リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Design and fabrication of Ti–Zr-Hf-Cr-Mo and Ti–Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Design and fabrication of Ti–Zr-Hf-Cr-Mo and Ti–Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials

Nagase, Takeshi 大阪大学

2020.02.01

概要

Novel TiZrHfCr0.2Mo and TiZrHfCo0.07Cr0.07Mo high-entropy alloys for metallic biomaterials (bio-HEAs) were developed based on the combination of Ti–Nb–Ta–Zr–Mo alloy system and Co–Cr–Mo alloy system as commercially-used metallic biomaterials. Ti–Zr-Hf-Cr-Mo and Ti–Zr-Hf-Co-Cr-Mo bio-HEAs were designed using (a) a tree-like diagram for alloy development, (b) empirical alloy parameters for solid-solution-phase formation, and (c) thermodynamic calculations focused on solidification. The newly-developed bio-HEAs overcomes the limitation of classical metallic biomaterials by the improvement of (i) mechanical hardness and (ii) biocompatibility all together. The TiZrHfCr0.2Mo and TiZrHfCo0.07Cr0.07Mo bio-HEAs showed superior biocompatibility comparable to that of commercial-purity Ti. The superior biocompatibility, high mechanical hardness and low liquidus temperature for the material processing in TiZrHfCr0.2Mo and TiZrHfCo0.07Cr0.07Mo bio-HEAs compared with the Ti–Nb–Ta–Zr–Mo bio-HEAs gave the authenticity of the application of bio-HEAs for orthopedic implants with multiple functions.

この論文で使われている画像

参考文献

[1] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218, https://doi.org/10.1016/j.msea.2003.10.257.

[2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303, https://doi.org/10.1002/adem.200300567.

[3] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Curr. Sci. 85 (2003) 1404–1406 https://www.currentscience.ac.in/Downloads/article_id_085_10_1404_ 1406_0.pdf.

[4] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liew, Solid‐solution phase formation rules for multi‐component alloys, Adv. Eng. Mater. 10 (2008) 534–538, https://doi. org/10.1002/adem.200700240.

[5] J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, J. Occup. Med. 65 (2013) 1759–1771, https://doi.org/10.1007/s11837-013-0761-6.

[6] M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review, Mater. Res. Lett. 2 (2014) 107–123, https://doi.org/10.1080/21663831.2014.912690.

[7] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93, https://doi.org/10.1016/j.pmatsci.2013.10.001.

[8] B.S. Murty, J.-W. Yeh, S. Ranganathan, High-Entropy Alloys, first ed., Elsevier, 2014.

[9] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys, Fundamentals and Applications, first ed., Springer, 2016.

[10] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Mater. Today 19 (2016) 349–362, https://doi.org/10.1016/j.mattod.2015.11.026.

[11] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511, https://doi.org/10.1016/j.actamat.2016.08.081.

[12] T. Nagase, Development of high entropy alloys as the casting alloys, J. of the Society of Mechanical Engineers 121 (2018) 8–11, https://doi.org/10.1299/jsmemag.121. 1192_8.

[13] W. Zhang, P.K. Liew, Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater. 61 (2018) 2–22, https://doi.org/10.1007/s40843-017-9195-8.

[14] D.B. Miracle, High entropy alloys as a bold step forward in alloy development, Nat. Commun. 10 (2019) 1805, https://doi.org/10.1038/s41467-019-09700-1.

[15] M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, T. Nakano, Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials, Scr. Mater. 129 (2017) 65–68, https://doi.org/10.1016/j.scriptamat.2016.10.028.

[16] T. Nagase, K. Mizuuchi, T. Nakano, Solidification microstructures of the ingots obtained by arc melting and cold crucible levitation melting in TiNbTaZr medium- entropy alloy and TiNbTaZrX (X = V, Mo, W) high-entropy alloys, Entropy 21 (2019) 483, https://doi.org/10.3390/e21050483.

[17] T. Nagase, M. Todai, T. Hori, T. Nakano, Microstructure of equiatomic and non- equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials, J. Alloy. Comp. 753 (2018) 412–421, https://doi.org/10.1016/j.jallcom.2018.04.082.

[18] T. Hori, T. Nagase, M. Todai, A. Matsugaki, T. Nakano, Development of non- equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials, Scr. Mater. 172 (2019) 83–87, https://doi.org/10.1016/j.scriptamat.2019.07.011.

[19] S.P. Wang, J. Xu, TiZrNbTaMo high-entropy alloy designed for orthopedic implants: as-cast microstructure and mechanical properties, Mater. Sci. Eng. C73 (2017) 80–89, https://doi.org/10.1016/j.msec.2016.12.057.

[20] Y. Yuan, Y. Wu, Z. Yang, X. Liang, Z. Lei, H. Huang, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Formation, structure and properties of biocompatible TiZrHfNbTa high-en- tropy alloys, Mater. Res. Lett. 7 (2019) 225–231, https://doi.org/10.1080/21663831.2019.1584592.

[21] A. Motallebzadeh, N.S. Peighambardoust, S. Sheikh, H. Murakami, S. Guo, D. Canadinc, Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for bio- medical applications, Intermetallics 113 (2019) 106572, https://doi.org/10.1016/j. intermet.2019.106572.

[22] G. Popescu, B. Ghiban, C.A. Popescu, L. Rosu, R. Trusca, I. Carcea, V. Soare, D. Dumitrescu, I. Constantin, M.T. Olaru, B.A. Carlan, New TiZrNbTaFe high en- tropy alloy used for medical applications, IOP Conf. Series 400 (2018) 022049, , https://doi.org/10.1088/1757-899X/400/2/022049.

[23] V.T. Nguyen, M. Qian, Z. Shi, T. Song, L. Huang, J. Zou, A novel quaternary equiatomic Ti-Zr-Nb-Ta medium entropy alloy (MEA), Intermetallics 101 (2018) 39–43, https://doi.org/10.1016/j.intermet.2018.07.008.

[24] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high- entropy alloys, Intermetallics 18 (2010) 1758–1765, https://doi.org/10.1016/j. intermet.2010.05.014.

[25] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19 (2011) 698–706, https://doi.org/10.1016/j.intermet.2011.01.004.

[26] O.N. Senkov, J.M. Scotta, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloy. Comp. 509 (2011) 6043–6048, https://doi.org/10.1016/j.jallcom.2011.02.171.

[27] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci. 47 (2012) 4062–4074, https://doi.org/10.1007/ s10853-012-6260-2.

[28] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and explora- tion of refractory high entropy alloys-A review, J. Mater. Res. 33 (2018) 3092–3128, https://doi.org/10.1557/jmr.2018.153.

[29] T. Nagase, S. Anada, P.D. Rack, J.H. Noh, H. Yasuda, H. Mori, T. Egami, MeV electron-irradiation-induced structural change in the bcc phase of Zr-Hf-Nb alloy with an approximately equiatomic ratio, Intermetallics 38 (2013) 70–79, https://doi.org/10.1016/j.intermet.2013.02.009.

[30] T. Nagase, S. Anada, P.D. Rack, J.H. Noh, H. Yasuda, H. Mori, T. Egami, Electron- irradiation-induced structural change in Zr-Hf-Nb alloy, Intermetallics 26 (2012) 122–130, https://doi.org/10.1016/j.intermet.2012.02.015.

[31] T.M. Devine, F.J. Kummer, Wrought cobalt-chromium surgical implant alloys, J. Wulff, J. Mater. Sci. 7 (1972) 126–128, https://doi.org/10.1007/BF00549560.

[32] T.M. Devine, J. Wulff, Cast vs. wrought cobalt-chromium surgical implant alloys, J. Biomed. Mater. Res. 9 (1975) 151–167, https://doi.org/10.1002/jbm.820090205.

[33] J. Cohen, R.M. Rose, J. Wulff, Recommended heat treatment and alloy additions for cast Co‐Cr surgical implants, J. Biomed. Mater. Res. 12 (1978) 935–937, https:// doi.org/10.1002/jbm.820120613.

[34] T. Kilner, R.M. Pilliar, G.C. Weatherly, C. Alibert, Phase identification and incipient melting in a cast Co-Cr surgical implant alloy, J. Biomed. Mater. Res. 16 (1982) 63–79, https://doi.org/10.1002/jbm.820160109.

[35] M. Niinomi, Recent metallic materials for biomedical applications, Metall. Mater. Trans. A 33 (2002) 477–486, https://doi.org/10.1007/s11661-002-0109-2.

[36] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomater. 8 (2012) 3888–3903, https://doi.org/10.1016/j. actbio.2012.06.037.

[37] ASTM F75, https://www.astm.org/Standards/F75 , Accessed date: 17 September 2018.

[38] ASTM F1537-08, https://www.astm.org/Standards/F1537.htm , Accessed date: 16 May 2019.

[39] JIS T 7402, http://www.jisc.go.jp/eng/index.html , Accessed date: 17 September 2018.

[40] M. Niinomi, Design and development of metallic biomaterials with biological and mechanical biocompatibility, J. Biomed. Mater. Res. A 107 (2019) 944–954, https://doi.org/10.1002/jbm.a.36667.

[41] H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium, Biomaterials 22 (2001) 1253–1262, https://doi.org/10.1016/S0142-9612(00)00275-1.

[42] B.L. Wang, L. Li, Y.F. Zheng, In vitro cytotoxicity and hemocompatibility studies of Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys, Biomed. Mater. 5 (2010) 044102, , https://doi.org/10.1088/1748-6041/5/4/044102.

[43] T. Hanawa, Techniques improving reliability of metals in the human body, J. Surf. Finish. Soc. Jpn. 58 (2007) 495–499, https://doi.org/10.4139/sfj.58.495.

[44] S. Sheikh, S. Shafeie, Q. Hu, J. Ahlstrom, C. Persson, J. Vesely, J. Zyka, U. Klement, S. Guo, Alloy design for intrinsically ductile refractory high-entropy alloys, J. Appl. Phys. 120 (2016) 164902, https://doi.org/10.1063/1.4966659.

[45] C.D. Rabadia, Y.J. Liu, G.H. Cao, Y.H. Li, C.W. Zhang, T.B. Sercombe, H. Sun, L.C. Zhang, High-strength b stabilized Ti-Nb-Fe-Cr alloys with large plasticity, Mater. Sci. Eng., A 732 (2018) 368–377, https://doi.org/10.1016/j.msea.2018.07.031.

[46] S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, Y.H. Li, X.H. Zhang, L.C. Zhang, Mechanical characterization and deformation behavior of b-stabilized Ti-Nb-Sn-Cr alloys, J. Alloy. Comp. 792 (2019) 684–693, https://doi.org/10.1016/j.jallcom.2019.04.079.

[47] L.-C. Zhang, L. Yu Chen, A review on biomedical titanium alloys: recent progress and prospect, Adv. Eng. Mater. 21 (2019) 1801215, https://doi.org/10.1002/adem.201801215.

[48] L.-C. Zhang, Y. Liu, S. Li, Y. Hao, Additive manufacturing of titanium alloys by electron beam melting: a review, Adv. Eng. Mater. 20 (2018) 1700842, https://doi. org/10.1002/adem.201700842.

[49] T. Nagase, T. Hori, M. Todai, S.-H. Sun, T. Nakano, Materials & Design vol. 173, (2019), pp. 107771 1–10777110. Additive manufacturing of dense components in beta-titanium alloys with crystallographic texture from a mixture of pure metallic element powders.

[50] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi- component alloys, Mater. Chem. Phys. 132 (2012) 233–238, https://doi.org/10. 1016/j.matchemphys.2011.11.021.

[51] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size differ- ence, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. 46 (2005) 2817–2829, https://doi.org/10.2320/matertrans.46.2817.

[52] T. Nagase, K. Mizuuchi, M. Todai, T. Nakano, Solidification microstructure of high entropy alloys composed with 4 group (Ti, Zr, Hf), 5 group (V, Nb, Ta), and 6 group (Cr, Mo, W) elements, Materia Japan 58 (2019) 78, https://doi.org/10.2320/ materia.58.78.

[53] C.W. Bale, A.D. Pelton, W.T. Thompson, G. Eriksson, FactSage, ecole poly-tech- nique, Montreal (2001), http://www.crct.polymtl.ca , Accessed date: 10 October 2018.

[54] T. Nagase, M. Matsumoto, Y. Fujii, Microstructure of Ti-Ag immiscible alloys with metastable liquid phase separation, J. Alloy. Comp. 738 (2018) 440–447, https:// doi.org/10.1016/j.jallcom.2017.12.138.

[55] T. Nagase, M. Takemura, M. Matsumuro, T. Maruyama, Solidification micro- structure analysis of AlCoCrFeNi2.1 eutectic high entropy alloy ingots, Mater. Trans. 59 (2018) 255–264, https://doi.org/10.2320/matertrans.F-M2017851.

[56] T. Nagase, A. Shibata, M. Matsumuro, M. Takemura, S. Semboshi, Alloy design and fabrication of ingots in Cu-Zn-Mn-Ni-Sn high-entropy and Cu-Zn-Mn-Ni medium- entropy brasses, Mater. Des. 181 (2019) 107900 1–9, https://doi.org/10.1016/j.matdes.2019.107900 2019.

[57] C.D. Rabadia, Y.J. Liu, L. Wang, H. Sun, L.C. Zhang, Laves phase precipitation in Ti- Zr-Fe-Cr alloys with high strength and large plasticity, Mater. Des. 154 (2018) 228–238, https://doi.org/10.1016/j.matdes.2018.05.035.

[58] C.D. Rabadia, Y.J. Liu, S.F. Jawed, L. Wang, Y.H. Li, X.H. Zhang, T.B. Sercombe, H. Sun, L.C. Zhang, Improved deformation behavior in Ti-Zr-Fe-Mn alloys com- prising the C14 type Laves and b phases, Mater. Des. 160 (2018) 1059–1070, https://doi.org/10.1016/j.matdes.2018.10.049.

[59] C.D. Rabadia, Y.J. Liu, L.Y. Chen, S.F. Jawed, L.Q. Wang, H. Sun, L.C. Zhang, Deformation and strength characteristics of Laves phases in titanium alloys, Mater. Des. 179 (2019) 107891 1–9, https://doi.org/10.1016/j.matdes.2019.107891.

[60] JIS SUS316L, http://www.jssa.gr.jp/contents/products/standards/jis/austenite/ , Accessed date: 16 May 2019.

[61] Y. Nakanishi, A. Matsugaki, K. Kawahara, T. Ninomiya, H. Sawada, T. Nakano, Unique arrangement of bone matrix orthogonal to osteoblast alignment controlled by Tspan11-mediated focal adhesion assembly, Biomaterials 209 (2019) 103–110, https://doi.org/10.1016/j.biomaterials.2019.04.016.

[62] A. Matsugaki, G. Aramoto, T. Ninomiya, H. Sawada, S. Hata, T. Nakano, Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure, Biomaterials 37 (2015) 134–143, https://doi.org/10.1016/j.biomaterials.2014.10.025.

[63] A. Matsugaki, N. Fujiwara, T. Nakano, Continuous cyclic stretch induces osteoblast alignment and formation of anisotropic collagen fiber matrix, Acta Biomater. 9 (2013) 7227–7235, https://doi.org/10.1016/j.actbio.2013.03.015.

[64] X. Zhao, M. Niinomi, M. Nakai, J. Hieda, T. Ishimoto, T. Nakano, Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications, Acta Biomater. 8 (2012) 2392–2400, https://doi.org/10.1016/j.actbio.2012.02.010.

[65] X. Zhao, M. Niinomi, M. Nakai, T. Ishimoto, T. Nakano, Development of high Zr- containing Ti-based alloys with low Young's modulus for use in removable implants, Mater. Sci. Eng. C 31 (2011) 1436–1444, https://doi.org/10.1016/j.msec.2011.05.013.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る