リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「銅合金条材の疲労強度および疲労き裂進展特性に関する研究 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

銅合金条材の疲労強度および疲労き裂進展特性に関する研究 (本文)

三田, 夏大 慶應義塾大学

2023.09.05

概要

銅合金条材の疲労強度および疲労き裂進展特性
に関する研究

2023年度

三田夏大

学位論文

博士(工学)

銅合金条材の疲労強度および疲労き裂進展特性
に関する研究

2023年度

慶應義塾大学大学院理工学研究科

三田夏大

目次
図目次 ................................................................................................................................................. iv
表目次 ............................................................................................................................................... viii
第1章

序論 .................................................................................................................................. 1

1.1

研究背景 .............................................................................................................................. 1

1.2

先行研究 .............................................................................................................................. 3

1.3

本研究の目的 ...................................................................................................................... 5

第2章

銅合金条材のための高サイクル疲労試験機の改良と疲労特性の評価 .................. 8

2.1

緒言 ...................................................................................................................................... 8

2.2

供試材と試験片 .................................................................................................................. 8

2.2.1

供試材 .......................................................................................................................... 8

2.2.2

試験片 .......................................................................................................................... 9

2.3

試験装置の改良 ................................................................................................................ 10

2.3.1

疲労試験機と試験手法の概要 ................................................................................ 10

2.3.2

試験時間の短縮化とサイクル負荷 108 回を満たすための各種提案 ................ 12

2.3.3

疲労試験 .................................................................................................................... 17

2.4

銅合金条材の疲労寿命特性評価 .................................................................................... 18

2.4.1

材質別,圧延方向違いの条材疲労試験 ................................................................ 18

2.4.2

き裂発生個所の確認 ................................................................................................ 28

2.4.3

厚さ違いの条材疲労試験 ........................................................................................ 29

2.5

結言 .................................................................................................................................... 32

第3章

Cu-Ni-Si 銅合金条材における平均応力が及ぼす疲労強度への影響 ..................... 34

3.1

緒言 .................................................................................................................................... 34

3.2

実験方法 ............................................................................................................................ 35

3.2.1

供試材 ........................................................................................................................ 35

3.2.2

試験片 ........................................................................................................................ 35

3.2.3

繰返し疲労試験機の構成 ........................................................................................ 39

3.2.4

U 字端子試験片の表面粗さ条件出しの為の評価方法 ........................................ 40

i

3.2.5

疲労限度線の評価方法 ............................................................................................ 40

3.2.6

表面メッキ処理の評価方法 .................................................................................... 44

3.3

結果,考察 ........................................................................................................................ 44

3.3.1

U 字端子試験片の検証 ............................................................................................ 44

3.3.2

疲労限度線の推定 .................................................................................................... 50

3.3.3

表面メッキ処理後の疲労特性 ................................................................................ 53

3.4

結言 .................................................................................................................................... 56

第4章

薄板 Cu–Sn–P 銅合金条材における疲労き裂進展特性 ......................................... 58

4.1

緒言 .................................................................................................................................... 58

4.2

実験方法 ............................................................................................................................ 58

4.2.1

供試材 ........................................................................................................................ 58

4.2.2

実験方法 .................................................................................................................... 59

4.2.3

画像処理によるき裂長さの測定方法 .................................................................... 62

4.2.4

直流電位差法によるき裂長さの測定方法 ............................................................ 64

4.2.5

ΔJ の特定方法 ........................................................................................................... 68

4.2.6

破面,断面観察 ........................................................................................................ 70

4.3

き裂長さ測定方法の比較 ................................................................................................ 71

4.3.1

き裂長さの測定法違いの結果 ................................................................................ 71

4.3.2

き裂長さ測定方法の考察 ........................................................................................ 71

4.4

き裂進展特性 .................................................................................................................... 73

4.4.1

き裂進展特性の結果 ................................................................................................ 73

4.4.2

破面,断面観察の結果 ............................................................................................ 77

4.4.3

き裂進展特性の考察 ................................................................................................ 77

4.5

結言 .................................................................................................................................... 82

第5章

薄板銅合金条材の圧延方向が及ぼす疲労き裂進展特性への影響 ........................ 84

5.1

緒言 .................................................................................................................................... 84

5.2

実験,解析方法 ................................................................................................................ 84

5.2.1

供試材 ........................................................................................................................ 84

5.2.2

実験方法 .................................................................................................................... 87

5.2.3

DIC からの J 積分計算方法..................................................................................... 88
ii

5.2.4

破面,断面観察 ........................................................................................................ 89

5.2.5

3 次元 FEM 計算のモデルと境界条件 ................................................................... 89

5.2.6

3 次元 FEM と DIC 的手法に基づく J 積分の計算 .............................................. 90

5.3

結果及び考察 .................................................................................................................... 91

5.3.1

DIC から求めたき裂進展特性 ................................................................................ 91

5.3.2

LD,TD の破面,断面観察........................................................................................ 92

5.3.3

3 次元 FEM による J 積分と DIC 的手法による J 積分の結果 ........................... 96

5.4
第6章

結言 .................................................................................................................................. 100
結論 .............................................................................................................................. 102

6.1

各章のまとめ .................................................................................................................. 102

6.2

全体のまとめ及び今後の展望 ...................................................................................... 104

謝辞 .................................................................................................................................................. 108
参考文献 ........................................................................................................................................... 110
本研究に関連する掲載論文および学会発表 ............................................................................... 117

iii

図目次
1-1 DC-DC converter for Automotive. ......................................................................................... 2
1-2 Examples of connector. .......................................................................................................... 2
1-3 Failure case of an electric part made from a copper alloy strip used in a car navigation. ..... 3
1-4 Relationship of each chapter in this dissertation. ................................................................... 7
2-1 Shape of specimen (mm). ....................................................................................................... 9
2-2 Basic structure of fatigue cycle jig. ...................................................................................... 10
2-3 Fatigue test machine and jigs. ...............................................................................................11
2-4 Circuit schematic for measuring the resistance of specimen to judge the specimen failure. 12
2-5 Observation of fixed brock jigs. ........................................................................................... 14
2-6 Relationship between stress amplitude and the number of cycles to failure for Cu-Ni-Si
copper alloy specimen (LD direction, t = 0.12 mm). ....................... ...

この論文で使われている画像

参考文献

1)

加藤光治 and デンソーカーエレクトロニクス研究会, “図解カーエレクトロニクス(上)

システム編、

(下)要素技術編” (2014) 日経 BP 社.

2)

A. Cornet, R. Heuss, A. Tschiesner, R. Hensley, P. Hertzke, T. Möller, P. Schaufuss, J. Conzade, S.

Schenk and K.v. Laufenberg, “Why the automotive future is electric : Mainstream EVs will

transform the automotive industry and help decarbonize the planet” (2021) McKinsey&Company.

3)

N. Soulopoulos, M. Boers, R. Fisher, A. O'Donovan and C. Mckerrancher, “Hitting the EV

liflection point” (2021) BroombergNEF.

4)

O. Burkacky, J. Deichmann and J.P. Stein, “Automotive software and electronics 2030 : Mapping

the sector’s future landscape” (2019) McKinsey & Company.

5)

T. Yamaguchi and N. Mita, “An approach to foating connector on vibration”, Journal of Japan

Institute of Electronics Packaging (in Japanese), Vol.19, No.5, pp.325–327 (2016).

6)

N. Nishimura, T. Otsuka, F. Imasato, M. Kusakari, Y. Akasofu and A. Sasaki, “Aluminum wiring

harness”, SEI TECHNICAL REVIEW, Vol.79, No.10, pp.8–13 (2014).

7)

H. Yorifuji, H. Hyodo, M. Suzuki, K. Watanabe, H. Narieda, S. Semboshi and G. Miyamoto,

“Strengthening by annealing at a low

temperature on Cu–Ni–Co–Si alloys for micro connectors

(in Japanese)”, Journal of Japan Institute of Copper, Vol.59, No.1, pp.249–254 (2020).

8)

H. Matsunaga, K. Maki, S. Arisawa, Y. Akisaka, T. Nishimura and H. Mori, “Development of

MSP8, a solid-solution copper alloy with high electrical conductivity and superior stress relaxation

property for high current use in automobile electronics (in Japanese)”, Materia Japan, Vol.56, No.2,

pp.88–90 (2017).

9)

M. Ishida, S. Miura and J. Kumagai, “Effect on mechanical property by the cold-rolling processing

of the Cu-Cr-Zr based alloy (in Japanese)”, Journal of the JRICu, Vol.46, No.1, pp.148–152 (2007).

10)

H. Kaneko, K. Hirose, K. Satio, N. Tanaka, H. Kanamori, K. Mihara and T. Eguchi, “Development

of a Cu-Ni-Si copper alloy strip for narrow pitch connectors”, Furukawa Review, Vol.38, pp.1–7

(2010).

110

11)

M. Deguchi, K. Yamamoto, H. Tobe and E. Sato, “Transient creep behavior and dislocation cell

structure development during creep-fatigue deformation of fully annealed Cu–Cr–Zr alloy”,

International Journal of Fatigue, Vol.116, pp.156–162 (2018).

12)

K. Maki, Y. Ito, H. Matsunaga and H. Mori, “Solid-solution copper alloys with high strength and

high electrical conductivity”, Scripta Materialia, Vol.68, No.10, pp.777–780 (2013).

13)

H. Yang, Z. Ma, C. Lei, L. Meng, Y. Fang, J. Liu and H. Wang, “High strength and high

conductivity Cu alloys: A review”, Science China Technological Sciences, Vol.63, No.12,

pp.2505–2517 (2020).

14)

S. Fu, P. Liu, X. Chen, H. Zhou, F. Ma, W. Li and K. Zhang, “Effect of aging process on the

microstructure and properties of Cu–Cr–Ti alloy”, Materials Science and Engineering: A, Vol.802,

No.20, pp.140598-140606 (2021).

15)

M.T. Jahn and A.R. Saavedra, “Fatigue and tensile properties of a newly developed tin-copper

alloy”, Journal of Materials Sicence Letters, Vol.11, No.23, pp.1596–1598 (1992).

16)

S. Aoyama and R. Urao, “Effect of grain size and Sn consentration on bending fatigue life of SuSn alloy (in Japanese)”, The Journal of the Japan Institute of Metals and Materials, Vol.74, No.1,

pp.49–54 (2010).

17)

Y. Tamiya, “A validity of estimation methods of total strain-fatigue life curve about copper and

copper alloys (in Japanese)”, Journal of the Society of Materials Science, Japan, Vol.60, No.9,

pp.777–782 (2011).

18)

B. Yang, M. Wu, X. Li, J. Zhang and H. Wang, “Effects of cold working and corrosion on fatigue

properties and fracture behaviors of precipitate strengthened Cu-Ni-Si alloy”, International Journal

of Fatigue, Vol.116, pp.118–127 (2018).

19)

B. Saadouki, M. Elghorba, P.H. Pelca, T. Sapanathan and M. Rachik, “Characterization of uniaxial

fatigue behavior of precipitate strengthened Cu-Ni-Si alloy (SICLANIC(TM))”, Frattura ed

Integrità Strutturale, Vol.12, No.43, pp.133–145 (2017).

20)

J. Congleton, R.N. Parkins and J. Yu, “Intergranular and transgranular cracking of Cu–30Zn brass

during fatigue loading”, Materials Science and Technology, Vol.1, No.12, pp.1046–1052 (1985).

21)

M. Hayashi and K. Uehara, “Simulation about fatigue crack tip opening behavior of CT specimen

on Brasses (in Japanese)”, Journal of JRICu, Vol.45, No.1, pp.302–306 (2006).

111

22)

M. Hayashi, “Fatigue crack growth rate formulation and validation on catridge brass sheet (in

Japanese)”, Journal of Japan Institute of Copper, Vol.54, No.1, pp.57–61 (2015).

23)

Y. Tang, G. Zhu, Y. Kang, L. Yue and X. Jiao, “Effect of microstructure on the fatigue crack growth

behavior of Cu–Be–Co–Ni alloy”, Journal of Alloys and Compounds, Vol.663, pp.784–795 (2016).

24)

B. Yang, Y. Li, Y. Qin, J. Zhang, B. Feng, Z. Liao, S. Xiao, G. Yang and T. Zhu, “Fatigue crack

growth behaviour of precipitate-strengthened CuNi2Si alloy under different loading modes”,

Materials (Basel), Vol.13, No.10, pp.2228-2241 (2020).

25)

Japan Copper and Brass Association, “Measureing method for fatigue property of copper and

copperalloy thin sheets, pates, and strips”, JCBA T308:2002 (2002).

26)

Japan Copper and Brass Association, “Measureing method for fatigue property of copper and

copperalloy thin sheets, pates, and strips”, JCBA T308:2018 (2018).

27)

M. Tsushida, R. Ikeda, H. Kitahara and A. Shinji, “Development of fatigue testing machine for

thin sheet specimen and fatigue test for magnesium single crystal (in Japanese)”, Journal of the

Society of Materials Science, Japan, Vol.58, No.8, pp.703–708 (2019).

28)

日本学術振興会金属材料の強度と疲労第 129 委員会, “金属材料の強度および疲労資料

集成 第 1 編”, pp.355-356 (1970) 丸善.

29)

Y. Ishino, K. Kudo and K. Kammuri, “Fatigue life evaluation of copper foil by various fatigue

tests (in Japanese)”, Journal of Japan Institute of Copper, Vol.59, No.1, pp.238–242 (2020).

30)

K. Shimizu and T. Torii, “Effects of grain size on fatigue crack propagation in copper Film”, Key

Engineering Materials, Vol.452-453, pp.289–292 (2010).

31)

K. Tanaka, S. Takeshita, K. Otsuka, K. Sano and H. Kimachi, “Grain-size effect on fatigue

properties of copper thin films produced by electrodeposition (in Japanese)”, Journal of the Society

of Materials Science, Japan, Vol.64, No.11, pp.918–925 (2015).

32)

J.H. Park, J.H. An, Y.J. Kim, Y.H. Huh and H.J. Lee, “Tensile and high cycle fatigue test of copper

thin film”, Materialwissenschaft und Werkstofftechnik, Vol.39, No.2, pp.187–192 (2008).

33)

Y.H. Huh, D.J. Kim, H.M. Lee, S.G. Hong and J.H. Park, “Fatigue limit of copper film”,

Transactions of the Korean Society of Mechanical Engineers A, Vol.33, No.10, pp.1158–1162

(2009).

34)

A. Brotzu, V. Di Cocco, F. Felli, F. Iacoviello and D. Pilone, “Fatigue crack propagation in a

C70250 alloy”, International Journal of Fatigue, Vol.153, pp.106499–106504 (2021).

112

35)

A. Sharma and B. Ahn, “Effect of plating current density on the Ball-On-Disc wear of Sn-plated

Ni coatings on Cu foils”, Coatings, Vol.11, No.56, pp.1-12 (2021).

36)

A. Sharma and B. Ahn, “Dry sliding wear behavior of Sn and NiSn overlays on Cu connectors”,

Tribology Letters, Vol.66, No.4, pp.1–12 (2018).

37)

The Japanese Industrial Standards, “General test procedure of failure rate for electronic

components”, JIS C5003 (1974).

38)

E. Castillo and A. Fernandez-Canteli, “A unified statistical methodology for modeling fatigue

damage”, pp.193–201 Springer Science & Business Media.

39)

日本材料学会, “金属材料疲労設計便覧”, pp.22–28 (1987) 養賢堂.

40)

日本機械学会,“一般寸法効果,切欠効果

金属材料

疲労強度の設計資料

(改定第 2 版)

pp.3–4 (1982) 日本機械学会.

41)

B. Pyttel, D. Schwerdt and C. Berger, “Very high cycle fatigue – Is there a fatigue limit?”,

International Journal of Fatigue, Vol.33, No.1, pp.49–58 (2011).

42)

H.J. Grover, “Fatigue of aircraft structure” (1966).

43)

T. Suzuki and S. Hotta, “Fatigue strength diagram of aluminum alloys at high temperature

(Part1:Division by fracture mechanism) (in Japanese)”, JSME annual meeting, pp.155–156 (2010).

44)

T. Suzuki and S. Hotta, “Fatigue strength diagram of aluminum alloys at high temperature (Part 2:

Application to various aluminum alloys) (in Japanese)”, M&M Material Mechanics Conference,

pp.1159–1161 (2010).

45)

D. Setoyama, T. Suzuki and S. Hotta, “Fatigue strength diagram of auminum alloys at high

temperature (Part3:Formulation of fatigue strength diagram) (in Japanese)”, M&M Material

Mechanics Conference, pp.1–3 (2011)

46)

T. Suzuki, D. Setoyama and S. Hotta, “Fatigue strength diagram of aluminum alloys at high

temperature (Part4:Validation of formulas for various alloys) (in Japanese)”, JSME annual meeting,

pp.1–4 (2011)

47)

International Organization Standardization, “Metallic materials — Instrumented indentation test

for hardness and materials parameters —”, ISO14577-1 (2002).

48)

The Japanese Industrial Standards, “Method for ultra-low loaded hardness test”, JIS Z2255 (2003).

113

49)

N. Mita, M. Omiya and S. Watanabe, “Improvement of experimental device for high cycle fatigue

tests of copper alloy strips and characterizing fatigue properties (in Japanese)”, Transactions of the

JSME, Vol.87, No.900, pp.21-00105–00121-00105 (2021).

50)

春山史郎, “表面技術者のための電気化学”, pp.172-173 (2005) 丸善.

51)

R. Weil, “Origins of stress in electrodeposits. PT. 2. Review of the literature dealing with stress in

electrodeposited metals”, PLATING, Vol.58, No.1, pp.50-56 (1971).

52)

K. Oyamada and W. Yamamoto, “Measurements of internal stresses in electrodeposits (in

Japanese)”, Journal of the Surface Finishing Society of Japan, Vol.58, No.4, pp.213-218 (2007).

53)

Y. Kaneo, “Intenal stress in electrodeposited metals

(in Japanese)”, Journal of the Surface

Finishing Society of Japan, Vol.43, No.7, pp.667-670 (1992).

54)

米谷茂, “残留応力(9)電着メッキによる残留応力の発生”, 機械の研究, Vol.9, pp.10531058 (1986).

55)

M. Kikukawa, M. Jono, k. Tanaka and M. Takatani, “Measurement of fatigue crack propagation

and crack closure at low stress level by unloading elastic compliance method (in Japanese)”,

Journal of the Society of Materials Science, Japan, Vol.25, No.276 (1976).

56)

G. Yagawa and T. Fukuda, “Application fo potentiometric method in fracture mechanics”, Science

of machine, Vol.35, pp.1324–1330 (1983).

57)

J. Abanto-Bueno and J. Lambros, “Investigation of crack growth in functionally graded materials

using digital image correlation”, Engineering Fracture Mechanics Vol.69, No.14, pp.1695–

1711 (2002).

58)

J. Réthoré, “Automatic crack tip detection and stress intensity factors estimation of curved cracks

from digital images”, International Journal for Numerical Methods in Engineering, Vol.103, No.7,

pp.516–534 (2015).

59)

J. Hosdez, J.F. Witz, C. Martel, N. Limodin, D. Najjar, E. Charkaluk, P. Osmond and F. Szmytka,

“Fatigue crack growth law identification by Digital Image Correlation and electrical potential

method for ductile cast iron”, Engineering Fracture Mechanics, Vol.182, pp.577–594 (2017).

60)

T. Strohmann, D. Starostin‐Penner, E. Breitbarth and G. Requena, “Automatic detection of

fatigue crack paths using digital image correlation and convolutional neural networks”, Fatigue

& Fracture of Engineering Materials & Structures, Vol.44, No.5, pp.1336–1348 (2021).

114

61)

The Japanese Industrial Standards, “General test procedure of failure rate for electronic

components”, JIS Z 2241 (2011).

62)

J.P. Lewis, “Fast normalized cross-correlation”, Proceedings of Vision Interface, pp.120–123

(1995)

63)

C.K. Hu, R. Rosenberg and K.Y. Lee, “Electromigration path in Cu thin-film lines”, Applied

Physics Letters, Vol.74, No.20, pp.2945-2947 (1999).

64)

M. Hayashi, S. Nakano and T. Wada, “Electromigration phenomenon of copper interconnects on

semiconductor device (in Japanese)”, REAJ, Vol.25, No.2, pp.110-120 (2003).

65)

S. Kubo, T. Yafuso, M. Nohara, T. Ishimaru and K. Ohji, “Investigation on path-integral expression

of the J-integral range using numerical simulations of fatigue crack growth”, JSME International

Journal Sereis 1, Vol.32, No.2, pp.237–244 (1989).

66)

M.S.M. Azmi, T. Fujii, K. Tohgo and Y. Shimamura, “On the Δ J -integral to characterize elasticplastic fatigue crack growth”, Engineering Fracture Mechanics, Vol.176, pp.300–307 (2017).

67)

S. Hagihara, N. Shishido, Y. Hayama and N. Miyazaki, “Methodology for calculating J-integral

range ΔJ under cyclic loading”, International Journal of Pressure Vessels and Piping, Vol.191,

pp.104343-104350 (2021).

68)

N. Mita, A. Tsuchiya and M. Omiya, “Fatigue crack propagation properties in thin Cu–Sn–P

copper alloy strips (in Japanese)”, Journal of the Society of Materials Science, Japan, Vol.71,

No.12, pp.945-952 (2022).

69)

M.A. Sutton, J.-J. Orteu and H.W. Schreier, “Image correlation for hape, motion and displacement

measurement” (2009) Springer.

70)

J. Blaber, B. Adair and A. Antoniou, “Ncorr: Open-Source 2D digital image correlation MATLAB

software”, Experimental Mechanics, Vol.55, No.6, pp.1105-1122 (2015).

71)

T.H. Becker, M. Mostafavi, R.B. Tait and T.J. Marrow, “An approach to calculate theJ-integral by

digital image correlation displacement field measurement”, Fatigue & Fracture of Engineering

Materials & Structures, Vol.35, No.10, pp.971–984 (2012).

72)

S. Yoneyama, S. Arikawa, S. Kusayanagi and K. Hazumi, “Evaluating J-integral from

displacement fields measured by digital image correlation”, Strain, Vol.50, No.2, pp.147-160

(2014).

115

73)

H. Yamane, S. Arikawa and S. Yoneyama, “J-integral evaluation from displacement fields around

crack tip measured by digital Image correlation”, Advanced Experimental Mechanics, Vol.2,

pp.92-98 (2017).

74)

H. Yamane, S. Arikawa and S. Yoneyama, “J-integral evaluation for an interface crack using digital

image correlation”, Journal of JSEM, Vol.14, pp.s122-s127 (2014).

75)

J.R. Rise, “A path independent integral

and the approximate analysis of strain concentration by

notches and cracks”, Journal of Applied Mechanics, Vol.35, pp.379-386 (1968).

76)

J.R. Rice, P.C. Paris and J.G. Merkle, “Some further results of J-integral analysis and estimates”,

ASTM Special Technical Publication, Vol.536, pp.231-245 (1972).

77)

C.-W. Izabela, “Finite Element Modeling of Textiles in Abaqus™ CAE” (2019) CRC Press.

78)

N. Bouida, A.S. Bouchikhi, A. Megueni and S. Gouasmi, “A finite element analysis for evaluation

of J-integral in plates made of functionally graded materials with a semicircular notch”, Journal of

Failure Analysis and Prevention, Vol.18, No.6, pp.1573-1586 (2018).

79)

A.A. Oshkour, B.B. Sahari and A. Ali, “Variation of stress intensity factor through the thickness

of plate”, IOP Conference Series: Materials Science and Engineering, Vol.17, No.1, pp.012004–

012012 (2011).

80)

M. Kikuchi, H. Miyamoto and Y. Kitagawa, “Evaluation of three dimentional J-Integrals (The

thickness effects of a through crack

and CT specimens by elastic analyses) (in Japanese)”,

Journal of the Society of Materials Science, Japan, Vol.31, No.344, pp.420-424 (1981).

81)

M.A. Miner, “Cumulative damage in fatigue”, J Appl Mech, Vol.12, No.3, pp. A159-A164 (1945).

82)

T. Yamada and S. Kitagawa, “Fatigue strength of metals under service load(Fatigue strength and

its estimating method in the cas where mean stresses fluctuate sinusoidally) (in Japanese)”, Journal

of the Society of Materials Science, Japan, Vol.13, No.131, pp.619-624 (1964).

83)

T. Endo and H. Anzai, “Refined rainflow algorithm: P/V difference Method (in Japanese)”, Journal

of the Society of Materials Science, Japan, Vol.30, No.328, pp.90-93 (1980).

116

本研究に関連する掲載論文および学会発表

1.定期刊行誌掲載論文

(1)

三田夏大, 大宮正毅, 渡邉慎吾, “銅合金条材のための高サイクル疲労試験機の改良と

疲労特性の把握”, 日本機械学会論文集, Vol.87, No.900 (2021), 21–00105 (16 pages).

(2) 三田夏大, 土屋朱美果, 大宮正毅, “薄板 Cu-Sn-P 銅合金条材におけるき裂進展特性”,

材料, Vol. 71, No.12 (2022), pp. 945–952.

(3) Mita, N., Omiya, M., Watanabe, S. and Ishizaka, K., “Fatigue Strength Evaluation of Cu–Ni–Si

Alloy Strips”, Journal of Engineering Materials and Technology [Accepted for publication].

2.国際会議発表

(1) Mita, N.*, Tsuchiya, A. and Omiya, M., “Fatigue Strength Evaluation of Cu-Ni-Si Copper Alloy

Strip”, 6th International Conference on Materials and Reliability, (Yamaguchi, Japan), (2022).

3.国内学会発表

(1) 三田夏大*, 大宮正毅, 渡邉慎吾, “銅合金条材のための高サイクル疲労試験機の改良と

疲労特性の把握”, 日本機械学会関東支部第 27 期総会・講演会(日本機械学会, 神奈川,

2021).

(2)

三田夏大*, 土屋朱美果, 大宮正毅, “薄板 Cu-Sn-P 銅合金条材における疲労き裂進展

特性”, 第 20 回破壊力学シンポジウム(日本材料学会, 和歌山, 2021).

117

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る