リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Impact of sleep-disordered breathing on glucose metabolism among individuals with a family history of diabetes: the Nagahama study」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Impact of sleep-disordered breathing on glucose metabolism among individuals with a family history of diabetes: the Nagahama study

Minami, Takuma 京都大学 DOI:10.14989/doctor.k23097

2021.03.23

概要

【研究の目的】糖尿病家族歴(family history of diabetes; FHD)はⅡ型糖尿病発症の危険因子として認められている。睡眠呼吸障害(sleep disordered breathing; SDB)がFHD を有する者の糖尿病有病率の増加に関連しているか否かについては明らかでない。

【方法】7,477 人の研究参加者において、携帯型加速度計で客観的睡眠時間を測定し、基準値に対して3%酸素飽和度の低下を有意として睡眠1 時間あたり、15 回以上の低下有を中等症以上のSDB、5 回未満をSDB 無とした。HbA1c ≥6.5%、または/もしくは糖尿病に対する投薬治療群を糖尿病有りと定義とした。調査時点の糖尿病の有病率に加えて、SDBを評価する以前の約5 年間の期間内の発症した糖尿病の有病率も調査した。

【結果】7,477 名の参加者(平均年齢 57.9 [範囲 34.2-80.7、標準偏差 12.1] 歳;女性が67.7%)において1,569 名がFHD を有していた。FHD 陽性者の糖尿病の有病率は、中等症以上の SDB 群でSDB 無群よりも有意に高値であった(中等症以上SDB 群 対 SDB 無群:参加者全体、29.3% 対 3.3%、P <0.001;女性、32.6% 対 1.9%, P <0.001;男性、26.2%対 11.7%、P = 0.037)。多変量解析では中等症以上のSDB はFHD 陽性の女性においてのみ糖尿病の有病率の上昇と有意に関連していた(オッズ比 [95%信頼区間]:女性、7.43 [3.16-17.45]; 男性、0.92 [0.37-2.31])。FHD 陽性者において、調査前5 年間に発症した糖尿病の有病率は女性においてのみ、中等症以上 SDB 群で SDB 無群よりも有意に高値であった(中等症以上SDB 群 対 SDB 無群:21.4% 対 1.1%;P <0.001)。

【結論】中等症以上のSDBはFHD を有する女性における糖尿病有病率上昇と関連があり、 FHD を有する女性におけるSDB 治療が糖尿病の発症を予防するか否かの検討が今後必要である。

この論文で使われている画像

参考文献

1. Drager LF, Togeiro SM, Polotsky VY, Lorenzi-Filho G. Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol. 2013;62(7):569-76.

2. Wu C-J, Kao T-W, Chang Y-W, Chen W-L. Examining the association between obstructive sleep apnea and cardiometabolic risk factors in the elderly. Sleep Biol Rhythms. 2018;16(2):231-237.

3. Aronsohn RS, Whitmore H, Van Cauter E, Tasali E. Impact of untreated obstructive sleep apnea on glucose control in type 2 diabetes. Am J Respir Crit Care Med. 2010;181(5):507-513.

4. Tahrani AA, Ali A, Raymond NT, et al. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med. 2012;186(5):434-41.

5. Harada Y, Oga T, Chin K, et al. Differences in relationships among sleep apnoea, glucose level, sleep duration and sleepiness between persons with and without type 2 diabetes. J Sleep Res. 2012;21(4):410-8.

6. Reichmuth KJ, Austin D, Skatrud JB, Young T. Association of sleep apnea and type II diabetes: a population-based study. Am J Respir Crit Care Med. 2005;172(12):1590-5.

7. Botros N, Concato J, Mohsenin V, Selim B, Doctor K, Yaggi HK. Obstructive sleep apnea as a risk factor for type 2 diabetes. Am J Med. 2009;122(12):1122-7.

8. Marshall NS, Wong KKH, Phillips CL, Liu PY, Knuiman MW, Grunstein RR. Is sleep apnea an independent risk factor for prevalent and incident diabetes in the Busselton Health Study? J Clin Sleep Med. 2009;5(1):15-20.

9. Celen YT, Hedner J, Carlson J, Peker Y. Impact of gender on incident diabetes mellitus in obstructive sleep apnea: a 16-year follow-up. J Clin Sleep Med. 2010;6(3):244-50.

10. Lindberg E, Theorell-Haglöw J, Svensson M, Gislason T, Berne C, Janson C. Sleep apnea and glucose metabolism: A long-term follow-up in a community- based sample. Chest. 2012;142(4):935-942.

11. Kendzerska T, Gershon AS, Hawker G, Tomlinson G, Leung RS. Obstructive Sleep Apnea and Incident Diabetes. A Historical Cohort Study. Am J Respir Crit Care Med. 2014;190(2):218-225.

12. Huang T, Lin BM, Stampfer MJ, Tworoger SS, Hu FB, Redline S. A Population- Based Study of the Bidirectional Association Between Obstructive Sleep Apnea and Type 2 Diabetes in Three Prospective U.S. Cohorts. Diabetes Care. 2018;41(10):2111-2119.

13. Wang X, Bi Y, Zhang Q, Pan F. Obstructive sleep apnoea and the risk of type 2 diabetes: A meta-analysis of prospective cohort studies. Respirology. 2013;18(1):140-146.

14. Ip MSM, Lam B, Ng MMT, Lam WK, Tsang KWT, Lam KSL. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med. 2002;165(5):670-6.

15. Punjabi NM, Shahar E, Redline S, Gottlieb DJ, Givelber R, Resnick HE. Sleep- disordered breathing, glucose intolerance, and insulin resistance: The sleep heart health study. Am J Epidemiol. 2004;160(6):521-530.

16. Iftikhar IH, Hoyos CM, Phillips CL, Magalang UJ. Meta-analyses of the Association of Sleep Apnea with Insulin Resistance, and the Effects of CPAP on HOMA-IR, Adiponectin, and Visceral Adipose Fat. J Clin Sleep Med. 2015;11(4):475-85.

17. Matsumoto T, Murase K, Tabara Y, et al. Impact of sleep characteristics and obesity on diabetes and hypertension across genders and menopausal status: the Nagahama study. Sleep. 2018;41(7):1-10.

18. Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A. Sleep disturbances compared to traditional risk factors for diabetes development: Systematic review and meta-analysis. Sleep Med Rev. 2016;30:11-24.

19. van Dam RM, Boer JM, Feskens EJ, Seidell JC. Parental history of diabetes modifies the association between abdominal adiposity and hyperglycemia. Diabetes Care. 2001;24(8):1454-9.

20. Sargeant LA, Wareham NJ, Khaw KT. Family history of diabetes identifies a group at increased risk for the metabolic consequences of obesity and physical inactivity in EPIC-Norfolk: a population-based study. The European Prospective Investigation into Cancer. Int J Obes Relat Metab Disord. 2000;24(10):1333-9.

21. Chen Y-C, Hsu P-Y, Hsiao C-C, Lin M-C. Epigenetics: A Potential Mechanism Involved in the Pathogenesis of Various Adverse Consequences of Obstructive Sleep Apnea. Int J Mol Sci. 2019;20(12):2937.

22. Minami T, Matsumoto T, Tanizawa K, et al. Impact of Sleep Disordered Breathing on Diabetes Based on Presence or Absence of Family History of Diabetes ; The Nagahama Study [abstract]. Am J Respir Crit Care Med. 2018;197:A6220.

23. Matsumoto T, Murase K, Tabara Y, et al. Sleep disordered breathing and metabolic comorbidities across gender and menopausal status in East Asians; the Nagahama Study. Eur Respir J. May 2020:1902251. doi: 10.1183/13993003.02251-2019. Online ahead of print.

24. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13-S27.

25. Takegami M, Suzukamo Y, Wakita T, et al. Development of a Japanese version of the Epworth Sleepiness Scale (JESS) based on item response theory. Sleep Med. 2009;10(5):556-65.

26. Waki K, Noda M, Sasaki S, et al. Alcohol consumption and other risk factors for self-reported diabetes among middle-aged Japanese: A population-based prospective study in the JPHC study cohort 1. Diabet Med. 2005;22(3):323-331.

27. Martínez-Cerón E, Barquiel B, Bezos A-M, et al. Effect of CPAP on Glycemic Control in Patients with Obstructive Sleep Apnea and Type 2 Diabetes. A Randomized Clinical Trial. Am J Respir Crit Care Med. 2016;194(4):476-485.

28. Shaw JE, Punjabi NM, Naughton MT, et al. The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes. Am J Respir Crit Care Med. 2016;194(4):486-492.

29. Yang D, Liu Z, Yang H, Luo Q. Effects of continuous positive airway pressure on glycemic control and insulin resistance in patients with obstructive sleep apnea: a meta-analysis. Sleep Breath. 2013;17(1):33-8.

30. Toyama Y, Murase K, Azuma M, et al. Impact of long-term continuous positive airway pressure on liver fat in male obstructive sleep apnea patients with fatty liver. Sleep Biol Rhythms. 2018;16(1):117-124.

31. Kim C. Does Menopause Increase Diabetes Risk? Strategies for Diabetes Prevention in Midlife Women. Women’s Heal. 2012;8(2):155-167.

32. Gonzalez FJ, Xie C, Jiang C. The role of hypoxia-inducible factors in metabolic diseases. Nat Rev Endocrinol. 2018;15(1):21-32.

33. Cornelis MC, Zaitlen N, Hu FB, Kraft P, Price AL. Genetic and environmental components of family history in type 2 diabetes. Hum Genet. 2015;134(2):259- 267.

34. InterAct Consortium, Scott RA, Langenberg C, et al. The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: the EPIC-InterAct study. Diabetologia. 2013;56(1):60-9.

35. Davegårdh C, García-Calzón S, Bacos K, Ling C. DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol Metab. 2018;14:12-25.

36. Khalyfa A, Cortese R, Qiao Z, et al. Late gestational intermittent hypoxia induces metabolic and epigenetic changes in male adult offspring mice. J Physiol. 2017;595(8):2551-2568.

37. Cortese R, Khalyfa A, Bao R, Andrade J, Gozal D. Epigenomic profiling in visceral white adipose tissue of offspring of mice exposed to late gestational sleep fragmentation. Int J Obes (Lond). 2015;39(7):1135-42.

38. Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev. 2016;37(3):278-316.

39. West SD, Nicoll DJ, Wallace TM, Matthews DR, Stradling JR. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax. 2007;62(11):969-74.

40. Hemminki K, Li X, Sundquist K, Sundquist J. Familial risks for type 2 diabetes in Sweden. Diabetes Care. 2010;33(2):293-7.

41. Donovan LM, Kapur VK. Prevalence and Characteristics of Central Compared to Obstructive Sleep Apnea : Analyses from the Sleep Heart Health Study Cohort. Sleep. 2016;39(07):1353-1359.

42. Bakker JP, Weng J, Wang R, Redline S, Punjabi NM, Patel SR. Associations between obstructive sleep apnea, sleep duration, and abnormal fasting glucose the multi-ethnic study of atherosclerosis. Am J Respir Crit Care Med. 2015;192(6):745-753.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る