リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「放電プラズマ焼結による透光性Y2O3及び(Gd,Lu)3Al5O12セラミックスの作製と光学的特性評価」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

放電プラズマ焼結による透光性Y2O3及び(Gd,Lu)3Al5O12セラミックスの作製と光学的特性評価

李, 址煥 JIHWOAN, LEE イ, ジファン 九州大学

2022.03.23

概要

代表的な透明セラミック蛍光体の中で、三二酸化物(Y2O3)と希土類アルミニウムガーネット(RE3Al5O12)は高出力固体レーザーおよびシンチレータのホスト材料として注目が高まっている。放電プラズマ焼結(Spark Plasma Sintering、SPS)は電場を利用した緻密化及び短い焼結時間、微細構造の粗大化を抑制、高い透明度を持った焼結体の作製できる強みがあり、透明セラミックスの研究において非常に有望な焼結技術である。しかし、SPS工程で起きる不均一焼結挙動と炭素汚染を解決し、微細構造制御と高い透明度を得るためには継続的な研究が必要である。本研究の目的は、透明Y2O3及びRE3Al5O12セラミックスの光学的特性及び微細構造の向上するため、高い焼結性を持つSPS工程を用いて作製することである。SPS工程の緻密化挙動は焼結温度を下げ、微細構造の粗大化を抑制するため行った。また、不均一焼結挙動および微細構造に関した研究は、SPS工程の緻密化挙動の理解に非常に役に立った。光学的および微細構造を向上するため、SPS工程の変数(加熱速度、保持時間、圧力)および2段階SPSプロファイル(加熱および加圧条件)に対する研究を行った。

 1章では、本研究の序論として全般的な研究内容を紹介した。理解を助ける背景知識、本研究で使用された出発物質である透明セラミックス材料(Y2O3、RE3Al5O12)及びSPS法に関する内容を含めている。また、研究の動機と最終目標、各章で研究した内容の主な目的を簡単に要約した。

 2章では、SPS工程の加熱速度によるY2O3セラミックスの不均一微細構造を観察した。その結果、高い加熱速度で焼結された焼結体に不均一焼結挙動が発生することで、不透明な中心部と半透明な周辺部が現れ、結晶粒のサイズの違いが非常に大きくなった。また、保持時間が長くなることにしたがって中心部の気孔のサイズが大きくなった。不均一な微細構造はSPS工程の複雑な電界効果によって周辺部から中心部への動的結晶粒成長および欠陥の拡散概念を通して説明した。

 3章では、2段階SPS工程の加圧及び加熱プロファイルを使用し、透明Y2O3セラミックスを成功的に作製した。一次焼結(1250℃)後、透過率が最も高かった温度で二次焼結(1500℃)を行った。2段階SPSプロファイルを通して収縮挙動を改善し、粗大化抑制することによって緻密化を図ることができた。その結果、波長1100nmの波長領域において透過率は80.6%(理論透過率: 81.6%)であった(図1)。したがって、2段階SPSプロファイルは透明な高密度のセラミックスを作製において非常にメリットがもたらされた。

 4章では、透明Ce3+:(Gd,Lu)3Al5O12セラミックスのSPS工程において炭素が豊富な環境により炭素汚染および酸素欠損が生じること報告されている。炭素汚染および酸素欠損は透過率に直接的な影響を及ぼしたが、アニールより焼結体の減少した透過率はほとんど回復した。その結果、焼結体を効果的に緻密化することができ、SPS工程の短所はアニールにより改善され、より優れた光学的および発光特性が得られた。

 5章では、透明Ce3+:(Gd,Lu)3Al5O12セラミックスが2段階SPSプロファイルで作製され、微細構造制御が可能であった。2段階SPSプロファイルには異なる加熱速度を適用し、一次焼結には50℃/min、二次焼結には5℃/minの条件で行った。収縮初期の段階である一次焼結の保持時間は粒界の粗大化を抑制し、緻密化することが可能であった。1段階と2段階SPSプロファイルと比較した結果、2段階SPSプロファイルで作製された焼結体の結晶粒のサイズが小さくなり、一次焼結温度が低くなるほど結晶粒のサイズが減少する傾向にあった。また、収縮が始まった1000℃で最も低い気孔率が得られ、1段階SPSプロファイルより比較的に気孔率が低減された。2段階SPSプロファイルの微細構造制御によって試料TS-1000で最も高い透過率が得られ、波長1000nmにおける透過率は50.1%(SS-1250)と56.5%(TS-1000)であった(図2)。

 本研究の各章の実験結果及び結論は6章に要約されている。

この論文で使われている画像

参考文献

Chapter 1

[1] A. Ikesue, Y.L. Aung, Ceramic laser materials, Nat. Photonics, 2 (2008) 721–727.

[2] J. Sanghera, S. Bayya, G. Villalobos, et al., Transparent ceramics for high-energy laser systems, Opt. Mater. 33 (2011) 511–518.

[3] J. Sanghera, W.H. Kim, G. Villalobos, et al., Ceramic Laser Materials, Mater. 5 (2012) 258–277.

[4] J. Sanghera, W.H. Kim, G. Villalobos, et al., Ceramic laser materials: Past and present, Opt. Mater. 35 (2013) 693–699.

[5] A. Krell, T. Hutzler, K. Klimke, Transmission physics and consequences for materials selection, manufacturing, and applications, J. Eur. Ceram. Soc. 29 (2009) 207–221.

[6] P. Zhao, H. Zhao, J. Yu, et al., Crystal structure and properties of Al2O3-Cr2O3 solid solutions with different Cr2O3 contents, Ceram. Int. 44 (2018) 1356–1361.

[7] A. Mondal, S. Ram, Reconstructive phase formation of ZrO2 nanoparticles in a new orthorhombic crystal structure from an energized porous ZrO(OH)2·xH2O precursor, Ceram. Int. 30 (2004) 239–249.

[8] E. Djurado, P. Bouvier, G. Lucazeau, Crystallite Size Effect on the Tetragonal- Monoclinic Transition of Undoped Nanocrystalline Zirconia Studied by XRD and Raman Spectrometry, J. Solid State Chem. 149 (2000) 399–407.

[9] M. Aghazadeh, A.A.M. Barmi, H.M. Shiri, S. Sedaghat, Cathodic electrodeposition of Y(OH)3 and Y2O3 nanostructures from chloride bath. Part II: Effect of the bath temperature on the crystal structure, composition and morphology, Ceram. Int. 39 (2013) 1045–1055.

[10] J.G. Li, T. Ikegami, T. Mori, Fabrication of transparent Sc2O3 ceramics with powders thermally pyrolyzed from sulfate, J. Mater. Res. 18 (2003) 1816–1822.

[11] J. Zeler, L.B. Jerzykiewicz, E. Zych, Flux-Aided Synthesis of Lu2O3 and Lu2O3:Eu– Single Crystal Structure, Morphology Control and Radioluminescence Efficiency, Mater. 7 (2014) 7059–7072.

[12] J. Li, Y. Pan, F. Qiu, et al., Synthesis of nanosized Nd:YAG powders via gel combustion, Ceram. Int. 33 (2007) 1047–1052.

[13] S. Takahashi, A. Kan, H. Ogawa, Microwave dielectric properties and crystal structures of spinel-structured MgAl2O4 ceramics synthesized by a molten-salt method, J. Eur, Ceram. Soc. 37 (2017) 1001–1006.

[14] Y. Nigara, M. Ishigame, T. Sakurai, Infrared Propertied of Yttrium Oxide, J. Phys. Soc. Jpn. 30 (1971) 453–458.

[15] A. Fukabori, T. Yanagida, J. Pejchal, et al., Optical and scintillation characteristics of Y2O3 transparent ceramic, J. Appl. Phys. 107 (2010) 073501.

[16] A. Pirri, G. Toci, B. Patrizi, M. Vannini, An overview on Yb-doped transparent polycrystalline sesquioxide laser ceramics, IEEE J. Sel. Top. Quantum Electron. 24 (2018) 1602108.

[17] X. Hou, S. Zhou, T. Jia, et al., Investigation of up-conversion luminescence properties of RE/Yb co-doped Y2O3 transparent ceramic (RE=Er, Ho, Pr, and Tm), Phys. B: Condens. Matter 406 (2011) 3931–3937.

[18] A.L. Micheli, D.F. Dungan, J.V. Mantese, High-Density Yttria for Practical Ceramic Applications, J. Am. Ceram. Soc. 75 (1992) 709–711.

[19] J. Iwasawa, R. Nishimizu, M. Tokita, et al., Plasma-Resistant Dense Yttrium Oxide Film Prepared by Aerosol Deposition Process, J. Am. Ceram. Soc. 90 (2007) 2327–2332.

[20] R.A. Lefever, J. Matsko, Transparent yttrium oxide ceramics, Mater. Res. Bull. 2 (1967) 865–869.

[21] K. Serivalsatit, B. Kokuoz, B.Y. Kokuoz, et al., Synthesis, processing, and properties of submicrometer-grained highly transparent yttria ceramics, J. Am. Ceram. Soc. 93 (2010) 1320–1325.

[22] N. Saito, S.I. Matsuda, T. Ikegami, Fabrication of transparent yttria ceramics at low temperature using carbonate-derived powder, J. A. Ceram. soc. 81 (1998) 2023–2028.

[23] S.R. Podowitz, R. Gaume, R.S. Feigelson, Effect of Europium Concentration on Densification of Transparent Eu:Y2O3 Scintillator Ceramics Using Hot Pressing, J. Am. Ceram. soc. 93 (2010) 82–88.

[24] L. Gan, Y.J. Park, H.N. Kim, et al., The effects of the temperature and pressure on ZrO2- doped transparent yttria ceramics fabricated by a hot-pressing method, Opt. Mater. 71 (2017) 109–116.

[25] J. Mouzon, A. Maitre, L. Frisk, et al., Fabrication of transparent yttria by HIP and the glass-encapsulation method, J. Eur. Ceram. Soc. 29 (2009) 311–316.

[26] L.L. Zhu, Y.J. Park, L. Gan, Fabrication and characterization of highly transparent Y2O3 ceramics by hybrid sintering: A combination of hot pressing and a subsequent HIP treatment, J. Eur. Ceram. Soc. 38 (2018) 3255–3260.

[27] X. Li, Y. Xu, X. Mao, et al., Investigation of optical, mechanical, and thermal properties of ZrO2-doped Y2O3 transparent ceramics fabricated by HIP, Ceram. Int. 44 (2018) 1362–1369.

[28] H. Yoshida, K. Morita, B.N. Kim, et al., Low-Temperature Spark Plasma Sintering of Yttria Ceramics with Ultrafine Grain Size, J. Am. Ceram. soc. 94 (2011) 3301–3307.

[29] H. Furuse, S. Nakasawa, H. Yoshida, et al., Transparent ultrafine Yb3+:Y2O3 laser ceramics fabricated by spark plasma sintering, J. Am. Ceram. Soc. 101 (2018) 694–702.

[30] H. Zhang, B.N. Kim, K. Morita, et al., Fabrication of Transparent Yttria by High-Pressure Spark Plasma Sintering, J. Am. Ceram. Soc. 94 (2011) 3206–3210.

[31] C.W. Park, J.H. Lee, S.H. Kang, et al., Characteristics of Y2O3 transparent ceramics rapidly processed using spark plasma sintering, J. Ceram. Process. Res. 18 (2017) 183–187.

[32] Z. Hu, X. Xu, J. Wang, et al., Fabrication and spectral properties of Dy:Y2O3 transparent ceramics, J. Eur. Ceram. Soc. 38 (2018) 1981–1985.

[33] H. Yagi, T. Yanagitani, H. Yoshida, et al., The optical properties and laser characteristics of Cr3+ and Nd3+ co-doped Y3Al5O12 ceramics. Opt. Laser Technol. 39 (2007) 1295–1300.

[34] X. Li, Q. Li, J. Wang, S. Yang, Synthesis of YAG:Eu phosphors with spherical morphology by solvo-thermal method and their luminescent property, Mater. Sci. Eng. B 131 (2006) 32–35.

[35] J.J. Zhang, J.W. Ning, X.J. Liu, et al., Synthesis of ultrafine YAG:Tb phosphor by nitrate–citrate sol–gel combustion process, Mater. Res. Bull. 38 (2003) 1249–1256.

[36] G. Xu, X. Zhang, W. He, et al., Preparation of highly dispersed YAG nano-sized powder by co-precipitation method, Mater. Lett. 60 (2006) 962–965.

[37] A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers, J. A. Ceram. Soc. 78 (1995) 1033–1040.

[38] A. Ikesue, I. Furusato, K. Kamata, Fabrication of Polycrystalline, Transparent YAG Ceramics by a Solid-State Reaction Method, J. Am. Ceram. Soc. 78 (1995) 225–228.

[39] C.H. Kim, W.H. Lee, A. Melis, et al., A Review of Inorganic Scintillation Crystals for Extreme Environments, Cryst. 11 (2021) 669.

[40] J. Li, Y. Wu, Y. Pan, et al., Solid-state-reactive fabrication of Cr,Nd:YAG transparent ceramics: the influence of raw material, J. Ceram. Soc. Jpn. 116 (2008) 572–577.

[41] T. Zhou, L. Zhang, Z. Li, et al., Toward vacuum sintering of YAG transparent ceramic using divalent dopant as sintering aids: Investigation of microstructural evolution and optical property, Ceram. Int. 43 (2017) 3140–3146.

[42] Y.L. You, L.H. Qi, H.Z. Miao, W. Pan, Preparation of transparent YAG ceramics via a modified solid-state reaction method, Rare Metal Mater. Eng. 42 (2013) 348–350.

[43] W.X. Zhang, J. Zhou, W.B. Liu, et al., Fabrication, properties and laser performance of Ho:YAG transparent ceramic, J. Alloys Compd. 506 (2010) 745–748.

[44] X. Chen, T. Lu, N. Wei, et al., Fabrication and photoluminescence properties of Cr:YAG and Yb,Cr:YAG transparent ceramic, Opt. Mater. 49 (2015) 330–336.

[45] L. Chretien, L. Bonnet, R. Boulesteix, et al., Influence of hot isostatic pressing on sintering trajectory and optical properties of transparent Nd:YAG ceramics, J. Eur. Ceram. Soc. 36 (2016) 2035–2042.

[46] X. Zhang, G. Fan, W. Lu, et al., Effect of the spark plasma sintering parameters, LiF additive, and Nd dopant on the microwave dielectric and optical properties of transparent YAG ceramics, J. Eur. Ceram. Soc. 36 (2016) 2767–2772.

[47] A. Katz, E. Barraud, S. Lemonnier, et al., Role of LiF additive on spark plasma sintered transparent YAG ceramics, Ceram. Int. 43 (2017) 15626–15634.

[48] R. Wang, Y. Wang, Z. Fu, et al., Spark plasma sintering of transparent YAG ceramics assisted by the YAH–YAG phase transformation, J. Eur. Ceram. Soc. 36 (2016) 2153– 2156.

[49] A. Katz, E. Barraud, S. Lemonnier, et al., Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS, Ceram. Int. 43 (2017) 10673–10682.

[50] T. Shishido, K. Okamura, S. Yajima, Gd3Al5O12 Phase Obtained by Crystallization of Amorphous Gd2O3·5/3Al2O3, J. Am. Ceram. Soc. 61 (1978) 373–375.

[51] M. Mizuno, T. Yamada, T. Noguchi, Phase Diagram of the System Al2O3-Sm2O3 at High Temperature, Yogyo-Kyokaishi 85 (1977) 374–379.

[52] J.K. Li, J.G. Li, Z.J. Zhang, et al., Effective lattice stabilization of gadolinium aluminate garnet (GdAG) via Lu3+ doping and development of highly efficient (Gd,Lu)AG:Eu3+ red phosphors, Sci. Technol. Adv. Mater. 13 (2012) 065007.

[53] J.K. Li, J.G. Li, Z.J. Zhang, et al., Gadolinium Aluminate Garnet (Gd3Al5O12): Crystal Structure Stabilization via Lutetium Doping and Properties of the (Gd1−xLux)3Al5O12 Solid Solutions (x = 0–0.5), J. Am. Ceram. Soc. 95 (2012) 931–936.

[54] U.A. Tamburini, J.E. Garay, Z.A. Munir, Fast low-temperature consolidation of bulk nanometric ceramic materials, Scr. Mater. 54 (2006) 823–828.

[55] D. Jiang, D.M. Hulbert, J.D. Kuntz, et al., Spark plasma sintering: A high strain rate low temperature forming tool for ceramics, Mater. Sci. Eng. A 463 (2007) 89–93.

[56] O. Guillon, J.G. Julian, B. Dargatz, et al., Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments, Adv. Eng. Mater. 16 (2014) 830–849.

[57] D.N.F. Muche, J.W. Drazin, J. Mardinly, et al., Colossal grain boundary strengthening in ultrafine nanocrystalline oxides, Mater. Lett. 186 (2017) 298–300.

[58] G. Philippot, M. Albino, R. Epherre, et al., Local Distortions in Nanostructured Ferroelectric Ceramics through Strain Tuning, Adv. Electron. Mater. 1 (2015) 1500190.

[59] Z.J. Shen, M. Johnsson, Z. Zhao, M. Nygren, Spark plasma sintering of alumina, J. Am. Ceram. Soc. 85 (2002) 1921–1927.

[60] N. Roussel, L. Lallemant, B. Durand, et al., Effects of the nature of the doping salt and of the thermal pre-treatment and sintering temperature on spark plasma sintering of transparent alumina, Ceram. Int. 37 (2011) 3565–3573.

[61] B.N. Kim, K. Hiraga, K. Morita, H. Yoshida, Spark plasma sintering of transparent alumina, Scr. Mater. 57 (2007) 607–610.

[62] S. Grasso, C.F. Hu, G. Maizza, et al., Effects of pressure application method on transparency of spark plasma sintered alumina, J. Am. Ceram. Soc. 94 (2011) 1405–1409.

[63] L.Q. An, A. Ito, T. Goto, Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering, J. Eur. Ceram. Soc. 31 (2011) 1597–1602.

[64] R. Chaim, R. Marder, C. Estournes, Optically transparent ceramics by spark plasma sintering of oxide nanoparticles, Scr. Mater. 63 (2010) 211–214.

[65] M. Tokita, Trends in Advanced SPS Spark Plasma Sintering Systems and Technology, J. Soc. Powd. Technol. 30 (1993) 790–804.

[66] Z.Y. Hu, Z.H. Zhang, X.W. Cheng, et al., A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications, Mater. Des. 191 (2020) 108662.

[67] N. Tamari, T. Tanaka, K. Tanaka, et al., Effect of Spark Plasma Sintering on Densification and Mechanical Properties of Silicon Carbide, J. Ceram. Soc. Jpn. 103 (1995) 740–742.

[68] D. Yang, H. Conrad, Enhanced sintering rate of zirconia (3Y-TZP) by application of a small AC electric field, Scr. Mater. 63 (2010) 328–331.

[69] B.N. Kim, K. Hiraga, K. Morita, H. Yoshida, Effects of heating rate on microstructure and transparency of spark-plasma-sintered alumina, J. Eur. Ceram. Soc. 29 (2009) 323– 327.

[70] M. Suarez, A. Fernandez, J.L. Menendez, R. Torrecillas, Grain growth control and transparency in spark plasma sintered self-doped alumina materials, Scr. Mater. 61 (2009) 931–934.

[71] Y. Aman, V. Garnier, E. Djurado, Influence of green state processes on the sintering behaviour and the subsequent optical properties of spark plasma sintered alumina, J. Eur. Ceram. Soc. 29 (2009) 3363–3370.

[72] D. Jiang, D.M. Hulbert, U.A. Tamburini, et al., Spark plasma sintering and forming of transparent polycrystalline Al2O3 windows and domes, Window and Dome Technologies and Materials X 6545 (2007) 654509.

[73] M. Cologna, B. Rashkova, R. Raj, Flash Sintering of Nanograin Zirconia in < 5 s at 850°C, J. Am. Ceram. Soc. 93 (2010) 3556–3559.

[74] H. Zhou, X. Li, Y. Zhu, et al., Review of flash sintering with strong electric field, High Volt. (2021) in press. https://doi.org/10.1049/hve2.12080

[75] R. Raj, M. Cologna, J.S.C. Francis, Influence of Externally Imposed and Internally Generated Electrical Fields on Grain Growth, Diffusional Creep, Sintering and Related Phenomena in Ceramics, J. Am. Ceram. Soc. 94 (2011) 1941–1965.

[76] C.E.J. Dancer, Flash sintering of ceramic materials, Mater. Res. Express. 3 (2016) 102001.

[77] H. Yoshida, Y. Sakka, T. Yamamoto, et al., Densification behaviour and microstructural development in undoped yttria prepared by flash-sintering, J. Eur. Ceram. Soc. 34 (2014) 991–1000.

[78] J.C. M’Peko, J.S.C. Francis, R. Raj, Field-assisted sintering of undoped BaTiO3: Microstructure evolution and dielectric permittivity, J. Eur. Ceram. Soc. 34 (2014) 3655– 3660.

[79] A. Uehashi, H. Yoshida, T. Tokunaga, et al., Enhancement of sintering rates in BaTiO3 by controlling of DC electric current, J. Ceram. Soc. Jpn. 123 (2015) 465–468.

[80] H. Yoshida, A. Uehashi, T. Tokunaga, et al., Formation of grain boundary second phase in BaTiO3 polycrystal under a high DC electric field at elevated temperatures, J. Ceram. Soc. Jpn. 124 (2016) 388–392.

[81] Y. Nakagawa, H. Yoshida, A. Uehashi, et al., Electric current-controlled synthesis of BaTiO3, J. Am. Ceram. Soc. 100 (2017) 3843–3850.

Chapter 2

[1] S. Ghosh, A. H. Chokshi, P. Lee, R. Raj, A huge effect of weak dc electrical fields on grain growth in zirconia, J. Am. Ceram. Soc. 92 (2009) 1856–1859.

[2] D. Yang, R. Raj, H. Conrad, Enhanced sintering rate of zirconia (3Y-TZP) through the effect of a weak dc electric field on grain growth, J. Am. Ceram. Soc. 93 (2010) 2935– 2937.

[3] S. Nekahi, F.S. Moghanlou, M. Vajdi, et al., Microstructural, thermal and mechanical characterization of TiB2-SiC composites doped with short carbon fibers, Int. J. Refractory Metal. Hard Mater. 82 (2019) 129–135.

[4] R. Chaim, Densification mechanisms in spark plasma sintering of nanocrystalline ceramics, Mater. Sci. Eng. A 443 (2007) 25–32.

[5] W. Chen, U.A. Tamburini, J.E. Garay, et al., Fundamental investigations on the spark plasma sintering/synthesis process 1. Effect of dc pulsing on reactivity, Mater. Sci. Eng. A 394 (2005) 132–138.

[6] U.A. Tamburini, S. Gennari, J.E. Garay, Z.A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process 2. Modelling of current and temperature distributions, Mater. Sci. Eng. A 394 (2005) 139–148.

[7] H. Yoshida, K. Morita, B.N. Kim, er al., Reduction in sintering temperature for flash- sintering of yttria by nickel cation-doping, Acta Mater. 106 (2016) 344–352.

[8] R. Chaim, M. Kalina, J.Z. Shen, Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering, J. Eur. Ceram. Soc. 27 (2007) 3331–3337.

[9] F. Shayesteh, S.A. Delbari, Z. Ahmadi, et al., Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma, Ceram. Int. 45 (2019) 5306–5311.

[10] L.L Zhu, Y.J. Park, L. Gan, et al., Fabrication and characterization of highly transparent Er:Y2O3 ceramics with ZrO2 and La2O3 additives, Ceram. Int. 43 (2017) 13127–13132.

[11] O. Guillon, J. Gonzalez-Julian, B. Dargatz, et al., Field-assisted sintering technology/spark plasma sintering: Mechanisms, Materials, and Technology Developments, Advanced Eng. Mater. 16 (2014) 830–849.

[12] O. Guillon, C. Elsasser, O. Gutfleisch, et al., Manipulation of matter by electric and magnetic fields: Toward novel synthesis and processing routes of inorganic materials, Mater. Today 21 (2018) 527–536.

[13] H. Yoshida, K. Morita, B.N. Kim, et al., Low-temperature spark plasma sintering of yttria ceramics with ultrafine grain size, J. Am. Ceram. Soc. 94 (2011) 3301–3307.

[14] R. Chaim, M. Levin, A. Shlayer, C. Estournes, Sintering and densification of nanocrystalline ceramic oxide powders: a review, Advances in Applied Ceram. 107 (2008) 159–169.

[15] H. Zhang, B.N. Kim, K. Morita, et al., Fabrication of transparent yttria by high-pressure spark plasma sintering, J. Am. Ceram. Soc. 94 (2011) 3206–3210.

[16] R. Chaim, A. Shlayer, C. Estournes, Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering, J. Eur. Ceram. Soc. 29 (2009) 91–98.

[17] H. Furuse, S. Nakasawa, H. Yoshida, et al., Transparent ultrafine Yb3+:Y2O3 laser ceramics fabricated by spark plasma sintering, J Am Ceram Soc. 101 (2018) 694–702.

[18] B.N. Kim, K. Hiraga, K. Morita, et al., Microstructure and optical properties of transparent alumina, Acta Mater. 57 (2009) 1319–1326.

[19] S. Grasso, C. Hu, G. Maizza, et al., Effects of pressure application method on transparency of spark plasma sintered alumina, J. Am. Ceram. Soc. 94 (2011) 1405–1409.

[20] B.N. Kim, K. Hiraga, S. Grasso, et al., High-pressure spark plasma sintering of MgO- doped transparent alumina, J. Japan Ceram. Soc. 120 (2012) 116–118.

[21] B.N. Kim, K. Hiraga, K. Morita, et al., Dynamic grain growth during low-temperature spark plasma sintering of alumina, Scripta Mater. 80 (2014) 29–32.

[22] K. Morita, B.N. Kim, H. Yoshida, et al., Distribution of carbon contamination in MgAl2O4 spinel occurring during spark-plasma-sintering (SPS) processing: I – Effect of heating rate and post-annealing, J. Eur. Ceram. Soc. 38 (2018) 2588–2595.

[23] B. Ratzker, A. Wagner, M. Sokol, et al., Optical and mechanical properties of transparent alumina fabricated by high-pressure spark plasma sintering J. Eur. Ceram. Soc. 39 (2019) 2712–2719.

[24] B.N. Kim, A. Dash, Y.W. Kim, et al., Low-temperature spark plasma sintering of alumina by using SiC molding set, J. Ceram. Soc. Japan 124 (2016) 1141–1145.

[25] M. Michálek, M. Michálková, G. Blugan, J. Kuebler, Effect of carbon contamination on the sintering of alumina ceramics, J. Eur. Ceram. Soc. 38 (2018) 193–199.

[26] M.A. Clark, T.H. Alden, Deformation enhanced grain growth in a superplastic Sn-1% Bi alloy, Acta Mater. 21 (1973) 1195–1206.

Chapter 3

[1] J. Dhanaraj, R. Jagannathan, T.R.N. Kutty, C.H. Lu, Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis, J. Phys. Chem. B 105 (2001) 11098–11105.

[2] R.M. Sova, M.J. Linevsky, M.E. Thomas, F.F. Mark, High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel, Infrared Phys. Technol. 39 (1998) 251–261.

[3] H.M. Oh, Y.J. Park, H.N. Kim, et al., Effect of powder milling routes on the sinterability and optical properties of transparent Y2O3 ceramics, J. Eur. Ceram. Soc. 41 (2021) 775– 780.

[4] G. Stanciu, L. Gheorghe, F. Voicu, et al., Highly transparent Yb:Y2O3 ceramic obtained by solid-state reaction and combined sintering procedures, Ceram. Int. 45 (2016) 3217– 3222.

[5] S. Sattayaporn, G. Aka, P. Loiseau, et al., Optical spectroscopic properties, 0.946 and 1.074 μm laser performances of Nd3+-doped Y2O3 transparent ceramics, J. All. Compd. 711 (2017) 446–454.

[6] R. Chaim, Densification mechanisms in spark plasma sintering of nanocrystalline ceramics, Mater. Sci. Eng. A 443 (2007) 25–32.

[7] H. Yoshida, K. Morita, B.N. Kim, et al., Reduction in sintering temperature for flash- sintering of yttria by nickel cation-doping, Acta Mater. 106 (2016) 344–352.

[8] B.N. Kim, K. Hiraga, K. Morita, et al., Dynamic grain growth during low-temperature spark plasma sintering of alumina, Scr. Mater. 80 (2014) 29–32.

[9] K. Morita, B.N. Kim, H. Yoshida, et al., Distribution of carbon contamination in MgAl2O4 spinel occurring during spark-plasma-sintering (SPS) processing: I–effect of heating rate and post-annealing, J. Eur. Ceram. Soc. 38 (2018) 2588–2595.

[10] B. Ratzker, A. Wagner, S. Kalabukhov, et al., Non-uniform microstructure evolution in transparent alumina during dwell stage of high-pressure spark plasma sintering, Acta Mater. 199 (2020) 469–479.

[11] J.H. Lee, B.N. Kim, B.K. Jang, Non-uniform sintering behavior during spark plasma sintering of Y2O3, Ceram. Int. 46 (2020) 4030–4034.

[12] A. Talimian, V. Pouchly, H.F. El-Maghraby, et al., Transparent magnesium aluminate spinel: Effect of critical temperature in two-stage spark plasma sintering, J. Eur. Ceram. Soc. 40 (2020) 2417–2425.

[13] H. Furuse, S. Nakasawa, H. Yoshida, et al., Transparent ultrafine Yb3+:Y2O3 laser ceramics fabricated by spark plasma sintering, J. Am. Ceram. Soc. 101 (2018) 694–702.

[14] K. Morita, B.N. Kim, H. Yoshida, et al., Effect of loading schedule on densification of MgAl2O4 spinel during spark plasma sintering (SPS) processing, J. Eur. Ceram. Soc. 32 (2012) 2303–2309.

[15] M. Nanko, K.Q. Dang, Two-step pulsed electric current sintering of transparent Al2O3 ceramics, Adv. Appl. Ceram. 113 (2014) 80–84.

[16] H.H. Nguyen, M. Nanko, Densification and grain growth of large-sized polycrystalline Al2O3 during a two-step pulsed electric current sintering process, Mater. Trans. 59 (2018) 1610–1615.

[17] A. Gupta, N. Brahme, D.P. Bisen, Electroluminescence and photoluminescence of rare earth (Eu,Tb) doped Y2O3 nanophosphor, J. Lumin. 155 (2014) 112–118.

[18] S. Kumar, H. Tripathi, J. Sharma, U. Batra, Structural, morphological, and opto-electrical properties of Y2-xYbxO3 nanoparticles synthesized using co-precipitation method, Int. J. Appl. Ceram. Technol. 18 (2021) 12–23.

[19] S.M. Yong, D.H. Choi, K.S. Lee, et al., Study on carbon contamination and carboxylate group formation in Y2O3-MgO nanocomposites fabricated by spark plasma sintering, J. Eur. Ceram. Soc. 40 (2020) 847–851.

[20] K. Morita, B.N. Kim, H. Yoshida, et al., Distribution of carbon contamination in oxide ceramics occurring during spark-plasma-sintering (SPS) processing: II - Effect of SPS and loading temperatures, J. Eur. Ceram. Soc. 38 (2018) 2596–2604.

[21] E.M. Kock, M. Kogler, T. Bielz, et al., In Situ FT-IR Spectroscopic Study of CO2 and CO Adsorption on Y2O3, ZrO2, and Yttria-Stabilized ZrO2, J. Phys. Chem. C 117 (2013) 17666–17673.

[22] R. Apetz, M.P.B. Bruggen, Transparent alumina: A light-scattering model, J. Am. Ceram. Soc. 86 (2003) 480–486.

[23] M. Stuer, P. Bowen, M. Cantoni, et al., Nanopore characterization and optical modeling of transparent polycrystalline alumina, Adv. Funct. Mater. 22 (2012) 2303–2309.

Chapter 4

[1] D.Y. Chen, Y. Liu, E. Jordan, Sol-Gel Combustion Synthesis and Photoluminescent Properties of YAG:Eu Phosphors, Sci. Adv. Mater. 2 (2010) 493–496.

[2] K. Guo, M.L. Huang, H.H. Chen, et al., Comparative study on photoluminescence of amorphous and nano-crystalline YAG:Tb phosphors prepared by a combustion method, J. Non Cryst. Sol. 358 (2012) 88–92.

[3] W.H. Chao, R.J. Wu, T.B. Wu, Structural and luminescent properties of YAG:Ce thin film phosphor, J. Alloy Comp. 506 (2010) 98–102.

[4] V. Schiopu, M. Alina, A. Dinescu, et al., Ce, Gd Co-doped YAG Nanopowder for White Light Emitting Device, J. NanoSci. Nanotech. 12 (2012) 8836–8840.

[5] A. Bhaskar, H.Y. Chang, T.H. Chang, S.Y. Cheng, Microwave annealing of YAG:Ce nanophosphors, Mater. Lett. 78 (2012) 124–126.

[6] K. Bando, K. Sakano, Y. Noguchi, Y. Shimizu, Development of High-bright and Pure- white LED Lamps, J. Light Vis. Environ. 22 (1988) 2–5.

[7] Y. Zorenko, T. Zorenko, V.V. Gorbenko, et al., Peculiarities of luminescent and scintillation properties of YAG:Ce phosphor prepared in different crystalline forms, Opt. Mater. 34 (2012) 1314–1319.

[8] E. Mihokova, M. Nikil, J.A. Mares, et al., Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics, J. Lumine. 126 (2007) 77–80.

[9] J.K. Li, J.G. Li, S.H. Liu, et al., The development of Ce3+-activated (Gd,Lu)3Al5O12 garnet solid solutions as efficient yellow-emitting phosphors, Sci. Technol. Adv. Mater. 14 (2013) 1–9.

[10] J.K. Li, J.G. Li, X.D. Li, X.D. Sun, Photoluminescence properties of phosphors based on Lu3+-stabilized Gd3Al5O12:Tb3+/Ce3+ garnet solid solutions, Opt. Mater. 62 (2016) 328– 334.

[11] S. Ghosh, A. H. Chokshi, P. Lee, R. Raj, A huge effect of weak dc electrical fields on grain growth in zirconia, J. Am. Ceram. Soc. 92 (2009) 1856–1859.

[12] D. Yang, R. Raj, H. Conrad, Enhanced sintering rate of zirconia (3Y-TZP) through the effect of a weak dc electric field on grain growth, J. Am. Ceram. Soc. 93 (2010) 2935– 2937.

[13] S. Nekahi, F.S. Moghanlou, M. Vajdi, et al., Microstructural, thermal and mechanical characterization of TiB2-SiC composites doped with short carbon fibers, Int. J. Refract. Hard Met. 82 (2019) 129–135.

[14] R. Chaim, Densification mechanisms in spark plasma sintering of nanocrystalline ceramics, Mater. Sci. Eng. A 443 (2007) 25–32.

[15] H. Yoshida, K. Morita, B.N. Kim, et al., Low-temperature spark plasma sintering of yttria ceramics with ultrafine grain size, J. Am. Ceram. Soc. 94 (2011) 3301–3307.

[16] R. Chaim, M. Levin, A. Shlayer, C. Estournes, Sintering and densification of nanocrystalline ceramic oxide powders: A review, Adv. Appl. Ceram. 107 (2008) 159– 169.

[17] H. Zhang, B.N. Kim, K. Morita, et al., Fabrication of transparent yttria by high-pressure spark plasma sintering, J. Am. Ceram. Soc. 94 (2011) 3206–3210.

[18] R. Chaim, A. Shlayer, C. Estournes, Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering, J. Eur. Ceram. Soc. 29 (2009) 91–98.

[19] H. Furuse, S. Nakasawa, H. Yoshida, et al., Transparent ultrafine Yb3+:Y2O3 laser ceramics fabricated by spark plasma sintering, J. Am. Ceram. Soc. 101 (2018) 694–702.

[20] S.F. Wang, J. Zhang, D.W. Luo, et al., Transparent ceramics: Processing, materials and applications, Prog. Sol. Stat. Chem. 41 (2013) 20–54.

[21] L. An, A. Ito, T. Goto, Effect of sintering temperature on the transparency and mechanical properties of lutetium aluminum garnet fabricated by spark plasma sintering, J. Eur. Ceram. Soc. 32 (2012) 3097–3102.

[22] B.N. Kim, K. Hiraga, K. Morita, et al., Dynamic grain growth during low-temperature spark plasma sintering of alumina, Scr. Mater. 80 (2014) 29–32.

[23] K. Morita, B.N. Kim, H. Yoshida, et al., Spectroscopic study of the discoloration of transparent MgAl2O4 spinel fabricated by spark-plasma-sintering (SPS) processing, Acta Mater. 84 (2015) 9–19.

[24] Q. Meng, X. Wang, Q. Zhu, J.G. Li, The effects of Mg2+/Si4+ co-substitution for Al3+ on sintering and photoluminescence of (Gd,Lu)3Al5O12:Ce garnet ceramics, J. Eur. Ceram. Soc. 40 (2020) 3262–3269.

[25] S. Grasso, C. Hu, G. Maizza, et al., Effects of pressure application method on transparency of spark plasma sintered alumina, J. Am. Ceram. Soc. 94 (2011) 1405–1409.

[26] B. Choundhury, P. Chetri, A. Choundhury, Annealing temperature and oxygen-vacancy- dependent variation of lattice strain, band gap and luminescence properties of CeO2 nanoparticles, J. Exp. Nanosci. 10 (2015) 103–114.

[27] K. Morita, B.N. Kim, H. Yoshida, et al., Distribution of carbon contamination in oxide ceramics occurring during spark-plasma-sintering (SPS) processing: II – Effect of SPS and loading temperatures, J. Eur. Ceram. Soc. 38 (2018) 2596–2604.

[28] P. Palmero, B. Boneli, G. Fantozzi, et al., Surface and mechanical properties of transparent polycrystalline YAG fabricated by SPS, Mater. Res. Bull. 48 (2013) 2589– 2597.

[29] T. Benitez, S.Y. Gomez, A. Oliveira, et al., Transparent ceramic and glass-ceramic materials for armor applications, Ceram. Int. 43 (2017) 13031–13046.

[30] S. Feng, H. Qin, G. Wu, et al., Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application, J. Eur. Ceram. Soc. 37 (2017) 3403–3409.

[31] Y.H. Li, G.Y. Hong, Synthesis and luminescence properties of nanocrystalline Gd2O3:Eu3+ by combustion process, J. Lumin. 124 (2007) 297–301.

[32] Z. Sun, Z. Chen, M. Wang, et al., Production and optical properties of Ce3+-activated and Lu3+-stabilized transparent gadolinium aluminate garnet ceramics, J. Am. Ceram. Soc. 103 (2020) 809–818.

[33] J.S. Li, X.M. Han, L. Wu, et al., Photoluminescence properties of (Y1-xCex)3Al5O12 (x = 0.005–0.03) nanophosphors and transparent ceramic by a homogeneous co-precipitation method, J. Lumin. 206 (2019) 364–369.

Chapter 5

[1] J.G. Li, Y. Sakka, Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12), Sci. Technol. Adv. Mater. 16 (2015) 014902.

[2] M. Wang, B. Lu, Manufacture and Faraday magneto-optical effect of highly transparent novel holmium aluminum garnet ceramics, Scripta Mater. 195 (2021) 133729.

[3] M. Ayvacikli, A. Canimoglu, L.E. Muresan, L.B Tudoran, J.G. Guinea, Y. Karabulut, A. Jolge, T. Karali, N. Can, Structural and luminescence effects of Ga co-doping on Ce- doped yttrium aluminate based phosphors, J. Alloys. Compd. 666 (2016) 447–453.

[4] C. Kim, W. Lee, A. Melis, A. Elmughrabi, K. Lee, C. Park, J.Y. Yeom, A Review of Inorganic Scintillation Crystals for Extreme Environments, Crystals 11 (2021) 669.

[5] V. Balaram, Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact, Geosci. Front. 10 (2019) 1285–1303.

[6] T. Shishido, K. Okamura, S. Yajima, Gd3Al5O12 Phase Obtained by Crystallization of Amorphous Gd2O3·5/3Al2O3, J. Am. Ceram. Soc. 61 (1978) 373–375.

[7] J. Li, J.G. Li, S. Liu, X. Li, X. Sun, Y. Sakka, The development of Ce3+-activated (Gd,Lu)3Al5O12 garnet solid solutions as efficient yellow-emitting phosphors, Sci. Technol. Adv. Mater. 14 (2013) 054201.

[8] B.N. Kim, K. Morita, T.S. Suzuki, J.G. Li, H. Matsubara, Simulation of densification behavior of nano-powder in final sintering stage: Effect of pore-size distribution, J. Eur. Ceram. Soc. 41 (2021) 625–634.

[9] M. Tokita, Progress of Spark Plasma Sintering (SPS) Method, Systems, Ceramics Applications and Industrialization, Ceramics 4 (2021) 160–198.

[10] A. Wagner, Y. Meshorer, B. Ratzker, D. Sinefeld, S. Kalabukhov, S. Goldring, E. Galun, N. Frage, Pressure‑assisted sintering and characterization of Nd:YAG ceramic lasers, Sci. Rep. 11 (2021) 1512.

[11] A. Wagner, B. Ratzker, S. Kalabukhov, S. Kolusheva, M. Sokol, N. Frage, Highly-doped Nd:YAG ceramics fabricated by conventional and high pressure SPS, Ceram. Int. 45 (2019) 12279–12284.

[12] S.F. Wang, J. Zhang, D.W. Luo, F. Gu, D.Y. Tang, Z.L. Dong, G.E.B. Tan, W.X. Que, T.S. Zhang, S. Li, L.B. Kong, Transparent ceramics: Processing, materials and applications, Prog. Solid. State. Chem. 41 (2013) 20–54.

[13] J.H. Lee, J.G. Li, B.N. Kim, Q. Meng, X. Sun, B.K. Jang, Effect of annealing on microstructure and luminescence characteristics in spark plasma sintered Ce3+-activated (Gd,Lu)3Al5O12 garnet ceramics, J. Eur. Ceram. Soc. 41 (2021) 1586–1592.

[14] Z. Sun, Z. Chen, M. Wang, B. Lu, Production and optical properties of Ce3+-activated and Lu3+-stabilized transparent gadolinium aluminate garnet ceramics, J. Am. Ceram. Soc. 103 (2020) 809–818.

[15] X. Chen, X. Liu, Y. Feng, X. Li, H. Chen, T. Xie, H. Kou, R. Kucerkova, Microstructure evolution in two-step-sintering process towardtransparent Ce:(Y,Gd)3(Ga,Al)5O12 scintillation ceramics. J Alloys Compd. 2020;846;156377.

[16] J. Li, Q. Chen, G. Feng, W. Wu, D. Xiao, J. Zhu, Optical properties of the polycrystalline transparent Nd:YAG ceramics prepared by two-step sintering, Ceram. Int. 38S (2012) S649–S652.

[17] Z. Seeley, N. Cherepy, S. Payne, Two-step sintering of Gd0.3Lu1.6Eu0.1O3 transparent ceramic scintillator, Opt. Mater. Express. 3 (2013) 908–912.

[18] W.K. Jung, H.J. Ma, D.G. Kim, D.K. Kim, Two-step sintering behavior of titanium-doped Y2O3 ceramics with monodispersed sub-micrometer powder, Ceram. Int. 45 (2019) 510– 515.

[19] H.J. Ma, W.K. Jung, C. Baek, D.K. Kim, Influence of microstructure control on optical and mechanical properties of infrared transparent Y2O3-MgO nanocomposite, J. Eur. Ceram. Soc. 37 (2017) 4902–4911.

[20] H. Furuse, S. Nakasawa, H. Yoshida, K. Morita, T.S. Suzuki, B.N. Kim, Y. Sakka, K. Hiraga, Transparent ultrafine Yb3+:Y2O3 laser ceramics fabricated by spark plasma sintering, J. Am. Ceram. Soc. 101 (2018) 694–702.

[21] K. Morita, B.N. Kim, H. Yoshida, H. Zhang, K. Hiraga, Y. Sakka, Effect of loading schedule on densification of MgAl2O4 spinel during spark plasma sintering (SPS) processing, J. Eur. Ceram. Soc. 32 (2012) 2303–2309.

[22] M. Nanko, K.Q. Dan, Two-step pulsed electric current sintering of transparent Al2O3 ceramics, Adv. Appl. Ceram. 113 (2014) 80–84.

[23] H.H. Nguye, M. Nanko, Densification and grain growth of large-sized polycrystalline Al2O3 during a two-step pulsed electric current sintering process, Mater. Trans. 59 (2018) 1610–1615.

[24] J.H. Lee, B.N. Kim, B.K. Jang, Fabrication of transparent Y2O3 ceramics by two-step spark plasma sintering, J. Am. Ceram. Soc. 104 (2021) 5501–5508.

[25] J. Li, J.G. Li, X. Li, X. Sun, Photoluminescence properties of phosphors based on Lu3+- stabilized Gd3Al5O12:Tb3+/Ce3+ garnet solid solutions, Opt. Mater. 62 (2016) 328–334.

[26] S. Grasso, C. Hu, G. Maizza, B.N. Kim, Y. Sakka, Effects of pressure application method on transparency of spark plasma sintered alumina, J. Am. Ceram. Soc. 94 (2011) 1405– 1409.

[27] S. Feng, H. Qin, G. Wu, H. Jiang, J. Zhao, Y. Liu, Z. Luo, J. Qioa, J. Jiang, Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application, J. Eur. Ceram. Soc. 37 (2017) 3403–3409.

[28] T. Benitez, S.Y. Gomez, A. Oliveira, N. Travitzky, D. Hotza, Transparent ceramic and glass-ceramic materials for armor applications, Ceram. Int. 43 (2017) 13031–13046.

[29] D.Y. Kosyanov, A.A. Vornovskikh, A.M. Zakharenko, E.A. Gridasova, R.P. Yavetskiy, M.V. Dobrotvorskaya, A.V. Tolmachev, O.O. Shichalin, E.K. Papynov, A.Y. Ustinov, V.G. Kuryavyi, A.A. Leonov, S.A. Tikhonov, Influence of sintering parameters on transparency of reactive SPSed Nd3+:YAG ceramics, Opt. Mater. 112 (2021) 110760.

[30] X. Su, K. Zhang, Q. Liu, H. Zhong, Y. Shi, Y. Pan, Combinatorial Optimization of (Lu1- xGdx)3Al5O12:Ce3y Yellow Phosphors as Precursors for Ceramic Scintillators, ACS Comb. Sci. 13 (2011) 79–83.

[31] A. Birkel, K.A. Denault, N.C. George, C.E. Doll, B. Hery, A.A. Mikhailovsky, C.S. Birkel, B.C. Hong, R. Seshadri, Rapid Microwave Preparation of Highly Efficient Ce3+- Substituted Garnet Phosphors for Solid State White Lighting, Chem. Mater. 24 (2012) 1198–1204.

[32] B. Wen, D.F. Zhang, N. Zhang, J.K. Feng, B. Jiang, F.S. Pan, Y. Zhang, L. Yang, Effect of grain size on the luminescent properties of Ce3+ doped Y3Al5O12 ceramic phosphor plates, Ceram. Int. 46 (2020) 10452–10456.

[33] Y. Kim, S. Jang, Effect of particle size on photoluminescence emission intensity of ZnO, Acta Mater. 59 (2011) 3024–3031.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る