.66.10_734.

[60] C.G. Wilson, D. Sams, The crystal structure of Zr2Al, Acta Crystallogr. 14 (1961) 71–72, https://doi.org/10.1107/S0365110X6100022X.

[61] M. Pang, Y. Zhan, W. Yang, C. Li, Y. Du, The phase relationships in the Al-Zr-Ho ternary system at 773 K, J. Alloys Compd. 508 (2010) 79–84, https://doi.org/ 10.1016/j.jallcom.2010.08.058.

[62] J. Ning, X. Zhang, J. Qin, S. Zhang, M. Ma, R. Li, Distinct electron density topologies and elastic properties of two similar omega phases: ω-Zr and Zr2Al, J. Alloys Compd. 660 (2016) 316–323, https://doi.org/10.1016/j. jallcom.2015.11.114.

[63] Materials Projects, Zr2Al, ID: mp-2557, https://doi.org/10.17188/1200766.

[64] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272–1276, https://doi.org/10.1107/S0021889811038970.

[65] D.B. Miracle, High entropy alloys as a bold step forward in alloy development, Nat. Commun. 10 (2019) 1805, https://doi.org/10.1038/s41467-019-09700-1.

[66] C. Li, M. Zhao, J.C. Li, Q. Jiang, B2 structure of high-entropy alloys with addition of Al, J. Appl. Phys. 104 (2008), 113504, https://doi.org/10.1063/1.3032900.

[67] W.P. Huhn, M. Widom, Prediction of A2 to B2 phase transition in the high-entropy alloy Mo-Nb-Ta-W, JOM 65 (2013) 1772–1779, https://doi.org/10.1007/s11837-013-0772-3.

[68] Z. Leong, J.S. Wrobel, S.L. Dudarev, R. Goodall, I. Todd, D. Nguyen-Manh, The effect of electronic structure on the phases present in high entropy alloys, Sci. Rep. 7 (2017) 39803, https://doi.org/10.1038/srep39803.

[69] L.J. Santodonato, P.K. Liaw, R.R. Unocic, H. Bei, J.R. Morris, Predictive multiphase evolution in Al-containing high-entropy alloys, Nat. Commun. 9 (2018) 4520, https://doi.org/10.1038/s41467-018-06757-2.

[70] T. Ishimoto, R. Ozasa, K. Nakano, M. Weinmann, C. Schnitter, M. Stenzel, A. Matsugaki, T. Nagase, T. Matsuzaka, M. Todai, H.S. Kim, T. Nakano, Development of TiNbTaZrMo bio–high entropy alloy (BioHEA) super–solid solution by selective laser melting, and its improved mechanical property and biocompatibility, Scripta Mater. 194 (2021), 113658, https://doi.org/10.1016/j.scriptamat.2020.113658.

[71] Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bourgeois, X. Wu, Selective laser melting of a high strength Al-Mn-Sc alloy: alloy design and strengthening mechanisms, Acta Mater. 171 (2019) 108–118, https://doi.org/10.1016/j.actamat.2019.04.014.

[72] D. Gu, Q. Shi, K. Lin, L. Xi, Microstructure and performance evolution and underlying thermal mechanisms of Ni-based parts fabricated by selective laser melting, Addit. Manuf. 22 (2018) 265–278, https://doi.org/10.1016/j. addma.2018.05.019.

[73] A. Matsugaki, G. Aramoto, T. Nakano, The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion, Biomaterials 33 (2012) 7327–7335, https://doi.org/10.1016/j.biomaterials.2012.06.022.

[74] A. Matsugaki, G. Aramoto, T. Ninomiya, H. Sawada, S. Hata, T. Nakano, Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure, Biomaterials 37 (2015) 134–143, https://doi.org/10.1016/j.biomaterials.2014.10.025.

[75] Y. Nakanishi, A. Matsugaki, K. Kawahara, T. Ninomiya, H. Sawada, T. Nakano, Unique arrangement of bone matrix orthogonal to osteoblast alignment controlled by Tspan11-mediated focal adhesion assembly, Biomaterials 209 (2019) 103–110, https://doi.org/10.1016/j.biomaterials.2019.04.016.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る