リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「可積分系による離散曲線の変形とその応用」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

可積分系による離散曲線の変形とその応用

朴, 炯基 HYEONGKI, PARK パク, ヒョンギ 九州大学

2021.03.24

概要

可積分方程式は非線形偏微分方程式の一つの族であり、微分幾何学の理論と深く関係していることがよく知られている。また、可積分方程式による幾何学的な対象(曲線、曲面など)の運動をある性質を保ったまま離散化する研究が沢山されており、このような研究は通称、離散微分幾何学と呼ばれている。

この論文では主に可積分系と曲線の変形の関係を調べる。この論文の最初のパートでは、クライン幾何の一種類である中心アフィン幾何で可積分方程式である defocusing modified Korteweg-deVires(mKdV)方程式による平面曲線の変形を調べる。なお、中心アフィン幾何においての離散平面曲線を定式化し、Lotka-Volterra 方程式による離散平面曲線の変形を調べる。

論文の次のパートでは、可積分方程式による空間曲線の変形のリンク機構への応用を提案する。複数の剛体をヒンジで数珠状に結合した閉リンク機構には、Bricard6R や Bennett4R といったものが知られており、ある種の Bricard6R を任意個数のヒンジに拡張したリンク機構をカライドサイクルと呼ぶ。それらは、ちょうど1次元の自由度を持つ、ある種のエネルギーが任意の状態において一定値をとるといった、特異な性質を持ち、クルクルと回る特有な動きを持っている。今まではカライドサイクルはもちろん、ヒンジ機構自体が数学的にはあまり研究されてなかった。本論文ではヒンジ機構の数学的な解析方法を紹介し、特に、カライドサイクルを離散空間曲線としてモデリングする方法を提案する。さらに、可積分方程式である半離散 modified Korteweg-de Vries 方程式と半離散 sine-Gordon 方程式によるカライドサイクルの回転運動を調べる。

この論文の最後のパートでは、球面カライドサイクルと呼ばれる新しい図形を紹介する。これは4次元上の図形であり、3次元に射影するとカライドサイクルと似たような形を持ち、カライドサイクルと同じく、クルクルと回る運動を持つ。最後にこの図形の構成方法を紹介し、視覚化する。

この論文で使われている画像

参考文献

[1] J. Inoguchi, K. Kajiwara, N. Matsuura and Y. Ohta, Discrete mKdV and discrete sine-Gordon flows on discrete space curves, J. Phys. A: Math. Theor. 47 (2014), 235202.

[2] H. Furuhata, Surfaces in centroaffine geometry, RIMS kokyuroku, 1623(2009), 1–11.

[3] H. Park, K. Kajiwara, T. Kurose and N. Matsuura, Defocusing mKdV flow on centroaffine plane curves, JSIAM Lett. 10 (2018), 25–28.

[4] K. -S. Chou and C. Qu, Integrable equations arising from motions of plane cuves, Phys. D., 162 (2002), 9–33.

[5] H. Park, Explicit Formulas for Integrable Deformations of Plane Curves in Various Geometries, Master’s thesis, Kyushu University, 2018.

[6] A. Fujioka and T. Kurose, Hamiltonian formalism for the higher KdV flows on the space of closed complex equicentroaffine curves, Int. J. Geom. Meth- ods Mod. Phys. 07 (2010), 165.

[7] U. Pinkall, Hamiltonian flows on the space of star-shaped curves, Results Math. 27 (1995), 328–332.

[8] N. Matsuura, Discrete KdV and discrete modified KdV equations arising from motions of planar discrete curves, Int. Math. Res. Notices. 2012 (2012), 1681–1698.

[9] C. Rogers and W. K. Schief, Ba¨cklund and Darboux Transformations: Ge- ometry and Modern Applications in Soliton Theory, Cambridge Texts in Ap- plied Mathematics (Cambridge: Cambridge University Press, 2002).

[10] A. I. Bobenko and Y. B. Suris, Discrete Differential Geometry, American Mathematics Society, Providence, RI, 2008.

[11] S. Kaji, K. Kajiwara and H. Park Linkage Mechanisms Governed by Inte- grable Deformations of Discrete Space Curves, in: Nonlinear Systems and Their Remarkable Mathematical Structure, Vol. 2, CRC Press, 2019

[12] R. E. Goldstein and D. M. Petrich, The Korteweg-de Vreis hierarchy as dy- namics of closed curves in the plane, Phys. Rev. Lett. 67 (1991), 3203–3206.

[13] M. Hisakado, K. Nakayama and M. Wadati, Motion of discrete curves in the plane, J. Phys. Soc. Jpn. 64 (1995), 2390–2393.

[14] A. Doliwa and P. M. Santini, The integrable dynamic of a discrete curve, in: Symmetries and Integrability of Difference Equations, eds. D. Levi, L. Vinet and P. Winternitz, CRM Proceedings and Lecture Notes 9 (Providence: American Mathematical Society, 1996), 91–102.

[15] A. Doliwa and P. M. Santini, Geometry of discrete curves and lattices and in- tegrable difference equations, in: Discrete Integrable Geometry and Physics, eds. A. Bobenko and R. Seiler, Oxford Lecture Series in Mathematics and Its Applications 16 (Oxford: Clarendon Press, 1999), 139–154.

[16] U. Pinkall, B. Springborn and S. Weißmann, A new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flow, J. Phys. A: Math. Theor. 40 (2007), 12563–12576.

[17] J. Inoguchi, K. Kajiwara, N. Matsuura and Y. Ohta, Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves, J. Phys. A: Math. Theor. 45 (2012) 045206.

[18] J. Inoguchi, K. Kajiwara, N. Matsuura and Y. Ohta, Motion and Ba¨cklund transformations of discrete plane curves, Kyushu. J. Math. 66 (2012) 303– 324.

[19] S. Hirose, J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta, Discrete local induction equation, J. Integrable Syst. 4(1) (2019), xyz003, 43.

[20] K. -S. Chou and C. -Z. Qu, Integrable equations arising from motions of plane curves, Phys. D. 162 (2002), 9–33.

[21] K. -S. Chou and C. -Z. Qu, Integrable equations arising from motions of plane curves. II, J. Nonlinear Sci. 13 (2003), 487–517.

[22] K. -S. Chou and C. -Z. Qu, Motions of curves in similarity geometries and Burgers-mKdV hierarchies, Chaos Solitons Fractals. 19 (2004), 47–53.

[23] K. Kajiwara, T. Kuroda and N. Matsuura, Isogonal deformation of discrete plane curves and discrete Burgers hierarchy, Pac. J. Math. Ind. (2016), 8:3.

[24] R. M. Miura, Korteweg-de Vries Equation and Generalizations. I. A Re- markable Explicit Nonlinear Transformation, J. Math. Phys. 9 (1968), 1202– 1204.

[25] L. M. Bates and O. M. Melko On curves of constant torsion I, J. Geom.104(2) (2013), 213–227.

[26] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly and E. Grinspun, Dis- crete elastic rods, ACM Trans. Graph., 27(3) (2008), Article 63

[27] M. Boiti, F. Pempinelli and B. Prinari, Integrable discretization of the sine- Gordon equation, Inverse Problems 18(5) (2002), 1309–1324.

[28] R. Byrnes, Metamorphs: Transforming Mathematical Surprises, Tarquin Pubns, 1999.

[29] A. M. Calini, T. A. Ivey, Ba¨cklund transformations and knots of constant torsion, J. Knot Theory Ram., 7 (1998), 719–746.

[30] A. M. Calini an T. A. Ivey, Topology and sine-Gordon evolution of constant torsion curves, Phys. Lett. A, 254(3–4) (1999), 170–178.

[31] Z. You and Y. Chen, Motion Structures: Deployable Structural Assemblies of Mechanisms, Taylor & Francis, 2011.

[32] G. Darboux, Lec¸cons sur la The´orie Ge´ne´rale des Surfaces, Gauthier- Villars, 1917.

[33] J. Denavit and R. S. Hartenberg, A kinematic notation for lower-pair mecha- nisms based on matrices, Trans ASME J. Appl. Mech. 23 (1955), 215–221.

[34] A. Doliwa and P. M. Santini, An elementary geometric characterization of the integrable motions of a curve, Phys. Lett. A, 185 (1994), 373–384.

[35] A. Doliwa and P. M. Santini, Integrable dynamics of a discrete curve and the Ablowitz-Ladik hierarchy, J. Math. Phys. 36 (1995), 1259–1273.

[36] M. Farber, Invitation to Topological Robotics, EMS Zurich, 2008.

[37] P. W. Fowler and S. D. Guest, A symmetry analysis of mechanisms in rotating rings of tetrahedra, Proc. R. Soc. A 461 (2005), 1829–1846.

[38] E. C. Freuder, Synthesizing constraint expressions, Commun. ACM 21(11) (1978), 958–966.

[39] H. Hasimoto, A soliton on a vortex filament, J. Fluid. Mech. 51 (1972), 477– 485.

[40] M. Hisakado and M. Wadati, Moving discrete curve and geometric phase, Phys. Lett. A, 214 (1996), 252–258.

[41] T. Hoffmann, Discrete Differential Geometry of Curves and Surfaces, MI Lecture Notes vol. 18, Kyushu University, 2009.

[42] R. M. Miura, Korteweg-de Vries Equation and Generalizations. I. A Re- markable Explicit Nonlinear Transformation, J. Math. Phys. 9 (1968), 1202– 1204.

[43] T. A. Ivey, Minimal Curves of Constant Torsion, Proc. AMS, 128(7) (2000), 2095–2103.

[44] T. Jorda´n, C. Kira´ly and S. Tanigawa, Generic global rigidity of body-hinge frameworks, J. Comb. Theory B, 117 (2016), 59–76.

[45] S. Kaji, A closed linkage mechanism having the shape of a discrete Mo¨bius strip, the Japan Society for Precision Engineering Spring Meeting Sympo- sium Extended Abstracts, 62–65, 2018. The original is in Japanese but an English translation is available at arXiv:1909.02885.

[46] S. Kaji, Geometry of the moduli space of a closed linkage: a Maple code, available at https://github.com/shizuo-kaji/Kaleidocycle

[47] S. Kaji, S. Scho¨nke, M. Grunwald and E. Fried, Mo¨bius Kaleidocycle, patent filed, JP2018-033395, 2018.

[48] M. Kapovich and J. Millson, Universality theorems for configuration spaces of planar linkages, Topology 41(6) (2002), 1051–1107.

[49] N. Katoh and S. Tanigawa, A proof of the molecular conjecture, Discrete Comput Geom., 45 (2011), 647–700.

[50] K. Klenin and J. Langowski J, Computation of writhe in modeling of super- coiled DNA, Biopolymers, 54 (2000), 307–317.

[51] G. L. Lamb Jr., Solitons and the motion of helical curves, Phys. Rev. Lett.37 (1976), 235–237.

[52] J. Langer and R. Perline, Curve motion inducing modified Korteweg-de Vries systems, Phys. Lett. A, 239 (1998), 36–40.

[53] J. Langer and D. A. Singer, Lagrangian aspects of the Kirchhoff elastic rod, SIAM Review 38(4) (1996), 605–618.

[54] S. M. LaValle, Planning algorithms, Cambridge University Press, 2006.

[55] M. L. S. Magalha˜es and M. Pollicott, Geometry and dynamics of planar linkages, Comm. Math. Phys., 317(3) (2013), 615–634.

[56] A. F. Mo¨bius, Lehrbuch der Statik, 2, Leipzig, 1837.

[57] M. S. Moses and M. K. Ackerman and G. S. Chirikjian, ORIGAMI ROTORS: Imparting continuous rotation to a moving platform using compliant flexure hinges, Proc. IDETC/CIE 2013.

[58] A. Mu¨ller, Representation of the kinematic topology of mechanisms for kine- matic analysis, Mech. Sci., 6 (2015), 1–10.

[59] A. Mu¨ller, Local kinematic analysis of closed-loop linkages – mobility, sin- gularities, and shakiness, J. Mechanisms Robotics 8(4) (2016), 041013.

[60] K. Nakayama, Elementary vortex filament model of the discrete nonlinear Schro¨dinger equation, J. Phys. Soc. Jpn. 76 (2007), 074003.

[61] K. Nakayama, H. Segur and M. Wadati, Integrability and the motions of curves, Phys. Rev. Lett. 69 (1992), 2603–2606.

[62] K. Nishinari, A discrete model of an extensible string in three-dimensional space, J. Appl. Mech. 66 (1999), 695–701.

[63] S. J. Orfanidis S J, Discrete sine-Gordon equations, Phys. Rev. D, 18(10) (1978), 3822–3827.

[64] S. J. Orfanidis, Sine-Gordon equation and nonlinear σ model on a lattice, Phys. Rev. D, 18(10) (1978), 3828–3832.

[65] C. Rogers and W. K. Schief, Ba¨cklund and Darboux Transformations: Ge- ometry and Modern Applications in Soliton Theory, Cambridge University Press, Cambridge, 2002.

[66] K. Sato and R. Tanaka, Solitons in one-dimensional mechanical linkagePhys. Rev. E, 98 (2018).

[67] D. Schattschneider and W. M. Walker, M. C. Escher Kaleidocycles, Pomegranate Communications: Rohnert Park, CA, 1987. (TASCHEN; Reprint edition, 2015).

[68] A. J. Sommese, J. D. Hauenstein, D. J. Bates and C. W. Wampler, Numeri- cally Solving Polynomial Systems with Bertini, Software, Environments, and Tools, Vol. 25, SIAM, Philadelphia, PA, 2013.

[69] L. J. Weiner, Closed curves of constant torsion, Arch. Math. (Basel) 25(1974), 313–317.

[70] L. J. Weiner, Closed curves of constant torsion II, Proc. AMS, 67(2) (1977).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る