リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Remarks on the principles of statistical fluid mechanics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Remarks on the principles of statistical fluid mechanics

Ohkitani, Koji 京都大学 DOI:10.1098/rsta.2021.0077

2022.03.07

概要

This is an idiosyncratic survey of statistical fluid mechanics centering on the Hopf functional differential equation. Using the Burgers equation for illustration, we review several functional integration approaches to the theory of turbulence. We note in particular that some important contributions have been brought about by researchers working on wave propagation in random media, among which Uriel Frisch is not an exception. We also discuss a particular finite-dimensional approximation for the Burgers equation.

この論文で使われている画像

参考文献

[1] Hopf E. 1952 Statistical hydromechanics and functional calculus. J. Rat.

Mech. Anal. 1 87-123.

[2] Hopf E. and Titt EW. 1953 On certain special solutions of the Φ-equation

of statistical hydrodynamics. J. Rat. Mech. Anal. 2 587-591.

[3] von Neumann J. 1929 Beweis des Ergodensatzes und des H-Theorems in der

neuen Mechanik. Zeit. Phys. 57 30-70.

[4] Birkhoff GD. 1931. Proof of the ergodic theorem. Proc. Nat. Acad. Sci. 17

656-660.

[5] Hopf E. 1937. Ergodentheorie. Berlin: Springer.

[6] Toda M., Kubo R. & Saito N. 2013. Statistical Physics I: Equilibrium Statistical Mechanics. Berlin: Springer.

[7] Koopman BO.1931 Hamiltonian systems and transformation in Hilbert

space. Proc. Nat. Acad. Sci. 17 315.

[8] Singh RK. and Manhas JS. 2012. Composition Operators on Function

Spaces. Amsterdam: North Holland.

[9] Weil A. 1932. On systems of curves on a ring-shaped surface. J. Ind. Math.

Soc. 19 109–114. Also in Andr´e Weil Oeuvres Scientifiques Collected Papers

Volume 1 : 57–62 & Commentaire (in French) p.522. 1979, Berlin: SpringerVerlag.

[10] R´edei M. (ed.) 2005 John Von Neumann: Selected Letters Rhode Island:

American Mathematical Society.

[11] Applebaum D. 2019. Semigroups of Linear Operators: With Applications to

Analysis, Probability and Physics. Cambridge: Cambridge University Press.

[12] Foias C. 1972 Statistical study of Navier-Stokes equations I. Rend. Sem.

Mat. Univ. Padova 8 219–348.

15

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[13] Foias C. 1973 Statistical study of Navier-Stokes equations II. Rend. Sem.

Mat. Univ. Padova 49 9–123.

[14] Vishik MI. and Fursikov AV. 1988 Mathematical problems of statistical hydromechanics. Dordrecht and Boston: Kluwer.

[15] Mezi´c I. 2013. Analysis of fluid flows via spectral properties of the Koopman

operator. Ann. Rev. Fluid Mech. 45 357–378.

[16] Rowley CW. & Dawson ST. 2017. Model reduction for flow analysis and

control. Ann. Rev. Fluid Mech. 49 387–417.

[17] Page J. and Kerswell RR. 2018. Koopman analysis of Burgers equation.

Phys. Rev. Fluids 3 071901.

[18] Foias C. 1974 A functional approach to turbulence. Russ. Math. Surv. 29

293.

[19] Edwards SF. 1964 The statistical dynamics of homogeneous turbulence. J.

Fluid Mech. 18 239-273.

[20] Edwards SF. 1964 A new method of solution for quantum field theory

and associated problems. in Proceedings of a conference on the theory and

applications of analysis in function space held at Endicott House in Dedham,

Massachusetts, June 9-13, 1963, eds. W.T. Martin and I.E. Segal. MIT

Press: Cambridge. 31-50

[21] Rosen G. 1960 Turbulence Theory and Functional Integration. I. and II.

Phys. Fluids 3 519-524 and 525-528.

[22] Rosen G. 1969 Formulation of Classical and Quantum Dynamical Theory.

New York and London: Academic Press.

[23] Novikov EA. 1961 The solution of certain equations with variational derivatives. (in Russian) Uspekhi Mat. Nauk 16 135–141.

[24] Ikeda N. and Watanabe S. 2014 Stochastic differential equations and diffusion processes. Amsterdam: Elsevier.

[25] Monin AS. and Yaglom AM. 1975 Statistical fluid dynamics: mechanics of

turbulence vol.2 MIT Press.

[26] Tatarskii VI. 1962 Application of the methods of quantum field theory to

the problem of degeneration of homogeneous turbulence. Sov. Phys. JETP

15 961–967.

[27] Klyatskin VI. 2015 Stochastic Equations: Theory and Applications in

Acoustics, Hydrodynamics, Magnetohydrodynamics, and Radiophysics, Volume 1 & 2. Berlin: Springer.

16

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[28] Novikov EA. 1965 Functionals and the random force method in turbulence

theory. Sov. Phys. JETP 20 1290–4.

[29] Furutsu K. 1963 On the statistical theory of electromagnetic waves in a

fluctuating medium: I. J. Res. Natl. Bur. Stand. 67D 303–23.

[30] Donsker MD. 1964 On function space integrals. in Proceedings of a conference on the theory and applications of analysis in function space held

at Endicott House in Dedham, Massachusetts, June 9-13, 1963, eds. W.T.

Martin and I.E. Segal. MIT Press: Cambridge. 17-30.

[31] Donsker MD. and Lions JL. 1996 Frechet-Volterra variational equations,

boundary value problems, and function space integrals. Acta Math. 108

147-228.

[32] Hosokawa I. 1968 A functional treatise on statistical hydromechanics with

random force action. J. Phys. Soc. Jpn. 25 271-278.

[33] Frisch U. 1968 Wave propagation in random media in Probabilistic Methods

in Applied Mathematics: volume 1. A.T. Bharucha-Reid (ed.) New York and

London: Academic Press.

[34] Zinn-Justin J. 2021. Quantum Field Theory and Critical Phenomena, 5th

edition. Oxford: Oxford University Press.

[35] Martin PC., Siggia ED. and Rose HA., 1973. Statistical dynamics of classical systems. Phys. Rev. A 8 423–437.

[36] Wyld Jr HW. 1961. Formulation of the theory of turbulence in an incompressible fluid. Ann. Phys. 14 143-165.

[37] Botelho LC. and da Silva EP 1998 The Caldirola-Kanai Theory from

”Brownian” Path Integral Quantum Mechanics. Mod. Phys. Lett. B 12 569–

573.

[38] Lewis RM. and Kraichnan RH. 1962 A space-time functional formalism for

turbulence. Commun. Pure Appl. Math. 15 397–411.

[39] de Dominicis C. 1976 Techniques de renormalisation de la th´eorie des

champs et dynamique des ph´enomen`es critiques. (in French) J. Phys.

(Paris), Colloq 1 247–253.

[40] Janssen H-K. 1976 On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties. Z. f¨

ur Physik

B 23 377–380.

[41] de Dominicis C. and Martin PC. 1979 Energy spectra of certain randomlystirred fluids. Phys. Rev. A 19 419–422.

[42] Frisch U. 1995 Turbulence: the legacy of AN Kolmogorov Cambridge: Cambridge University Press.

17

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[43] Gurarie V. and Migdal A. 1996 Instantons in the Burgers equation. Phys.

Rev. E 54 4908.

[44] Falkovich G., Kolokolov I., Lebedev V. and Migdal A. 1996 Instantons and

intermittency. Phys. Rev. E 54 4896.

[45] Grafke T., Grauer R. and Sch¨afer T. 2015. The instanton method and its

numerical implementation in fluid mechanics. J. Phys. A: Math. and Theor.

48 333001.

[46] Grafke T., Grauer R., Sch¨afer T. and Vanden-Eijnden, E. 2015. Relevance

of instantons in Burgers turbulence. Europhys. Lett. 109 34003.

[47] Rosen G. 1971. Functional calculus theory for incompressible fluid turbulence. J. Math. Phys. 12 812–820.

[48] Testa FJ. and Gerald R. 1974 Theory for incompressible fluid turbulence.

J. Franklin Inst. 297 127–133.

[49] Breuer HP. and Petruccione F. 1993 Burgers’s turbulence model as a

stochastic dynamical system: Master equation and simulation. Phys. Rev.

E 47 83.

[50] Breuer HP. and Petruccione F. 1996 Mesoscopic modelling and stochastic

simulations of turbulent flows. in Nonlinear Stochastic PDEs: Hydrodynamic

Limit and Burgers’ Turbulence (ed.) T. Funaki, W.A. Woyczynski, Berlin:

Springer.

[51] Breuer HP., Petruccione F. and Weber F. 1996 On a Fourier space master

equation for Navier-Stokes turbulence. Z. fur Phys. B 100 461-468.

[52] Kollmann W. 1976 Functional integrals in the statistical theory of turbulence and the burgers model equation. J. Stat. Phys. 14 291-303.

[53] Hirota R. 1979 Nonlinear Partial Difference Equations. V. Nonlinear Equations Reducible to Linear Equations. J. Phys. Soc. Jpn. 46 312–319.

[54] Kollmann W. 2019 Navier-Stokes Turbulence: Theory and Analysis. Berlin:

Springer.

[55] Venturi D. 2018 The numerical approximation of nonlinear functionals and

functional differential equations. Phys. Rep. 732 1-102.

[56] Botelho LCL. 2008 Lecture Notes In Applied Differential Equations Of

Mathematical Physics. Singapore: World Scientific.

[57] Ohkitani K. 2020 Study of the Hopf functional equation for turbulence:

Duhamel principle and dynamical scaling. Phys. Rev. E 101 013104-1–15.

[58] Cameron RH. 1960 A family of integrals serving to connect the Wiener and

Feynman integrals. J. Math. Phys. 39 126–140.

18

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[59] Klauder KR. 2003 The Feynman path integral: An historical slice. in A

Garden of Quanta: Essays in Honor of Hiroshi Ezawa 55-76.

[60] Reed M. and Simon B. 1975 Methods of Modern Mathematical Physics II:

Fourier Analysis, Self-Adjointness New York and London: Academic Press.

[61] Albeverio S. 1997 Wiener and Feynman-path integrals and their applications. In Proceedings of Symposia in Applied Mathematics, Vol. 52, pp.

163-194. Rhode Island: American Mathematical Society.

[62] Strocchi F. 2008 An Introduction to the Mathematical Structure of Quantum Mechanics: A Short Course for Mathematicians. Singapore: World

Scientific.

[63] Sreenivasan KR. and Eyink GL. 2005 Sam Edwards and the turbulence

theory. in Stealing the gold: A celebration of the pioneering physics of Sam

Edwards 66-85.

[64] Eyink G. and Frisch U. 2011 Robert H. Kraichnan. in A voyage through

turbulence. (eds.) Davidson P., Kaneda Y., Moffatt HK. and Sreenivasan

KR. Cambridge University Press: Cambridge 329-372.

19

...

参考文献をもっと見る