リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「エクトドメインシェディング、リシンアシル化、およびホスファターゼ大規模解析のためのプロテオミクス基盤技術の開発」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

エクトドメインシェディング、リシンアシル化、およびホスファターゼ大規模解析のためのプロテオミクス基盤技術の開発

津曲, 和哉 京都大学 DOI:10.14989/doctor.k23475

2021.09.24

概要

ショットガンプロテオミクスは、タンパク質混合試料をペプチド断片に消化し、液体クロマトグラフィー/タンデム質量分析(LC/MS/MS)により測定するため、質量変化を伴うタンパク質翻訳後修飾の大規模解析に適している。しかし、翻訳後修飾を受けたタンパク質は、非修飾タンパク質と比べて一般的に存在量が少ないため、その解析には事前の濃縮操作が必要である。本研究では、プロテオミクスにおいて測定技術が完全には確立していないエクトドメインシェディング(第一章)やリシンアシル化(第二章)に注目し、シェディングによって制御されるプロテオームに対する解析技術(シェディングプロテオミクス)や、アシル化修飾の大規模解析技術(アシロミクス)を開発し、生体試料への応用を行った。また、可逆的リン酸化修飾に着目し、その脱修飾酵素であるタンパク質ホスファターゼをプロテオーム規模で解析するホスファトミクスのための基盤技術開発を行った(第三章)。

第一章 ショットガンプロテオミクスによるエクトドメインシェディング大規模解析
膜型プロテアーゼによる膜近傍部での膜タンパク質細胞外ドメインの不可逆的な切断(エクトドメインシェディング)は、胚発生や恒常性維持において重要な役割を果たしており、これまでに多くの膜タンパク質がシェディング基質として報告されてきたが、その切断部位の情報は限定的であった。本研究では、陽イオン交換クロマトグラフィーを用いたタンパク質末端由来ペプチドの濃縮と、 LC/MS/MSを組み合わせた高感度タンパク質末端解析システムを用いて、様々な培養細胞上清由来タンパク質を定量的に解析し、大規模な膜タンパク質切断部位の解明を行った。その結果、アミノ酸置換による従来法では不可能であった新規切断部位の同定に成功した。

第二章 新規リシンアシル化ペプチド濃縮技術の開発
タンパク質リシン残基のアセチル化、スクシニル化などのアシル化修飾は、ヒストンや代謝酵素などの細胞機能の根幹に関わるタンパク質に広く認められ、広範な生命現象と関連する。アシル化タンパク質の発現量はごくわずかであり、アシローム解析のためには、試料をLC/MS/MSに供する前に、アシル化ペプチドを濃縮することが不可欠である。しかし、現在用いられている抗アシルリシン抗体等による免疫沈降法では、抗体認識配列による偏りや、コスト等の問題がある。これらの問題を解決するために、酵素による脱アシル化を組み合わせた新規アシル化ペプチド濃縮技術を開発した。本手法をHeLa細胞核画分由来タンパク質試料に適用した結果、ヒストン上のリシンアシル化部位の同定に成功した。

第3章 非加水分解性リン酸化チロシン模倣体を用いたホスファターゼ濃縮のためのペプチドプローブの開発
プロテインチロシンホスファターゼ( PTP)は、様々な生理現象に重要な役割を果たすチロシンリン酸化修飾を厳密に制御する。その機能不全は、がんを含めとした重篤な疾患を引き起こすため、発現するPTPの活性プロファイルを得ることは、個別化医療や創薬に有益である。そこで本章では、PTPを濃縮しプロテオミクスにより解析するための手法を開発した。PTPと強く相互作用する非加水分解性のリン酸化チロシン模倣体を組み込んだペプチド型PTPプローブを合成し、 HEK293T細胞由来タンパク質試料に応用した結果、数種のPTPを濃縮することに成功した。また、このプローブはリン酸化チロシンと結合するSH2ドメインタンパク質の濃縮にも適用可能であった。本手法はPTPをはじめとするリン酸化チロシン相互作用分子の解析ツールとして、幅広い応用が期待される。

この論文で使われている画像

参考文献

1. Meier, F., Geyer, P. E., Virreira Winter, S., Cox, J. & Mann, M. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat. Methods 15, 440–448 (2018).

2. Bekker-Jensen, D. B. et al. An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes. Cell Syst. 4, 587-599.e4 (2017).

3. Doll, S., Gnad, F. & Mann, M. The Case for Proteomics and Phospho‐ Proteomics in Personalized Cancer Medicine. PROTEOMICS – Clin. Appl. 13, 1800113 (2019).

4. Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).

5. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).

6. Aken, B. L. et al. Ensembl 2017. Nucleic Acids Res. 45, D635–D642 (2017).

7. Gaudet, P. et al. The neXtProt knowledgebase on human proteins: 2017 update. Nucleic Acids Res. 45, D177–D182 (2017).

8. Pennisi, E. The Human Genome. Science (80-. ). 291, 1177–1180 (2001).

9. Uhlen, M. et al. Tissue-based map of the human proteome. Science (80-. ). 347, 1260419–1260419 (2015).

10. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

11. Olsen, J. V et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–48 (2006).

12. Humphrey, S. J. et al. Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation. Trends Endocrinol. Metab. 26, 676–687 (2015).

13. Huovila, A.-P. J., Turner, A. J., Pelto-Huikko, M., Kärkkäinen, I. & Ortiz, R. M. Shedding light on ADAM metalloproteinases. Trends Biochem. Sci. 30, 413–422 (2005).

14. Lichtenthaler, S. F., Lemberg, M. K. & Fluhrer, R. Proteolytic ectodomain shedding of membrane proteins in mammals—hardware, concepts, and recent developments. EMBO J. 37, e99456 (2018).

15. Weinert, B. T., Moustafa, T., Iesmantavicius, V., Zechner, R. & Choudhary, C. Analysis of acetylation stoichiometry suggests that SIRT 3 repairs nonenzymatic acetylation lesions. EMBO J. 34, 2620–2632 (2015).

16. Wagner, G. R. & Payne, R. M. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288, 29036–45 (2013).

17. Smith, L. M. & Kelleher, N. L. Proteoform: A single term describing protein complexity. Nature Methods 10, 186–187 (2013).

18. Garcia, B. A., Pesavento, J. J., Mizzen, C. A. & Kelleher, N. L. Pervasive combinatorial modification of histone H3 in human cells. Nat. Methods 4, 487– 489 (2007).

19. Olsen, J. V. & Mann, M. Status of large-scale analysis of posttranslational modifications by mass spectrometry. Molecular and Cellular Proteomics 12, 3444–3452 (2013).

20. Stenflo, J., Fernlund, P., Egan, W. & Roepstorff, P. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc. Natl. Acad. Sci. U. S. A. 71, 2730–2733 (1974).

21. Tan, M. et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 19, 605–617 (2014).

22. Zhang, Z. et al. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 7, 58–63 (2011).

23. Chen, Y. et al. Lysine propionylation and butyrylation are novel post- translational modifications in histones. Mol. Cell. Proteomics 6, 812–819 (2007).

24. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

25. Huang, H. et al. Lysine benzoylation is a histone mark regulated by SIRT2. Nat. Commun. 9, (2018).

26. Yugi, K. et al. Reconstruction of insulin signal flow from phosphoproteome and metabolome data. Cell Rep. 8, 1171–83 (2014).

27. Kawata, K. et al. Trans-omic Analysis Reveals Selective Responses to Induced and Basal Insulin across Signaling, Transcriptional, and Metabolic Networks. iScience 7, 212–229 (2018).

28. Arrington, J. V., Hsu, C. C., Elder, S. G. & Andy Tao, W. Recent advances in phosphoproteomics and application to neurological diseases. Analyst 142, 4373– 4387 (2017).

29. Lundby, A. et al. Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns. Cell Rep. 2, 419–431 (2012).

30. Peng, C. et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 10, (2011).

31. Jiang, H. et al. SIRT6 regulates TNF-α secretion through hydrolysis of long- chain fatty acyl lysine. Nature 496, 110–113 (2013).

32. Zhang, Z.-Y., Dodd, G. T. & Tiganis, T. Protein Tyrosine Phosphatases in Hypothalamic Insulin and Leptin Signaling. Trends Pharmacol. Sci. 36, 661–674 (2015).

33. Alonso, A. et al. Protein tyrosine phosphatases in the human genome. Cell 117, 699–711 (2004).

34. Klaeger, S. et al. The target landscape of clinical kinase drugs. Science (80-. ).358, eaan4368 (2017).

35. Tong, J. et al. Integrated analysis of proteome, phosphotyrosine-proteome, tyrosine-kinome, and tyrosine-phosphatome in acute myeloid leukemia. Proteomics 17, 1600361 (2017).

36. Weber, S. & Saftig, P. Ectodomain shedding and ADAMs in development. Development 139, 3693–3709 (2012).

37. Beard, H. A., Barniol-Xicota, M., Yang, J. & Verhelst, S. H. L. Discovery of cellular roles of intramembrane proteases. ACS Chem. Biol. 14, 2372–2388 (2019).

38. Reiss, K. & Saftig, P. The “A Disintegrin And Metalloprotease” (ADAM) family of sheddases: Physiological and cellular functions. Semin. Cell Dev. Biol. 20, 126–137 (2009).

39. Niedermaier, S. & Huesgen, P. F. Positional proteomics for identification of secreted proteoforms released by site-specific processing of membrane proteins. Biochim. Biophys. Acta - Proteins Proteomics 1867, 140138 (2019).

40. Chow, V. W., Mattson, M. P., Wong, P. C. & Gleichmann, M. An overview of APP processing enzymes and products. Neuromolecular medicine 12, 1–12 (2010).

41. Tsumagari, K. et al. Secretome analysis to elucidate metalloprotease-dependent ectodomain shedding of glycoproteins during neuronal differentiation. Genes to Cells 22, 237–244 (2017).

42. Kleifeld, O. et al. Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat. Biotechnol. 28, 281–288 (2010).

43. Prudova, A., auf dem Keller, U., Butler, G. S. & Overall, C. M. Multiplex N- terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ- TAILS quantitative proteomics. Mol. Cell. Proteomics 9, 894–911 (2010).

44. Chang, C.-H., Chang, H.-Y., Rappsilber, J. & Ishihama, Y. Isolation of Acetylated and Unmodified Protein N-Terminal Peptides by Strong Cation Exchange Chromatographic Separation of TrypN-Digested Peptides. Mol. Cell. Proteomics 20, 100003 (2021).

45. Alpert, A. J. et al. Peptide orientation affects selectivity in ion-exchange chromatography. Anal. Chem. 82, 5253–9 (2010).

46. Helbig, A. O. et al. Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome. Mol. Cell. Proteomics 9, 928–939 (2010).

47. Gauci, S. et al. Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal. Chem. 81, 4493– 4501 (2009).

48. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

49. Takami, M. et al. γ-Secretase: Successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment. J. Neurosci. 29, 13042–13052 (2009).

50. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

51. Nagano, O. & Saya, H. Mechanism and biological significance of CD44 cleavage. Cancer Science 95, 930–935 (2004).

52. Shirakabe, K., Hattori, S., Seiki, M., Koyasu, S. & Okada, Y. VIP36 protein is a target of ectodomain shedding and regulates phagocytosis in macrophage Raw 264.7 cells. J. Biol. Chem. 286, 43154–63 (2011).

53. Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

54. Imamura, H. et al. Identifications of putative PKA substrates with quantitative phosphoproteomics and primary-sequence-based scoring. J. Proteome Res. 16, 1825–1830 (2017).

55. Tucher, J. et al. LC-MS based cleavage site profiling of the proteases ADAM10 and ADAM17 using proteome-derived peptide libraries. J. Proteome Res. 13, 2205–2214 (2014).

56. Eckhard, U. et al. Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biol. 49, 37–60 (2016).

57. Seegar, T. C. M. et al. Structural basis for regulated proteolysis by the α- secretase ADAM10. Cell 171, 1638-1648.e7 (2017).

58. Seidah, N. G., Sadr, M. S., Chrétien, M. & Mbikay, M. The Multifaceted Proprotein Convertases: Their Unique, Redundant, Complementary, and Opposite Functions. J. Biol. Chem. 288, 21473–21481 (2013).

59. Manon-Jensen, T., Multhaupt, H. A. B. & Couchman, J. R. Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains. FEBS J. 280, 2320–2331 (2013).

60. Soh, W. T. et al. ExteNDing Proteome Coverage with Legumain as a Highly Specific Digestion Protease. Anal. Chem. 92, 2961–2971 (2020).

61. Gooz, M. ADAM-17: the enzyme that does it all. Crit. Rev. Biochem. Mol. Biol. 45, 146–169 (2010).

62. Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).

63. Choudhary, C. et al. Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions. Science (80-. ). 325, 834–840 (2009).

64. Jiang, T., Zhou, X., Taghizadeh, K., Dong, M. & Dedon, P. C. N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. Proc. Natl. Acad. Sci. 104, 60–65 (2007).

65. Hirschey, M. D. & Zhao, Y. Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Mol. Cell. Proteomics 14, 2308–2315 (2015).

66. Narita, T., Weinert, B. T. & Choudhary, C. Functions and mechanisms of non- histone protein acetylation. Nat. Rev. Mol. Cell Biol. 1 (2018). doi:10.1038/s41580-018-0081-3

67. Brittain, S. M., Ficarro, S. B., Brock, A. & Peters, E. C. Enrichment and analysis of peptide subsets using fluorous affinity tags and mass spectrometry. Nat. Biotechnol. 23, 463–468 (2005).

68. Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).

69. Lemmon, M. A. & Schlessinger, J. Cell Signaling by Receptor Tyrosine Kinases. Cell 141, 1117–1134 (2010).

70. Lemeer, S., Zörgiebel, C., Ruprecht, B., Kohl, K. & Kuster, B. Comparing Immobilized Kinase Inhibitors and Covalent ATP Probes for Proteomic Profiling of Kinase Expression and Drug Selectivity. J. Proteome Res. 12, 1723– 1731 (2013).

71. Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044 (2007).

72. Ranjitkar, P. et al. Affinity-Based Probes Based on Type II Kinase Inhibitors. J. Am. Chem. Soc. 134, 19017–19025 (2012).

73. Karisch, R. et al. Global Proteomic Assessment of the Classical Protein-Tyrosine Phosphatome and “Redoxome”. Cell 146, 826–840 (2011).

74. Burke, T. R. J. et al. Nonhydrolyzable Phosphotyrosyl Mimetics for the Preparation Of Phosphatase-Resistant SH2 Domain Inhibitors. Biochemistry 33, 6490–6494 (1994).

75. Chen, L. et al. Why Is Phosphonodifluoromethyl Phenylalanine a More Potent Inhibitory Moiety Than Phosphonomethyl Phenylalanine Toward Protein- Tyrosine Phosphatases. Biochem. Biophys. Res. Commun. 216, 976–984 (1995).

76. Meyer, C. et al. Development of accessible peptidic tool compounds to study the phosphatase PTP1B in intact cells. ACS Chem. Biol. 9, 769–776 (2014).

77. Meyer, C., Hoeger, B., Chatterjee, J. & Köhn, M. Azide-alkyne cycloaddition-mediated cyclization of phosphonopeptides and their evaluation as PTP1B binders and enrichment tools. Bioorganic Med. Chem. 23, 2848–2853 (2015).

78. Masuda, T., Saito, N., Tomita, M. & Ishihama, Y. Unbiased quantitation of Escherichia coli membrane proteome using phase transfer surfactants. Mol. Cell. Proteomics 8, 2770–7 (2009).

79. Tiganis, T. PTP1B and TCPTP - nonredundant phosphatases in insulin signaling and glucose homeostasis. FEBS J. 280, 445–458 (2013).

80. Valius, M., Bazenet, C. & Kazlauskas, A. Tyrosines 1021 and 1009 are phosphorylation sites in the carboxy terminus of the platelet-derived growth factor receptor beta subunit and are required for binding of phospholipase C gamma and a 64-kilodalton protein, respectively. Mol. Cell. Biol. 13, 133–43 (1993).

81. Jadwin, J. A., Curran, T. G., Lafontaine, A. T., White, F. M. & Mayer, B. J. Src homology 2 domains enhance tyrosine phosphorylation in vivo by protecting binding sites in their target proteins from dephosphorylation. J. Biol. Chem. 293, 623–637 (2018).

82. Lundby, A. et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell 179, 543-560.e26 (2019).

83. Garton, A. J. & Tonks, N. K. PTP-PEST: a protein tyrosine phosphatase regulated by serine phosphorylation. EMBO J. 13, 3763–3771 (1994).

84. Wang, Y., Guo, W., Liang, L. & Esselman, W. J. Phosphorylation of CD45 by casein kinase 2. Modulation of activity and mutational analysis. J. Biol. Chem. 274, 7454–61 (1999).

85. Burke, T. R. et al. Cyclic Peptide Inhibitors of Phosphatidylinositol 3-Kinase p85 SH2 Domain Binding. Biochem. Biophys. Res. Commun. 201, 1148–1153 (1994).

86. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

87. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods 13, 731–740 (2016).

88. Eisenberg, E. & Levanon, E. Y. Human housekeeping genes are compact. Trends Genet. 19, 362–365 (2003).

89. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

90. Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–17 (2008).

91. Colaert, N., Helsens, K., Martens, L., Vandekerckhove, J. & Gevaert, K. Improved visualization of protein consensus sequences by iceLogo. Nature Methods 6, 786–787 (2009).

92. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: A sequence logo generator. Genome Res. 14, 1188–1190 (2004).

93. Rawlings, N. D. et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632 (2018).

94. Masuda, T., Sugiyama, N., Tomita, M., Ohtsuki, S. & Ishihama, Y. Mass Spectrometry-Compatible Subcellular Fractionation for Proteomics. J. Proteome Res. acs.jproteome.9b00347 (2019). doi:10.1021/acs.jproteome.9b00347

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る