リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「北西太平洋域におけるウミガメ類の代謝速度に対応した行動様式」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

北西太平洋域におけるウミガメ類の代謝速度に対応した行動様式

木下, 千尋 東京大学 DOI:10.15083/0002004931

2022.06.22

概要

要旨
温度は,動物の⾏動や⽣理に影響を与える要因のひとつである.爬⾍類は⼀般的に,外部の熱源に依存して体温を調節する外温動物である.したがって,爬⾍類の体温は環境温度の低下と共に下がり,休⽌代謝速度と活動性も低下すると考えられてきた.しかし,近年アカウミガメ(Caretta caretta)には冬季の⽔温低下に伴って不活発になる個体群と,通年に渡って活動性を維持する個体群が存在することが判明した.何らかの⽣理的基盤がアカウミガメの活動性の違いに関与していると考えられているが,個体群間における⽐較研究はなされていない.活動性と休⽌代謝速度は密接に関係していることから,本研究では休⽌代謝速度がウミガメの個体群間で異なるという仮説を⽴てた.はじめに,1年を通じて活動性が⾼い北⻄太平洋個体群のアカウミガメとアオウミガメ(Chelonia mydas)を⽤いて,代謝速度と活動時間割合を15‒25℃の⽔温下で測定した.次に,北⻄太平洋個体群の休⽌代謝速度を,他個体群の既往研究値と⽐較した.さらに,測定した代謝速度から,ウミガメ類の体温や潜⽔時間,単位距離を移動するのに要するエネルギーコストを最⼩とする遊泳速度を推定し,実測値と⽐較した.上記の結果から,ウミガメ類の休⽌代謝速度には個体群差があるのか否か,代謝速度が潜⽔時間や体温,遊泳速度を左右する基盤になっているかどうかを検証した.

ウミガメ類の代謝速度
アカウミガメとアオウミガメの北⻄太平洋個体群における代謝速度を測定するため,2016年から2019年の夏季,岩⼿県⼤船渡市から宮古市の沿岸海域に設置された定置網内で,⽣きたまま混獲された個体を収集した.集めた個体は,⽔温15,20,25℃に調整した1tの屋内⽔槽に1週間馴致させた.⽔槽の⽔⾯に固定したアクリル性チャンバー内でウミガメを呼吸させ,酸素消費量を測定した.アカウミガメとアオウミガメをそれぞれ12個体⽤いて,約3時間の測定を合計60回⾏い,各⽔温におけるウミガメ類の代謝速度を求めた.同時に,加速度計をウミガメの背甲に取り付け,活動時間割合(%)を定量化した.代謝速度と⽔温,活動度の関係を明らかにするために,⼀般化線形混合モデルを⽤いた.さらに,⾚池情報量基準を⽤いて,代謝速度を表す尤もらしいモデルを選択した.活動時間割合が0%の時の代謝速度を休⽌代謝速度とし,他個体群と⽐較した.その結果,アカウミガメ北⻄太平洋個体群の休⽌代謝速度は,冬季に不活発になる地中海個体群の既往研究値よりも1.4–5.8倍⾼くなることが分かった.また,アカウミガメの休⽌代謝速度の温度係数(Q10:15–25℃)はそれぞれ1.68(北太平洋),5.36(地中海)であった.つまり,北⻄太平洋個体群の休⽌代謝速度は,地中海個体群に⽐べて⽔温によって変化しづらいことが⽰された.1年中活動性を維持するオーストラリア個体群と北⻄太平洋個体群におけるアオウミガメの代謝速度のQ10(15–25℃)はそれぞれ1.40と1.65であり,同程度の低い温度係数を⽰した.以上の結果から,ウミガメ類の休⽌代謝速度は,個体群間で最⼤5.8倍異なることが明らかになり,1年中活動性が⾼い個体群はQ10が低く,その休⽌代謝速度は温度変化による影響を受けにくいことが⽰唆された.

代謝速度と体温・潜⽔時間の関係
代謝速度は,動物の体温や潜⽔時間を左右する1つの要因である.例えば,成体のアカウミガメは体内で発⽣した代謝熱と⾃⾝の体が持つ熱慣性によって,⽔温よりも約1–2℃⾼い体温を持つ.また,ウミガメ類を含む肺呼吸動物は,体内に保有した酸素量とそれを使い切る速さ(=代謝速度)によって計算される有酸素潜⽔限界時間(cADL: calculated aerobic dive limit)に応じて潜⽔時間が左右される.したがって,代謝速度が⾼い個体群はその分⾼い体温を持ち,短い時間で潜⽔を切り上げるはずである.これを検証するために,アカウミガメの体温と潜⽔時間に着⽬して,2つの⽐較研究を⾏なった.はじめに,2016年から2017年の夏季に,三陸沿岸域の定置網で混獲されたアカウミガメ亜成体13個体(体重:26.0–57.5kg)の体温を測定した.胃の中に挿⼊した温度計で測定した胃内温度を体温し,⽔温15,20,25℃に調節された1tの屋内⽔槽で遊泳させながら体温と環境⽔温との差(ΔTb)を求めた.アカウミガメの体を同じ⽐重の物体からなる同じの質量の球体とみなし,⾮平衡の熱拡散⽅程式を⽤いて,前章で測定した代謝速度と熱伝導率K(既往研究値)からΔTbを推定して,実測したΔTbと⽐較した.次に,2010年から2018年の間に三陸沿岸域で混獲されたアカウミガメ亜成体17個体(体重:33.5–97.5kg)に,⼈⼯衛星対応型電波発信機(SRDL)を装着して三陸沿岸域から放流し,200⽇以上の経験⽔温と潜⽔時間,位置情報を追跡した.アカウミガメが体内に保有する酸素量(既往研究値)と代謝速度の値から,アカウミガメのcADLを予測し,実測された潜⽔時間と⽐較した.結果,北⻄太平洋個体群のアカウミガメにおけるΔTbは0.31–1.36℃と推定され,実測のΔTb(0.25–1.10℃)と同程度の範囲となった.また,SRDLで計測した北太平洋個体群のアカウミガメの潜⽔時間は,予測した時間内に89.5%(全46,669回のうち41,769回)の潜⽔が収まった.地中海個体群のアカウミガメのΔTbと潜⽔時間の推定値は,既往研究で報告されている実測ΔTb(0.02–0.23℃:体重42kgの場合)と潜⽔時間に近い値をとった.以上の結果から,アカウミガメは各個体群が持つ代謝速度が⾏動の基盤となり,それに⾒合った体温と潜⽔時間を⽰すことが明らかになった.

ウミガメ類の最適遊泳速度
動物は遊泳時,単位距離を移動するのに要するエネルギーコストを最⼩とする「最適遊泳速度」で移動すると考えられている.最適遊泳速度は,休⽌代謝速度が⾼いと速くなり,抵抗係数が⼤きいと遅くなることが理論研究で⽰されている.前肢をはばたかせて泳ぐアカウミガメ(32.8−94.5kg)の巡航遊泳速度は約0.6ms-1で,同じくはばたき遊泳をするペンギン類(1.1−24.5kg)の巡航遊泳速度(約2.0ms-1)より遅い.ウミガメ類の遅い巡航遊泳速度は低い休⽌代謝速度が要因だと推察されてきたが,定量的な検証は⾏われていない.本章では北⻄太平洋個体群のアカウミガメとアオウミガメを⽤いて,⾏動記録計を⽤いた野外放流実験,形態計測,最適遊泳速度の推定を⾏ない,(1)ウミガメ類は最適遊泳速度を選んで遊泳するか,(2)ウミガメ類の遊泳速度に影響を与える要因は何か,を検証した.2010から2019年の夏季,三陸沿岸域の定置網にて⽣きたまま混獲されたアカウミガメ8個体(体重:34.0–97.0kg)とアオウミガメ7個体(体重:12.0–55.5kg)に⾏動記録計(遊泳速度・深度・温度・3軸加速度・3軸地磁気)を装着して放流し,巡航遊泳速度の測定と抵抗係数の推定を⾏なった.また,形態計測からウミガメ類の前⾯投影⾯積と体重の関係式を求めた.測定した休⽌代謝速度と前⾯投影⾯積,推定した抵抗係数,その他既往研究値をもちいて,ウミガメの最適遊泳速度を推定した.その結果,最適遊泳速度は0.22−0.37ms-1と推定され,野外で実測されたウミガメ類の巡航遊泳速度0.28−0.51ms-1と同程度の範囲となった.したがって,ウミガメ類は移動の際,最適遊泳速度を選択していると考えられた.また,体重を同じと仮定した場合(30kg),ウミガメ類の休⽌代謝速度はペンギン類の約20分の1で,体表⾯に対する抵抗係数はペンギン類よりも8.6倍⾼かった.従って,ウミガメ類の巡航遊泳速度が遅い要因には,ペンギン類に⽐べて低い休⽌代謝速度だけでなく,⾼い抵抗係数も影響していることが分かった.

アカウミガメの休⽌代謝速度が個体群間で異なる要因には,それぞれの⽣息域における餌環境が関与している可能性がある.北⻄太平洋は,北から来る親潮と津軽暖流,南から来る⿊潮が混合し1年を通じて⽣産性が⾼いが,地中海は春期を除くと⽣産性が極めて低い.ウミガメ類にとって環境が好ましい餌環境下では休⽌代謝速度が⾼い個体が適応的,乏しい餌環境下では休⽌代謝速度が低い個体の⽅が適応的だと考えられる(Context dependent仮説).したがって,餌環境の違いがアカウミガメの休⽌代謝速度の個体群差を⽣んだと⽰唆される.本研究では,ウミガメ類が個体群間で休⽌代謝速度とQ10が異なること明らかにし,体温や潜⽔時間,巡航遊泳速度がそれぞれの代謝速度に⾒合っていることを定量的に実証するとともに,代謝速度が⾏動の基盤となっていること⽰した.これらの結果は,ウミガメ類の⽣態を⽣理的基盤から理解する上で,貴重な知⾒になると考えられる.

この論文で使われている画像

参考文献

Abe, T. K., Kitagawa, T., Makiguchi, Y., and Sato, K. (2019). Chum salmon migrating upriver adjust to environmental temperatures through metabolic compensation. Journal of Experimental Biology, 222, jeb186189.

Akamatsu, T., Wang, D., Wang, K., Wei, Z., Zhao, Q., and Naito, Y. (2002). Diving behaviour of freshwater finless porpoises (Neophocaena phocaenoides) in an oxbow of the Yangtze River, China. ICES Journal of Marine Science, 59, 438-443.

Angilletta Jr, M. J., (2001). Variation in metabolic rate between populations of a geographically widespread lizard. Physiol Biochem Zool, 74, 11-21.

Angilletta Jr, M. J., and Angilletta, M. J. (2009). Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press.

Arnott, S. A., Chiba, S., and Conover, D. O. (2006). Evolution of intrinsic growth rate: metabolic costs drive trade‐offs between growth and swimming performance in Menidia menidia. Evolution, 60, 1269-1278.

Baba, N., Nitto, H., and Nitta, A. (2000). Satellite tracking of young Steller sea lion off the coast of northern Hokkaido. Fish Sci, 66, 180-181.

Bartholomew, G. A., and Hudson, J. W. (1962). Hibernation, estivation, temperature regulation, evaporative water loss, and heart rate of the pigmy possum, Cercaertus nanus. Physiological Zoology, 35, 94-107.

Benhamou, S. (2004). How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension?. Journal of theoretical biology, 229, 209-220.

Bennett, A.F., (1982). The energetics of reptilian activity. In: Gans, C., Pough, F.H. (Eds.), Biology of the Reptilia, 13, Academic Press, New York.

Bostrom, B. L., Jones, T. T., Hastings, M., and Jones, D. R. (2010). Behaviour and physiology: the thermal strategy of leatherback turtles. PLOS ONE, 5, e13925.

Bowen, B. W., Abreu-Grobois, F. A., Balazs, G. H., Kamezaki, N., Limpus, C., and Ferl, R. J. (1995). Trans-Pacific migrations of the loggerhead turtle (Caretta caretta) demonstrated with mitochondrial DNA markers. Proceedings of the National Academy of Sciences, 92, 3731-3734.

Bowen BW, Kamezaki N, Limpus CJ, Hughes GR, Meylan AB, and Avise JC (1994). Global phylogeography of the loggerhead turtle (Caretta caretta) as indicated by mitochondrial DNA haplotypes. Evolution, 6, 1820-1828.

Bowen, B. W., and Karl, S. A. (1997). Population genetics, phylogeography, and molecular evolution. The Biology of Sea Turtles, Volume I, CRC Press.

Bowen, B. W., and Karl, S. A. (2007). Population genetics and phylogeography of sea turtles. Molecular ecology, 16, 4886-4907.

Bowen, B. W., Meylan, A. B., Ross, J. P., Limpus, C. J., Balazs, G. H., and Avise, J. C. (1992). Global population structure and natural history of the green turtle (Chelonia mydas) in terms of matriarchal phylogeny. Evolution, 46, 865-881.

Boyle, M. C., and Limpus, C. J. (2008). The stomach contents of post-hatchling green and loggerhead sea turtles in the southwest Pacific: an insight into habitat association. Marine Biology, 155, 233-241.

Broderick, A.C., Coyne, M. S., Fuller, W. J., Glen, F., and Godley, B. J. (2007). Fidelity and over-wintering of sea turtles. Proceedings of the Royal Society B: Biological Sciences, 274, 1533-1538.

Burton, T., Killen, S. S., Armstrong, J. D., and Metcalfe, N. B. (2011). What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proceedings of the Royal Society B: Biological Sciences, 278, 3465-3473.

Calder, W. A. (1984). Size, function, and life history. Harvard University Press, Cambridge, Massachusetts.

Carr, A. (1987). New perspectives on the pelagic stage of sea turtle development. Conservation Biology, 1, 103-121.

Carr, A., and Meylan, A. B. (1980. Evidence of passive migration of green turtle hatchlings in Sargassum. Copeia, 2, 366-368.

Carreras, C., Pont, S., Maffucci, F., Pascual, M., Barcelo, A., Bentivegna, F., and Aguilar, A. (2006). Genetic structuring of immature loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea reflects water circulation patterns. Marine Biology, 149, 1269-1279.

Casale, P., Freggi, D., Cina, A., and Rocco, M. (2013). Spatio-temporal distribution and migration of adult male loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea: further evidence of the importance of neritic habitats off North Africa. Marine Biology,160, 703-718.

Casale, P. and Tucker, A.D (2017). Caretta caretta. The IUCN Red List of Threatened Species 2017: e.T3897A119333622. http://dx.doi.org/10.2305/IUCN.UK.2017- 2.RLTS.T3897A119333622.en. Downloaded on 04 January 2020.

Casey, J. P., James, M. C., and Williard, A. S. (2014). Behavioral and metabolic contributions to thermoregulation in freely swimming leatherback turtles at high latitudes. Journal of Experimental Biology, 217, 2331-2337.

Clarke, A. (2017). Principles of thermal ecology: Temperature, energy and life. Oxford University Press. 163-195.

Clark, B. D., and Bemis, W. (1979). Kinematics of swimming of penguins at the Detroit Zoo. Journal of Zoology, 188, 411-428.

Clusella Trullas, S., Spotila, J. R., and Paladino, F. V. (2006). Energetics during hatchling dispersal of the olive ridley turtle Lepidochelys olivacea using doubly labeled water. Physiological and Biochemical Zoology, 79, 389-399.

Coles, W. C., Musick, J. A. (2000). Satellite sea surface temperature analysis and correlation with turtle distribution off North Carolina. Copeia, 2, 551-554.

Costa, D. P., Gales, N. J., and Goebel, M. E. (2001). Aerobic dive limit: how often does it occur in nature? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 129, 771-783.

Croll, D. A., Gaston, A. J., Burger, A. E., and Konnoff, D. (1992). Foraging behavior and physiological adaptation for diving in thick‐billed murres. Ecology, 73, 344-356.

Dalrymple, G. H., Hampp, J. C., and Wellins, D. J. (1985). Male-biased sex ratio in a cold nest of a hawksbill sea turtle (Eretmochelys imbricata). Journal of herpetology, 19, 158-159.

Davenport, J., Ingle, G., and Hughes, A. K., (1982). Oxygen uptake and heart rate in young green turtles (Chelonia mydas), Journal of Zoology, 198, 399-412.

Davenport, J., Fraher, J., Fitzgerald, E., McLaughlin, P., Doyle, T., Harman, L., and Cuffe, T. (2009). Fat head: an analysis of head and neck insulation in the leatherback turtle (Dermochelys coriacea). Journal of Experimental Biology, 212, 2753-2759.

Dodd, C. K. Jr. (1988). Synopsis of the biological data on the loggerhead sea turtle Caretta caretta (Linnaeus 1758). US fish and wildlife service. Biological Report, 88, 1-110.

Eliason, E. J., Clark, T. D., Hague, M. J., Hanson, L. M., Gallagher, Z. S., Jeffries, K. M., et. al. (2011). Differences in thermal tolerance among sockeye salmon populations. Science, 332, 109-112.

Enstipp, M. R., Ballorain, K., Ciccione, S., Narazaki, T., Sato, K., and George, J. (2016), Energy expenditure of adult green turtles (Chelonia mydas) at their foraging grounds and during simulated oceanic migration. Functional Ecology, 30, 1810-1825.

Faulkner, J. M., and Binger, C. A. (1927). Oxygen poisoning in cold blooded animals. Journal of Experimental Medicine, 45, 865-871.

Frair, W., Ackman, R. G., and Mrosovsky, N. (1972). Body temperature of Dermochelys coriacea: warm turtle from cold water. Science, 177, 791-793.

Fukuoka, T., Narazaki, T., and Sato, K. (2015). Summer-restricted migration of green turtles Chelonia mydas to a temperate habitat of the northwest Pacific Ocean. Endangered Species Research, 28, 1-10.

Fukuoka, T., Narazaki, T., Kinoshita, C., and Sato, K. (2019). Diverse foraging habits of juvenile green turtles (Chelonia mydas) in a summer-restricted foraging habitat in the northwest Pacific Ocean. Marine biology, 166, 25.

Fukuoka, T., Yamane, M., Kinoshita, C., Narazaki, T., Marshall, G. J., Abernathy, K. J., Miyazaki, N., and Sato, K. (2016). The feeding habit of sea turtles influences their reaction to artificial marine debris. Scientific reports, 6, 28015.

Fry, F. E. J. (1947). Effects of the environment on animal activity. Publications of the Ontario Fisheries Research Laboratory, 68, 1-63. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293, 2248-2251.

Godfrey, M. H., D'Amato, A. F., Marcovaldi, M. Â., and Mrosovsky, N. (1999). Pivotal temperature and predicted sex ratios for hatchling hawksbill turtles from Brazil. CanadianJournal of Zoology, 77, 1465-1473.

Greer, A. E., Lazell, J. D., and Wright, R. M. (1973). Anatomical evidence for a counter-current heat exchanger in the leatherback turtle (Dermochelys coriacea). Nature, 244, 181.

Grigg, G. C., Farwell, W. D., Kinney, J. L., Harlow, P., Taplin, L. E., Johansen, K., and Johansen, K. (1985). Diving and amphibious behavior in a free-living Crocodylus porosus. Australian Zoologist, 21, 599-606.

Hatase, H., Kinoshita, M., Bando, T., Kamezaki, N., Sato, K., Matsuzawa, Y., et. al. and Sakamoto, W. (2002). Population structure of loggerhead turtles, Caretta caretta, nesting in Japan: bottlenecks on the Pacific population. Marine Biology, 141, 299-305.

Hatase, H., Omuta, K., and Tsukamoto, K. (2007). Bottom or midwater: alternative foraging behaviours in adult female loggerhead sea turtles. Journal of Zoology, 273, 46–55.

Hawkes, L. A., Broderick, A. C., Coyne, M. S., Godfrey, M. H., and Godley, B. J. (2007). Only some like it hot—quantifying the environmental niche of the loggerhead sea turtle. Diversity and distributions 13, 447-457.

Hawkes, L. A., Witt, M. J., Broderick, A. C., Coker, J. W., Coyne, M. S., Dodd, M., Frick, M. G., Godfrey, M. H., Griffin, D. B., Murphy, S. R., Murphy, T. M., Williams, K. L., and Godley, B. J. (2011). Home on the range: spatial ecology of loggerhead turtles in Atlantic waters of USA. Diversity and Distributions, 17, 624-640.

Hays, G., Adams, C., Broderick, A., Godley, B., Lucas, D., Metcalfe, J., and Prior, A. (2000). The diving behaviour of green turtles at Ascension Island. Animal Behaviour, 59, 577-586.

Hazel, J., Lawler, I. R., & Hamann, M. (2009). Diving at the shallow end: green turtle behaviour in near-shore foraging habitat. Journal of Experimental Marine Biology and Ecology, 371,84-92.

Heath, M. E., & McGinnis, S. M. (1980). Body temperature and heat transfer in the green sea turtle, Chelonia mydas. Copeia, 767-773.

Heithaus, M. R., McLash, J. J., Frid, A., Dill, L. M., & Marshall, G. J. (2002). Novel insights into green sea turtle behaviour using animal-borne video cameras. Journal of the Marine Biological Association of the United Kingdom, 82, 1049-1050.

Hemmingsen, A. M. (1960). Energy metabolism as related to body size and respiratory surface, and its evolution. Reports of the Steno Memorial Hospital (Copenhagen), 13, 1-110.

Hill, A. V. (1950). The dimensions of animals and their muscular dynamics. Science Progress, 38, 209-230.

Hind, A. T., and Gurney, W. S. (1997). The metabolic cost of swimming in marine homeotherms. Journal of Experimental Biology, 200, 531-542.

Hirayama, R. (1997). Distribution and diversity of Cretaceous chelonioids, Ancient marine reptiles, Academic Press, 225-241.

Hirayama R (1998). Oldest known sea turtle. Nature, 392, 705-708.

Hirche, H. J. (1984). Temperature and metabolism of plankton—I. Respiration of Antarctic zooplankton at different temperatures with a comparison of Antarctic and Nordic krill. Comparative Biochemistry and Physiology Part A: Physiology, 77, 361-368.

Hirth, H. F. (1997). Synopsis of the biological data on the green turtle Chelonia mydas (Linnaeus 1758) (Vol. 2). Fish and Wildlife Service, US Department of the Interior.

Hochscheid, S., Bentivegna, F., Bradai, M. N., and Hays, G. C. (2007). Overwintering behaviour in sea turtles: dormancy is optional. Marine Ecology Progress Series, 340, 287-298.

Hochscheid, S., Bentivegna, F., and Hays, G. C. (2005). First records of dive durations for a hibernating sea turtle. Biology letters, 1, 82-86.

Hochscheid, S., Bentivegna, F., Speakman, J. R. (2004). Long-term cold acclimation leads to high Q10 effects on oxgen consumption of loggerhead sea turtle Caretta caretta. Physiological and Biochemical Zoology, 77, 209-222.

Hodkinson, I. D. (2003). Metabolic cold adaptation in arthropods: a smaller-scale perspective. Functional Ecology, 17, 562-567.

Horning, M. (2012). Constraint lines and performance envelopes in behavioral physiology: the case of the aerobic dive limit. Frontiers in physiology, 3, 381.

Houghton, J. D., Broderick, A. C., Godley, B. J., Metcalfe, J. D., and Hays, G. C. (2002). Diving behaviour during the internesting interval for loggerhead turtles Caretta caretta nesting in Cyprus. Marine Ecology Progress Series, 227, 63-70.

藤原由紀⼦, 楢崎友⼦, 佐藤克⽂. (2007). 太陽放射エネルギーがウミガメ類の体温に及ぼす影響. 東京⼤学海洋研究所国際沿岸海洋研究センター研究報告, 32, 3-6.

⽯原孝. (2012). ⽣活史. ウミガメの⾃然史 (⻲崎直樹 編) . 東京⼤学出版会, 57–83

市川忠史, 瀬川恭平, 寺崎誠. (2006). VPRII を⽤いた親潮域および⿊潮・親潮移⾏域中表層におけるクラゲ類, クシクラゲ類の現存量および鉛直分布特性. ⽔産海洋研究, 70, 240-248.

Jain, A. K., Murty, M. N., Flynn, P. J. (1999). Data clustering: a review. ACM Computing Surveys, 31, 266-323.

James, M. C., Mrosovsky, N. (2004). Body temperatures of leatherback turtles (Dermochelys coriacea) in temperate waters off Nova Scotia, Canada. Canadian Journal of Zoology, 82,1302-1306.

James, M. C., Myers, R. A., & Ottensmeyer, C. A. (2005). Behaviour of leatherback sea turtles, Dermochelys coriacea, during the migratory cycle. Proceedings of the Royal Society B: Biological Sciences, 272, 1547-1555.

Jones, T., Hastings, M., Bostrom, B., Andrews, R. D., and Jones, D. (2009). Validation of the use of doubly labelled water for estimating metabolic rate in the green turtle (Chelonia mydas L.): a word of caution. Journal of Experimental Biology, 212, 2635-2644.

Jones, T. T., Reina, R. D., Darveau, C. A., and Lutz, P. L. (2007). Ontogeny of energetics in leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) sea turtle hatchlings. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147, 313-322.

Kamezaki, N. (2003). What is a loggerhead turtle? The morphological perspectine. In (Bolten, A.B. and B.E. Witherington, eds) Loggerhead Sea Turtles, Smithonian Books, 28-43.

Karl, S. A., and Bowen, B. W. (1999). Evolutionary significant units versus geopolitical taxonomy: molecular systematics of an endangered sea turtle (genus Chelonia). Conservation Biology, 13, 990-999.

Kawabe, R., Naito, Y., Sato, K., Miyashita, K., & Yamashita, N. (2004). Direct measurement of the swimming speed, tailbeat, and body angle of Japanese flounder (Paralichthys olivaceus). ICES Journal of Marine Science, 61, 1080-1087.

Killen, S., Marras, S., McKenzie, D. (2011). Fuel, Fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European seabass. Journal of Animal Ecology, 80, 1024-1033.

Kobayashi, S., Aokura, N., Fujimoto, R., Mori, K., Kumazawa, Y., Ando, Y., et. al. and Saito, T. (2018). Incubation and water temperatures influence the performances of loggerhead sea turtle hatchlings during the dispersal phase. Scientific reports, 8, 11911.

Kooyman, G. L. (1989). Diverse Divers, Springer-Verlag.

Kooyman, G. L., Cherel, Y., Maho, Y. L., Croxall, J. P., Thorson, P. H., Ridoux, V., and Kooyman, C. A. (1992). Diving behavior and energetics during foraging cycles in king penguins. Ecological Monographs, 62, 143-163.

Kooyman, G. L., Wahrenbrock, E. A., Castellini, M. A., Davis, R. W., & Sinnett, E. E. (1980). Aerobic and anaerobic metabolism during voluntary diving in Weddell seals Leptonychotes weddelli–evidence of preferred pathways from blood chemistry and behavior. Journal of Comparative Physiology B, 138, 335-346.

Koteja, P. (1996). Measuring energy metabolism with open-flow respirometric systems: which design to choose? Functional Ecology, 10, 675-677.

Lillywhite, H. B. (2014). How snakes work: structure, function and behavior of the world's snakes. Oxford University Press. (リリーホワイト H. B. 細将貴・福⼭伊吹・福⼭亮部・児⽟知理・児⽟庸介・義村弘仁 (訳) (2019) .ヘビという⽣き⽅,東海⼤学出版会,101-120)

Limpus, C. J., Couper, P. J., and Read, M. A. (1994). The loggerhead turtle, Caretta caretta, in Queensland: population structure in a warm temperate feeding area. Memoirs of the Queensland Museum, 37, 195-204.

Lohrenz, S. E., Castro, B. M. (2006). Western ocean boundaries. In: Robinson AR, Brink KH (eds) The sea, Volume14A: the global coastal ocean, Harvard University Press, 3-20.

Lusk, G. (1922). The specific dynamic action of various food factors, Medicine 1, 2, 311.

Lutcavage, M. E., Lutz, P. L. (1986). Metabolic rate and food energy requirements of the leatherback sea turtle, Dermochelys coriacea, Copeia 1986, 796-798.

Lutcavage, M. E., Lutz, P. L., Baier, H. (1987). Gas exchange in the loggerhead sea turtle Caretta caretta. Journal of Experimental Biology, 131, 365-372.

Lutz, P. L., Bentley, T. B. (1985). Respiratory physiology of diving in the sea turtle. Copeia 1985,671-679.

Lutz, P. L., Bergey, A., Bergey, M. (1989). Effects of temperature on gas exchange and acid–base balance in the sea turtle Caretta caretta at rest and during routine activity. Journal of Experimental Biology, 144, 155-169.

Nakamura, I., Goto, Y., Sato, K. (2015). Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores. Journal of Animal Ecology, 84, 590-603.

Mansfield, K. L., Saba, V. S., Keinath, J. A., Musick, J. A. (2009). Satellite tracking reveals a dichotomy in migration strategies among juvenile loggerhead turtles in the Northwest Atlantic., Marine Biology, 156, 2555-2570.

Marshall, C. D., Guzman, A., Narazaki, T., Sato, K., Kane, E. A., and Sterba-Boatwright, B. D. (2012). The ontogenetic scaling of bite force and head size in loggerhead sea turtles (Caretta caretta): implications for durophagy in neritic, benthic habitats. Journal of Experimental Biology, 215, 4166-4174.

Matsuzawa, Y., Sato, K., Sakamoto, W., & Bjorndal, K. (2002). Seasonal fluctuations in sand temperature: effects on the incubation period and mortality of loggerhead sea turtle (Caretta caretta) pre-emergent hatchlings in Minabe, Japan. Marine Biology, 140, 639-646.

McKechnie, A. E. (2008). Phenotypic flexibility in basal metabolic rate and the changing view of avian physiological diversity: a review. Journal of Comparative Physiology B, 178,235-247.

McKechnie, A. E., Freckleton, R. P., and Jetz, W. (2006). Phenotypic plasticity in the scaling of avian basal metabolic rate. Proceedings of the Royal Society B: Biological Sciences, 273, 931-937.

Miller, P. J., Johnson, M. P., Tyack, P. L., and Terray, E. A. (2004). Swimming gaits, passive drag and buoyancy of diving sperm whales Physeter macrocephalus. Journal of Experimental Biology, 207, 1953-1967.

Milton, S. L., Lutz, P. L. (2003). Physiological and genetic responses to environmental stress. In: Lutz PL, Musick JA, Wyneken J (eds) The Biology of Sea Turtles vol II. CRC Press,163-197.

Minamikawa, S., Naito, Y., Sato, K., Matsuzawa, Y., Bando, T., Sakamoto, W. (2000).

Maintenance of neutral buoyancy by depth selection in the loggerhead turtle Caretta caretta. Journal of Experimental Biology, 203, 2967-2975.

Mitani, Y., Sato, K., Ito, S., Cameron, M. F., Siniff, D. B., & Naito, Y. (2003). A method for reconstructing three-dimensional dive profiles of marine mammals using geomagnetic intensity data: results from two lactating Weddell seals. Polar Biology, 26, 311-317.

Morreale, S. J., Ruiz, G. J., and Standora, E. A. (1982). Temperature-dependent sex determination: current practices threaten conservation of sea turtles. Science, 216, 1245-1247.

Mortimer, J. A. and Donnelly, M. (2008). Eretmochelys imbricata. The IUCN Red Listof Threatened Species 2008: e.T8005A12881238. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T8005A12881238.en. Downloaded on 04 January 2020.

Nakamura, I., Goto, Y., and Sato, K. (2015). Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores. Journal of Animal Ecology, 84, 590-603.

Narazaki, T., Sato, K., Abernathy, K. J., Marshall, G. J., & Miyazaki, N. (2009). Sea turtles compensate deflection of heading at the sea surface during directional travel. Journal of Experimental Biology, 212, 4019-4026.

Narazaki, T., Sato, K., Abernathy, K. J., Marshall, G. J., Miyazaki, N. (2013). Loggerhead turtles (Caretta caretta) use vision to forage on gelatinous prey in mid-water. PLOS ONE , 8, e66043. doi:10.1371/journal.pone.0066043.

Narazaki, T., Sato, K. and Miyazaki, N. (2015). Summer migration to temperate foraging habitats and active winter diving of juvenile loggerhead turtles Caretta caretta in the western North Pacific. Marine Biology, 162, 1251-1263.

Nishizawa. H., Narazaki. T., Fukuoka. T., Sato. K., Hamabata. T., Kinoshita. M., Arai, N. (2014a). Genetic composition of loggerhead turtle feeding aggregations: migration patterns in the North Pacific. Endangered Species Research, 24, 85-93.

Nishizawa. H., Narazaki. T., Fukuoka. T., Sato. K., Hamabata. T., Kinoshita. M., Arai, N. (2014b). Juvenile green turtles on the northern edge of their range: mtDNA evidence of long-distance westward dispersals in the northern Pacific Ocean. Endangered Species Research, 24, 171-179.

Olson, D. B., Hitchcock, G. L., Mariano, A. J., Ashjian, C. J., Peng, G., Nero, R. W., and Podestá, G. P. (1994). Life on the edge: marine life and fronts. Oceanography, 7, 52-60.

Okuyama, J., Kitagawa, T., Zenimoto, K., Kimura, S., Arai, N., Sasai, Y., and Sasaki, H. (2011). Trans-Pacific dispersal of loggerhead turtle hatchlings inferred from numerical simulation modeling. Marine Biology, 158, 2055-2063.

Ott, B. D., and Secor, S. M. (2007). Adaptive regulation of digestive performance in the genus Python. Journal of Experimental Biology, 210, 340-356.

Paladino, F. V., O'Connor, M. P., and Spotila, J. R. (1990). Metabolism of leatherback turtles, gigantothermy, and thermoregulation of dinosaurs. Nature, 344, 858.

Penick, D. N., Paladino, F. V., Steyermark, A. C. and Spotila, J. R. (1996). Thermal dependence of tissue metabolism in the green turtle, Chelonia mydas. Comparative Biochemistry and Physiology Part A: Physiology, 113, 293-296.

Percival, D. B. (1995). On estimate of the wavelet variance. Biometrika, 82, 619-631.

Pinet, P. R. (2006). Invitation to Oceanography, 4th edn. Burlington, US: Jones and Bartlett Learning.

Plötz, J., Bornemann, H., Knust, R., Schröder, A., & Bester, M. (2002). Foraging behaviour of Weddell seals, and its ecological implications. In Ecological Studies in the Antarctic Sea Ice Zone (pp. 148-156). Springer, Berlin, Heidelberg.

Ponganis, P. J., Kooyman, G. L., Starke, L. N., Kooyman, C. A., & Kooyman, T. G. (1997).

Post-dive blood lactate concentrations in emperor penguins, Aptenodytes forsteri. Journal of Experimental Biology, 200, 1623-1626.

Ponganis, P. J., Stockard, T. K., Meir, J. U., Williams, C. L., Ponganis, K. V., Van Dam, R.P., & Howard, R. (2007). Returning on empty: extreme blood O2 depletion underlies dive capacity of emperor penguins. Journal of Experimental Biology, 210, 4279-4285.

Prange, H. D. (1976). Energetics of swimming of a sea turtle. Journal of Experimental Biology, 64, 1-12.

Prange, H. D. and Jackson, D. C. (1976). Ventilation, gas exchange and metabolic scaling of a sea turtle. Respiration Physiology, 27, 369-377.

Rhodin, A. G., Ogden, J. A., and Conlogue, G. J. (1981). Chondro-osseous morphology of Dermochelys coriacea, a marine reptile with mammalian skeletal features. Nature, 290, 244.

Ribak, G., Weihs, D., and Arad, Z. (2005). Submerged swimming of the great cormorant Phalacrocorax carbo sinensis is a variant of the burst-and-glide gait. Journal of Experimental Biology, 208, 3835-3849.

Roden, G. I. (1980). On the subtropical frontal zone north of Hawaii during winter. Journal of Physical Oceanography, 10, 342-362.

Ropert-Coudert, Y., Sato, K., Kato, A., Charrassin, J. B., Bost, C. A., Maho, Y. L., and Naito, Y. (2000). Preliminary investigations of prey pursuit and capture by king penguins at sea. Polar Bioscience, 13, 101-112.

Rubinoff, I., Graham, J. B., and Motta, J. (1986). Diving of the sea snake Pelamis platurus in the Gulf of Panamá. Marine Biology, 91, 181-191.

Sakamoto, K. Q., Sato, K., Ishizuka, M., Watanuki, Y., Takahashi, A., Daunt, F., Wanless, S. (2009). Can ethograms be automatically generated using body acceleration data from freeranging birds? PLOS ONE, 4:e5379.

Sale, A., Luschi, P., Mencacci, R., Lambardi, P., Hughes, G. R., Hays, G. C., et. al. and Papi, F. (2006). Long-term monitoring of leatherback turtle diving behaviour during oceanic movements. Journal of Experimental Marine Biology and Ecology, 328, 197-210.

佐藤克⽂ (1995). 産卵期アカウミガメの海洋における体温決定機構に関する研究. 博⼠学位論⽂, 京都⼤学.

佐藤克⽂ (2012). 潜⽔. ウミガメの⾃然史 (⻲崎直樹 編) . 東京⼤学出版会, 165-194.

Sato, K. (2014). Body temperature stability achieved by the large body mass of sea turtles. Journal of Experimental Biology, 217, 3607-3614.

佐藤克⽂, ⼤槻真理⼦, 盛⽥孝⼀, ⿊沢正隆, ⾼⽥順⼀ (2007). 海象・気象観測結果 (2006 年度版) . 東京⼤学海洋研究所国際沿岸海洋研究センター報告書, 32 ,37-47.

Sato, K., Matsuzawa, Y., Tanaka, H., Bando, T., Minamikawa, S., Sakamoto, W., and Naito, Y. (1998). Internesting intervals for loggerhead turtles, Caretta caretta, and green turtles, Chelonia mydas, are affected by temperature. Canadian Journal of Zoology, 76, 1651-1662.

Sato, K., Naito, Y., Kato, A., Niizuma, Y., Watanuki, Y., Charrassin, J. B., C.-A. Bost, Handrich, Y. and Le Maho, Y. (2002). Buoyancy and maximal diving depth in penguins. Journal of Experimental Biology, 205, 1189-1197.

Sato, K., Sakamoto, W., Matsuzawa, Y., Tanaka, H., and Naito, Y. (1994). Correlation between stomach temperatures and ambient water temperatures in free-ranging loggerhead turtles, Caretta caretta. Marine Biology, 118, 343-351.

Sato, K., Sakamoto, W., Matsuzawa, Y., Tanaka, H., Minamikawa, S., and Naito, Y. (1995). Body temperature independence of solar radiation in free-ranging loggerhead turtles, Caretta caretta, during internesting periods. Marine Biology, 123, 197-205.

Sato, K., Shiomi, K., Marshall, G., Kooyman, G. L. and Ponganis, P. J. (2011). Stroke rates and diving air volumes of emperor penguins: implications for dive performance. Journal of Experimental Biology, 214, 2854-2863.

Sato, K., Shiomi, K., Watanabe, Y., Watanuki, Y., Takahashi, A., and Ponganis, P. J. (2009).

Scaling of swim speed and stroke frequency in geometrically similar penguins: they swim optimally to minimize cost of transport. Proceedings of the Royal Society B: Biological Sciences, 277, 707-714.

Sato, K., Watanuki, Y., Takahashi, A., Miller, P. J., Tanaka, H., Kawabe, R., et. al. and Mitani, Y. (2007). Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Proceedings of the Royal Society B: Biological Sciences, 274, 471-477.

Seminoff, J.A. (2004). Chelonia mydas. The IUCN Red List of Threatened Species 2004: e.T4615A11037468.http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T4615A11037468.en.

Schmidt-Nielsen, K. (1984). Scaling: why is animal size so important? Cambridge, UK: Cambridge University Press.

Schmidt-Nielsen, K. (1997). Animal physiology: adaptation and environment. Cambridge University Press.

Schreer, J. F., and Kovacs, K. M. (1997). Allometry of diving capacity in air-breathing vertebrates. Canadian Journal of Zoology, 75, 339-358.

Secor, S. M., & Diamond, J. (1997). Determinants of the postfeeding metabolic response of Burmese pythons, Python molurus. Physiological Zoology, 70, 202-212.

Secor, S. M. (2008). Digestive physiology of the Burmese python: broad regulation of integrated performance. Journal of Experimental Biology, 211, 3767-3774.

Secor, S. M., and Diamond, J. M. (2000). Evolution of regulatory responses to feeding in snakes. Physiological and Biochemical Zoology, 73, 123-141.

Seebacher, F., Murray, S. A., Else, P. L. (2009). Thermal acclimation and regulation of metaboism in a reptile (Crocodylus porosus): The importance of transcriptional mechanisms and membrane composition. Physiological Biochemical Zoology, 82. 766-775.

Shiomi, K., Sato, K., Mitamura, H., Arai, N., Naito, Y., & Ponganis, P. J. (2008). Effect of ocean current on the dead-reckoning estimation of 3-D dive paths of emperor penguins. Aquatic Biology, 3, 265-270.

Skrovan, R. C., Williams, T. M., Berry, P. S., Moore, P. W., and Davis, R. W. (1999). The diving physiology of bottlenose dolphins (Tursiops truncatus). II. Biomechanics and changes in buoyancy at depth. Journal of Experimental Biology, 202, 2749-2761.

Snover, M. L., and Hohn, A. A. (2004). Validation and interpretation of annual skeletal marks in loggerhead (Caretta caretta) and Kemp’s ridley (Lepidochelys kempii) sea turtles. Fishery Bulletin, 102, 682-692.

Southwood, A. L., Andrews, R. D., Paladino, F. V., and Jones, D. R. (2005). Effects of diving and swimming behavior on body temperatures of Pacific leatherback turtles in tropical seas. Physiological and Biochemical Zoology, 78, 285-297.

Southwood, A. L., Darveau, C. A. and Jones, D. R. (2003). Metabolic and cardiovascular adjustments of juvenile green turtles to seasonal changes in temperature and photoperiod. Journal of Experimental Biology, 206, 4521-4531.

Spotila, J. R., Lommen, P. W., Bakken, G. S., and Gates, D. M. (1973). A mathematical model for body temperatures of large reptiles: implications for dinosaur ecology. The American Naturalist, 107, 391-404.

Standora, E. A., Spotila, J. R., & Foley, R. E. (1982). Regional endothermy in the sea turtle, Chelonia mydas. Journal of Thermal Biology, 7, 159-165.

Thomson, J. A., Cooper, A. B., Burkholder, D. A., Heithaus, M. R., and Dill, L. M. (2012). Heterogeneous patterns of availability for detection during visual surveys: spatiotemporal variation in sea turtle dive–surfacing behaviour on a feeding ground. Methods in Ecology and Evolution, 3, 378-387.

Todd Jones, T., Van Houtan, K. S., Bostrom, B. L., Ostafichuk, P., Mikkelsen, J., Tezcan, E., ... & Seminoff, J. A. (2013). Calculating the ecological impacts of animal‐borne instruments on aquatic organisms. Methods in Ecology and Evolution, 4, 1178-1186.

Torrence, C., Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79, 61-78.

Ultsch, G. R. (2006). The ecology of overwintering among turtles: where turtles overwinter and its consequences, Biological Reviews, 81, 339-367.

Valente, A. L., Marco, I., Parga, M. L., Lavin, S., Alegre, F., and Cuenca, R. (2008). Ingesta passage and gastric emptying times in loggerhead sea turtles (Caretta caretta). Research in Veterinary Science, 84, 132-139.

Van Dam, R. P., and Diez, C. F. (1996). Diving behavior of immature hawksbills (Eretmochelys imbricata) in a Caribbean cliff-wall habitat. Marine Biology, 127, 171-178.

Vogel, S. (1994). Life in moving fluids: the physical biology of flow. Princeton University Press.

Wallace, B. P., DiMatteo, A. D., Hurley, B. J., Finkbeiner, E. M., Bolten, A. B., Chaloupka, M. Y., et. al. and Bourjea, J. (2010). Regional management units for marine turtles: a novel framework for prioritizing conservation and research across multiple scales. PLOS ONE, 5, e15465.

Wallace, B. P., and Jones, T. T. (2008). What makes marine turtles go: a review of metabolic rates and their consequences. Journal of Experimental Marine Biology and Ecology, 356, 8-24.

Wallace, B.P., Tiwari, M. and Girondot, M. (2013). Dermochelys coriacea. The IUCN Red List of Threatened Species 2013: e.T6494A43526147. http: //dx.doi.org/10.2305/ IUCN.UK.2013-2.RLTS.T6494A43526147.en. Downloaded on 04 January 2020.

Wallace, B. P., Williams, C. L., Paladino, F. V., Morreale, S. J., Lindstrom, R. T., and Spotila, J. R. (2005). Bioenergetics and diving activity of internesting leatherback turtles Dermochelys coriacea at Parque Nacional Marino Las Baulas, Costa Rica. Journal of Experimental Biology, 208, 3873-3884.

Ward, P. (1983). The extinction of the ammonites. Scientific American, 249, 136-148.

Watanabe, K. K., Hatase, H., Kinoshita, M., Omuta, K., Bando, T., Kamezaki, N., et. al. and Takeshita, H. (2011). Population structure of the loggerhead turtle Caretta caretta, a large marine carnivore that exhibits alternative foraging behaviors. Marine Ecology Progress Series, 424, 273-283.

Watanabe, Y., Baranov, E. A., Sato, K., Naito, Y., and Miyazaki, N. (2004). Foraging tactics of Baikal seals differ between day and night. Marine Ecology Progress Series, 279, 283-289.

Watanabe, Y., Baranov, E. A., Sato, K., Naito, Y., and Miyazaki, N. (2006). Body density affects stroke patterns in Baikal seals. Journal of Experimental Biology, 209, 3269-3280.

Watanabe, Y. Y., Goldman, K. J., Caselle, J. E., Chapman, D. D., and Papastamatiou, Y. P. (2015). Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes. Proceedings of the National Academy of Sciences, 112, 6104-6109.

Watanabe, Y. Y., Sato, K., Watanuki, Y., Takahashi, A., Mitani, Y., Amano, M., et. al. and Miyazaki, N. (2011). Scaling of swim speed in breath‐hold divers. Journal of Animal Ecology, 80, 57-68.

West, G. B., Brown, J. H., and Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122-126.

White, C. R., Phillips, N. F., and Seymour, R. S. (2005). The scaling and temperature dependence of vertebrate metabolism. Biology Letters, 2, 125-127.

Wibbels, T. and Bevan, E. (2019). Lepidochelys kempii. The IUCN Red List of Threatened Species 2019: e.T11533A155057916. Downloaded on 04 January 2020.

Wilson, R. P., Liebsch, N., Davies, I. M., Quintana, F., Weimerskirch, H., Storch, S., et. al. and Zimmer, I. (2007). All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 193-210.

Witherington, B. (2002). Ecology of neonate loggerhead turtles inhabiting lines of downwelling near a Gulf Stream front. Marine Biology, 140, 843-853.

Withers, P. C. (1977). Measurement of VO2, VCO2, and evaporative water loss with a flow through-mask, Journal of Applied Physiology, 42, 120-123.

Wyneken, J. (1991). Comparisons of oxygen utilization by hatchling loggerhead, greens and leatherbacks during the swimming frenzy: sprinting vs. marathon strategies re-visited. NOAA Tech Memo NMFS-SEFSC, 232, 131-132.

Wyneken, J. (1997). Sea turtle locomotion: mechanisms, behavior, and energetics. In: Lutz PL, Musick JA, (Eds.), The Biology of Sea Turtles volⅠ, CRC Press, 165-198.

Yntema, C. L., and Mrosovsky, N. (1980). Sexual differentiation in hatchling loggerheads (Caretta caretta) incubated at different controlled temperatures. Herpetologica, 33-36.

Zangeril, R. (1953). The vertebrate fauna of the Selma Formation of Alabama. Part 3. The turtles of the family Protostegidae. Part 4. The turtles od the family Toxochelyidae. Fieldiana, Geology Memoirs, 3, 61-277.

Zangeril, R. (1980). The vertebrate fauna of the Selma Formation of Alabama. Part 5. An advanced cheloniid sea turtle, Fieldiana, Geologu Memoirs, 3, 281-312.

Zar, J. H. (1998). Biostatistical Analysis. 4th ed. New Jersey, Prentice Hall.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る