リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Genetic Evidence for the Involvement of Mismatch Repair Proteins, PMS2 and MLH3, in a Late Step of Homologous Recombination」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Genetic Evidence for the Involvement of Mismatch Repair Proteins, PMS2 and MLH3, in a Late Step of Homologous Recombination

Md, Maminur Rahman 京都大学 DOI:10.14989/doctor.k23114

2021.03.23

概要

DNA double-strand breaks (DSBs) are highly cytotoxic lesions, posing a major threat to genomic integrity. DSBs can be repaired by two major pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ). Homologous recombination (HR) repairs DNA double-strand breaks using intact homologous sequences as template DNA. Broken DNA and intact homologous sequences form joint molecules (JMs), including Holliday junctions (HJs), as HR intermediates. The HJs can be processed to result in a crossover or a non-crossover (NCO) outcome, depending on the directionality of the cut made by structure-specific endonucleases, including MUS81 and GEN1. Several studies demonstrated that mismatch repair factors, such as MLH3 and PMS2, promote HR by processing JMs. However, it remains elusive how mismatch repair factors are involved in the processing of JMs in HR.

Here, to elucidate the mechanism of PMS2 and MLH3 in the HR, the MLH3 and PMS2 genes are disrupted using a human B cell line TK6 cells. These mutants showed impaired HR efficiency, 2.5 times decrease in the frequency of heteroallelic HR dependent repair. The impaired HR efficiency suggests their role in HR. Both PMS2 and MLH3 are endonucleases and to investigate the endonucleolytic function of PMS2 and MLH3 in HR endonucleolytic death point mutants are also generated. These mutants are denoted as MLH3DN/DN and PMS2EK/EK. Phenotypic analysis of these MLH3DN/DN and PMS2EK/EK mutants showed similar phenotypes like MLH3-/- and PMS2-/- cells respectively. These data indicate that MLH3 and PMS2 promote HR as an endonuclease. The MLH3DN/DN and PMS2EK/EK double mutants showed additive effect on the heteroallelic HR. MLH3DN/DN/PMS2EK/EK cells showed normal kinetics of γ-irradiation-induced Rad51 foci but a significant delay in the resolution of Rad51 foci. This mutant also showed a significant decrease in the number of cisplatin-induced sister chromatid exchange (SCE). The ectopic expression of the structure-specific endonucleases Gen1 HJ resolvase partially reversed the defective heteroallelic HR of MLH3DN/DN/PMS2EK/EK cells which suggest the role of PMS2 and MLH3 in Holliday Junction resolution. Taken together, it is proposed that MLH3 and PMS2 promote HR as endonucleases, most likely in the late step of Homologous recombination by processing JMs in mammalian somatic cells.

参考文献

1. Lyer, R. R., Pluciennik, A., Burdett, V., and Modrich, P. L. (2006) DNA mismatch repair: Functions and mechanisms. Chemical Reviews. 106, 302–323

2. Jiricny, J. (2006) The multifaceted mismatch-repair system. Nature reviews. Molecular cell biology. 7, 335–46

3. Hoffmann, E. R., and Borts, R. H. (2004) Meiotic recombination intermediates and mismatch repair proteins. Cytogenetic and Genome Research. 107, 232–248

4. Modrich, P., and Lahue, R. (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annual review of biochemistry. 65, 101–33

5. Kunkel, T. A., and Erie, D. A. (2015) Eukaryotic Mismatch Repair in Relation to DNA Replication. Annual Review of Genetics. 49, 291–313

6. Harfe, B. D., and Jinks-Robertson, S. (2000) DNA mismatch repair and genetic instability. Annual review of genetics. 34, 359–399

7. Kolodner, R. D., and Marsischky, G. T. (1999) Eukaryotic DNA mismatch repair. Current opinion in genetics & development. 9, 89–96

8. Marsischky, G. T., Filosi, N., Kane, M. F., and Kolodner, R. (1996) Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes and Development. 10, 407–420

9. Sia, E. A., Kokoska, R. J., Dominska, M., Greenwell, P., and Petes, T. D. (1997) Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Molecular and cellular biology. 17, 2851–8

10. Srivatsan, A., Bowen, N., and Kolodner, R. D. (2014) Mispair-specific recruitment of the Mlh1-Pms1 complex identifies repair substrates of the Saccharomyces cerevisiae Msh2- Msh3 complex. Journal of Biological Chemistry. 289, 9352–9364

11. Goellner, E. M., Putnam, C. D., and Kolodner, R. D. (2015) Exonuclease 1-dependent and independent mismatch repair. DNA repair. 32, 24–32

12. Flores-Rozas, H., and Kolodner, R. D. (1998) The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proceedings of the National Academy of Sciences of the United States of America. 95, 12404–9

13. N Matton 1, J Simonetti, K. W. (2000) Identification of mismatch repair protein complexes in HeLa nuclear extracts and their interaction with heteroduplex DNA. Journal of Biological Chemistry, 275, 17808-17813.

14. Gueneau, E., Dherin, C., Legrand, P., Tellier-Lebegue, C., Gilquin, B., Bonnesoeur, P., Londino, F., Quemener, C., Le Du, M.-H., Márquez, J. a, Moutiez, M., Gondry, M., Boiteux, S., and Charbonnier, J.-B. (2013) Structure of the MutLα C-terminal domain reveals how Mlh1 contributes to Pms1 endonuclease site. Nature structural & molecular biology. 10.1038/nsmb.2511

15. Kadyrov, F. A., Dzantiev, L., Constantin, N., and Modrich, P. (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell. 126, 297–308

16. de Wind, N., Dekker, M., Berns, A., Radman, M., and te Riele, H. (1995) Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell. 82, 321–330

17. Elliott, B., and Jasin, M. (2001) Repair of Double-Strand Breaks by Homologous Recombination in Mismatch Repair-Defective Mammalian Cells. 21, 2671–2682

18. Sharma, S., Doherty, K. M., and Brosh, R. M. (2006) Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochemical Journal. 398, 319–337

19. Bannister, L. A., Waldman, B. C., and Waldman, A. S. (2004) Modulation of error-prone double-strand break repair in mammalian chromosomes by DNA mismatch repair protein Mlh1. DNA Repair. 10.1016/j.dnarep.2004.01.001

20. Shibata, A., Conrad, S., Birraux, J., Geuting, V., Barton, O., Ismail, A., Kakarougkas, A., Meek, K., Taucher-Scholz, G., Löbrich, M., and Jeggo, P. a (2011) Factors determining DNA double-strand break repair pathway choice in G2 phase. The EMBO journal. 30, 1079–92

21. Zakharyevich, K., Tang, S., Ma, Y., and Hunter, N. (2012) Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase. Cell. 149, 334–347

22. Toledo, M., Sun, X., Brieño-Enríquez, M. A., Raghavan, V., Gray, S., Pea, J., Milano, C. R., Venkatesh, A., Patel, L., Borst, P. L., Alani, E., and Cohen, P. E. (2019) A mutation in the endonuclease domain of mouse MLH3 reveals novel roles for mutlγ during crossover formation in meiotic prophase I. PLoS Genetics. 10.1371/journal.pgen.1008177

23. Baker, S. M., Bronner, C. E., Zhang, L., Plug, A. W., Robatzek, M., Warren, G., Elliott, E. A., Yu, J., Ashley, T., Arnheim, N., Flavell, R. A., and Liskay, R. M. (1995) Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell. 82, 309–319

24. Baker, S. M., Plug, a W., Prolla, T. a, Bronner, C. E., Harris, a C., Yao, X., Christie, D. M., Monell, C., Arnheim, N., Bradley, a, Ashley, T., and Liskay, R. M. (1996) Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nature genetics. 13, 336–342

25. Edelmann, W., Cohen, P. E., Kane, M., Lau, K., Morrow, B., Bennett, S., Umar, A., Kunkel, T., Cattoretti, G., Chaganti, R., Pollard, J. W., Kolodner, R. D., and Kucherlapati, R. (1996) Meiotic pachytene arrest in MLH1-deficient mice. Cell. 85, 1125–1134

26. Lipkin, S. M., Moens, P. B., Wang, V., Lenzi, M., Shanmugarajah, D., Gilgeous, A., Thomas, J., Cheng, J., Touchman, J. W., Green, E. D., Schwartzberg, P., Collins, F. S., and Cohen, P. E. (2002) Meiotic arrest and aneuploidy in MLH3-deficient mice. Nature genetics. 31, 385–390

27. Svetlanov, A., Baudat, F., Cohen, P. E., and De Massy, B. (2008) Distinct functions of MLH3 at recombination hot spots in the mouse. Genetics. 178, 1937–1945

28. Fischer, J. M., Dudley, S., Miller, A. J., and Liskay, R. M. (2016) An intact Pms2 ATPase domain is not essential for male fertility. DNA Repair. 39, 46–51

29. Elda Cannavo, Aurore Sanchez, Roopesh Anand, Lepakshi Ranjha, Jannik Hugener, Céline Adam, Ananya Acharya, Nicolas Weyland, Xavier Aran-Guiu, Jean-Baptiste Charbonnier, Eva R. Hoffmann, Valérie Borde, J. M. & P. C. (2020) Regulation of the MLH1–MLH3 endonuclease in meiosis

30. Kulkarni, D., Owens, S., Honda, M., Ito, M., Yang, Y., Corrigan, M., Chen, L., Quan, A. and Hunter, N. (2020) PCNA activates the MutLγ endonuclease to promote meiotic crossing over. Nature. https://doi.org/10.1038/s41586-020-2645-6

31. Takeda, S., Nakamura, K., Taniguchi, Y., and Paull, T. T. (2007) Ctp1/CtIP and the MRN Complex Collaborate in the Initial Steps of Homologous Recombination. Molecular Cell. 28, 351–352

32. Bernstein, K. A., and Rothstein, R. (2009) At Loose Ends: Resecting a Double-Strand Break. Cell. 137, 807–810

33. Mehta, A., and Haber, J. E. (2014) Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harbor Perspectives in Biology. 6, a016428.

34. Sugawara, N., Wang, X., and Haber, J. E. (2003) In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Molecular Cell. 12, 209–219

35. Dion, V., Kalck, V., Horigome, C., Towbin, B. D., and Gasser, S. M. (2012) Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nature Cell Biology. 14, 502–509

36. Schwartz, E. K., and Heyer, W. D. (2011) Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma. 120, 109–127

37. West, S. C., Blanco, M. G., Chan, Y. W., Matos, J., Sarbajna, S., and Wyatt, H. D. M. (2015) Resolution of Recombination Intermediates: Mechanisms and Regulation. Cold Spring Harbor Symposia on Quantitative Biology. 80, 103-109

38. Wyatt, H. D. M., Laister, R. C., Martin, S. R., Arrowsmith, C. H., and West, S. C. (2017) The SMX DNA Repair Tri-nuclease. Molecular Cell. 65, 848-860.e11

39. Kikuchi, K., Narita, T., Pham, V. T., Iijima, J., Hirota, K., Keka, I. S., Mohiuddin, Okawa, K., Hori, T., Fukagawa, T., Essers, J., Kanaar, R., Whitby, M. C., Sugasawa, K., Taniguchi, Y., Kitagawa, K., and Takeda, S. (2013) Structure-specific endonucleases Xpf and Mus81 play overlapping but essential roles in DNA repair by homologous recombination. Cancer Research. 73, 4362–4371

40. Abraham, J., Lemmers, B., Hande, M. P., Moynahan, M. E., Chahwan, C., Ciccia, A., Essers, J., Hanada, K., Chahwan, R., Khaw, A. K., McPherson, P., Shehabeldin, A., Laister, R., Arrowsmith, C., Kanaar, R., West, S. C., Jasin, M., and Hakem, R. (2003) Eme1 is involved in DNA damage processing and maintenance of genomic stability in mammalian cells. EMBO Journal. 22, 6137–6147

41. McPherson, J. P., Lemmers, B., Chahwan, R., Pamidi, A., Migon, E., Matysiak-Zablocki, E., Moynahan, M. E., Essers, J., Hanada, K., Poonepalli, A., Sanchez-Sweatman, O., Khokha, R., Kanaar, R., Jasin, M., Hande, M. P., and Hakem, R. (2004) Involvement of mammalian Mus81 in genome integrity and tumor suppression. Science. 304, 1822–1826

42. Castor, D., Nair, N., Déclais, A. C., Lachaud, C., Toth, R., Macartney, T. J., Lilley, D. M. J., Arthur, J. S. C., and Rouse, J. (2013) Cooperative control of holliday junction resolution and DNA Repair by the SLX1 and MUS81-EME1 nucleases. Molecular Cell. 52, 221–233

43. Wang Xiaowen, Wang Herui, Guo Bin, Zhang Ya, Gong Yinv, Zhang Chi, Xu Hong, and W. X. (2016) Gen1 and Eme1 Play Redundant Roles in DNA Repair and Meiotic Recombination in Mice. DNA and Cell Biology. 35, 585-590

44. Kaur, H., DeMuyt, A., and Lichten, M. (2015) Top3-Rmi1 DNA single-strand decatenase is integral to the formation and resolution of meiotic recombination intermediates. Molecular Cell. 57, 583–594

45. Tang, S., Wu, M. K. Y., Zhang, R., and Hunter, N. (2015) Pervasive and essential roles of the top3-rmi1 decatenase orchestrate recombination and facilitate chromosome segregation in meiosis. Molecular Cell. 57, 607–621

46. Takata, M., Sasaki, M. S., Sonoda, E., Morrison, C., Hashimoto, M., Utsumi, H., Yamaguchi-Iwai, Y., Shinohara, A., and Takeda, S. (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO Journal. 17, 5497–5508

47. Keka, I. S., Mohiuddin, Maede, Y., Rahman, M. M., Sakuma, T., Honma, M., Yamamoto, T., Takeda, S., and Sasanuma, H. (2015) Smarcal1 promotes double-strand-break repair by nonhomologous end-joining. Nucleic Acids Research. 10.1093/nar/gkv621

48. Murai, J., Huang, S. Y. N., Das, B. B., Renaud, A., Zhang, Y., Doroshow, J. H., Ji, J., Takeda, S., and Pommier, Y. (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Research. 72, 5588–5599

49. Fowler, P., Whitwell, J., Jeffrey, L., Young, J., Smith, K., and Kirkland, D. (2010) Cadmium chloride, benzo[a]pyrene and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in the human lymphoblastoid cell line TK6 at Covance laboratories, Harrogate UK in support of OECD draft Test Guideline 487. Mutation Research. 702, 171–174

50. Honma, M., Izumi, M., Sakuraba, M., Tadokoro, S., Sakamoto, H., Wang, W., Yatagai, F., and Hayashi, M. (2003) Deletion, Rearrangement, and Gene Conversion; Genetic Consequences of Chromosomal Double-Strand Breaks in Human Cells. Environmental and Molecular Mutagenesis. 42, 288–298

51. Neuwirth, E. a H., Honma, M., and Grosovsky, A. J. (2007) Interchromosomal crossover in human cells is associated with long gene conversion tracts. Molecular and cellular biology. 27, 5261–5274

52. Yoshimoto, K., Mizoguchi, M., Hata, N., Murata, H., Hatae, R., Amano, T., Nakamizo, A., and Sasaki, T. (2012) Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma. Frontiers in oncology. 2, 186

53. Cejka, P., Stojic, L., Mojas, N., Russell, A. M., Heinimann, K., Cannavó, E., Di Pietro, M., Marra, G., and Jiricny, J. (2003) Methylation-induced G2/M arrest requires a full complement of the mismatch repair protein hMLH1. EMBO Journal. 22, 2245–2254

54. Kadyrov, F. A., Holmes, S. F., Arana, M. E., Lukianova, O. A., O’Donnell, M., Kunkel, T. A., and Modrich, P. (2007) Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. The Journal of biological chemistry. 282, 37181–90

55. Desch??nes, S. M., Tomer, G., Nguyen, M., Erdeniz, N., Juba, N. C., Sep??lveda, N., Pisani, J. E., and Michael Liskay, R. (2007) The E705K mutation in hPMS2 exerts recessive, not dominant, effects on mismatch repair. Cancer Letters. 249, 148–156

56. Nishant, K. T., Plys, A. J., and Alani, E. (2008) A mutation in the putative MLH3 endonuclease domain confers a defect in both mismatch repair and meiosis in Saccharomyces cerevisiae. Genetics. 179, 747–755

57. Kadyrova, L. Y., Gujar, V., Burdett, V., Modrich, P. L., and Kadyrov, F. A. (2020) Human MutLγ, the MLH1–MLH3 heterodimer, is an endonuclease that promotes DNA expansion. Proceedings of the National Academy of Sciences of the United States of America. 117, 3535–3542

58. Al-Sweel, N., Raghavan, V., Dutta, A., Ajith, V. P., Di Vietro, L., Khondakar, N., Manhart, C. M., Surtees, J. A., Nishant, K. T., and Alani, E. (2017) Mlh3 Mutations in Baker’S Yeast Alter Meiotic Recombination Outcomes By Increasing Noncrossover Events Genome- Wide, PLoS genetics, 13, e1007067

59. Shimizu, N., Akagawa, R., Takeda, S., and Sasanuma, H. (2020) The MRE11 nuclease promotes homologous recombination not only in DNA double-strand break resection but also in post-resection in human TK6 cells. Genome Instability & Disease. 1, 184–196

60. Hoa, N. N., Akagawa, R., Yamasaki, T., Hirota, K., Sasa, K., Natsume, T., Kobayashi, J., Sakuma, T., Yamamoto, T., Komatsu, K., Kanemaki, M. T., Pommier, Y., Takeda, S., and Sasanuma, H. (2015) Relative contribution of four nucleases, CtIP, Dna2, Exo1 and Mre11, to the initial step of DNA double-strand break repair by homologous recombination in both the chicken DT40 and human TK6 cell lines. Genes to Cells. 10.1111/gtc.12310

61. Fujita, M., Sasanuma, H., Yamamoto, K. N., Harada, H., Kurosawa, A., Adachi, N., Omura, M., Hiraoka, M., Takeda, S., and Hirota, K. (2013) Interference in DNA Replication Can Cause Mitotic Chromosomal Breakage Unassociated with Double-Strand Breaks. PLoS ONE

62. Wechsler, T., Newman, S., and West, S. C. (2011) Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature. 471, 642–646

63. Suzuki, T., Yasui, M., and Honma, M. (2016) Mutator Phenotype and DNA Double-Strand Break Repair in BLM Helicase-Deficient Human Cells. Molecular and Cellular Biology. 36, 2877–2889

64. Sonoda, E., Sasaki, M. S., Morrison, C., Yamaguchi-Iwai, Y., Takata, M., and Takeda, S. (1999) Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Molecular and cellular biology. 19, 5166–9

65. Wyatt, H. D. M., Sarbajna, S., Matos, J., and West, S. C. (2013) Coordinated actions of SLX1-SLX4 and MUS81-EME1 for holliday junction resolution in human cells. Molecular Cell. 52, 234–247

66. Jiricny, J. (2013) Postreplicative mismatch repair. Cold Spring Harbor Perspectives in Biology. 5, 1–23

67. Söding, J., Biegert, A., and Lupas, A. N. (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Research. 33, 244–248

68. Zimmermann, L., Stephens, A., Nam, S. Z., Rau, D., Kübler, J., Lozajic, M., Gabler, F., Söding, J., Lupas, A. N., and Alva, V. (2018) A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. Journal of Molecular Biology. 430, 2237–2243

69. Song, Y., Dimaio, F., Wang, R. Y. R., Kim, D., Miles, C., Brunette, T., Thompson, J., and Baker, D. (2013) High-resolution comparative modeling with RosettaCM. Structure. 21, 1735–1742

70. Lorenz, A., West, S. C., and Whitby, M. C. (2010) The human Holliday junction resolvase GEN1 rescues the meiotic phenotype of a Schizosaccharomyces pombe mus81 mutant. Nucleic acids research. 38, 1866–73

71. Chan, Y. W., and West, S. C. (2014) Spatial control of the GEN1 Holliday junction resolvase ensures genome stability. Nature communications. 5, 4844

72. Mohiuddin, Keka, I. S., Evans, T. J., Hirota, K., Shimizu, H., Kono, K., Takeda, S., and Hirano, S. (2014) A novel genotoxicity assay of carbon nanotubes using functional macrophage receptor with collagenous structure (MARCO)-expressing chicken B lymphocytes. Archives of Toxicology. 88, 145–160

73. Zeng, M., Narayanan, L., Xu, X. S., Prolla, T. A., Liskay, R. M., and Glazer, P. M. (2000) Ionizing radiation-induced apoptosis via separate Pms2- and p53-dependent pathways. Cancer Research. 60, 4889–4893

74. Shcherbakova, P. V, Hall, M. C., Lewis, M. S., Bennett, S. E., Martin, K. J., Bushel, P. R., Afshari, C. A., and Kunkel, T. A. (2001) Inactivation of DNA mismatch repair by increased expression of yeast MLH1. Molecular and cellular biology. 10.1128/MCB.21.3.940- 951.2001

75. Sanchez, A., Adam, C., Rauh, F., Duroc, Y., Ranjha, L., Lombard, B., Mu, X., Loew, D., Keeney, S., Cejka, P., Guérois, R., Klein, F., Charbonnier, J.-B., and Borde, V. (2020) Mechanism of in vivo activation of the MutLγ-Exo1 complex for meiotic crossover formation. bioRxiv. 10.1101/2019.12.16.876623

76. Chen, P. C., Dudley, S., Hagen, W., Dizon, D., Paxton, L., Reichow, D., Yoon, S. R., Yang, K., Arnheim, N., Liskay, R. M., and Lipkin, S. M. (2005) Contributions by MutL homologues Mlh3 and Pms2 to DNA mismatch repair and tumor suppression in the mouse. Cancer Research. 65, 8662–8670

77. Sarbajna, S., Davies, D., and West, S. C. (2014) Roles of SLX1-SLX4, MUS81-EME1, and GEN1 in avoiding genome instability and mitotic catastrophe. Genes and Development. 28, 1124–1136

78. Garner, E., Kim, Y., Lach, F. P., Kottemann, M. C., and Smogorzewska, A. (2013) Human GEN1 and the SLX4-Associated Nucleases MUS81 and SLX1 Are Essential for the Resolution of Replication-Induced Holliday Junctions. Cell Reports. 5, 207–215

79. West, S. C., and Chan, Y. W. (2017) Genome Instability as a Consequence of Defects in the Resolution of Recombination Intermediates. Cold Spring Harbor symposia on quantitative biology. 82, 207–212

80. Hodskinson, M. R. G., Silhan, J., Crossan, G. P., Garaycoechea, J. I., Mukherjee, S., Johnson, C. M., Sch??rer, O. D., and Patel, K. J. (2014) Mouse SLX4 Is a Tumor Suppressor that Stimulates the Activity of the Nuclease XPF-ERCC1 in DNA Crosslink Repair. Molecular Cell. 54, 472–484

81. Pamidi, A., Cardoso, R., Hakem, A., Matysiak-Zablocki, E., Poonepalli, A., Tamblyn, L., Perez-Ordonez, B., Hande, M. P., Sanchez, O., and Hakem, R. (2007) Functional interplay of p53 and Mus81 in DNA damage responses and cancer. Cancer Research. 67, 8527–8535

82. Wang, T. F., Kleckner, N., and Hunter, N. (1999) Functional specificity of MutL homologs in yeast: Evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proceedings of the National Academy of Sciences of the United States of America. 96, 13914–13919

83. Mohiuddin, M., Evans, T. J., Rahman, M. M., Keka, I. S., Tsuda, M., Sasanuma, H., and Takeda, S. (2018) SUMOylation of PCNA by PIAS1 and PIAS4 promotes template switch in the chicken and human B cell lines. Proceedings of the National Academy of Sciences of the United States of America. 10.1073/pnas.1716349115

84. Cermak, T., Doyle, E., and Christian, M. (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic acids …. 39, e82

85. Sakuma, T., Ochiai, H., Kaneko, T., Mashimo, T., Tokumasu, D., Sakane, Y., Suzuki, K., Miyamoto, T., Sakamoto, N., Matsuura, S., and Yamamoto, T. (2013) Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Scientific reports. 3, 3379

86. Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., and Zhang, F. (2013) Double nicking by RNA- guided CRISPR cas9 for enhanced genome editing specificity. Cell. 154, 1380–1389

87. Mohiuddin, M., Rahman, M. M., Sale, J. E., and Pearson, C. E. (2019) CtIP-BRCA1 complex and MRE11 maintain replication forks in the presence of chain terminating nucleoside analogs. Nucleic acids research. 10.1093/nar/gkz009

88. Mohiuddin, Kobayashi S, Keka IS, Guilbaud G, Sale J, Narita T, Abdel-Aziz HI, Wang X, Ogawa S, Sasanuma H, Chiu R,Oestergaard VH, Lisby M, T. S. (2016) The role of HERC2 and RNF8 ubiquitin E3 ligases in the promotion of translesion DNA synthesis in the chicken DT40 cell line. DNA Repair (Amst). . 40, 67-76.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る