リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mechanisms of Plasma Actuators Controlling High-Aspect-Ratio Rectangular Jet Width for Automobile Air Conditioning Systems」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mechanisms of Plasma Actuators Controlling High-Aspect-Ratio Rectangular Jet Width for Automobile Air Conditioning Systems

Pham Anh Viet 因幡 和晃 Anh Viet Pham Kazuaki Inaba 東京工業大学 DOI:https://doi.org/10.3390/fluids8070186

2023.06.21

概要

Maintaining thermal comfort in car passenger cabins has long been a focus for HVAC
(heating, ventilation, and air conditioning) applications as well as automakers. In that
context, high-aspect-ratio (HAR) rectangular air vents have become increasingly popular
in modern automobiles due to their numerous benefits to fit the various thermal conditions
of automobiles. The main reasons for using high-aspect-ratio rectangular air vents in
automobiles is to improve the overall airflow within the vehicle. These vents are typically
larger than traditional circular vents, which means that they can provide more air flow with
less effort and fewer air vents [1]. Another benefit of high-aspect-ratio rectangular air vents
is their ability to blend seamlessly into a vehicle’s interior design, which is why they can
be found in both prototype and commercialized automobile models. Automobile interior
designers like to utilize HAR rectangular jets as these vents have a sleek and modern
appearance and can easily be integrated into a vehicle’s dashboard without interfering
with its overall aesthetic [1].
Numerous studies on HAR rectangular jet properties and applications have been
undertaken, including a textbook containing the work of Rajaratnam [2] and Shakouchi on
the fundamentals of jet flow engineering [3]. Yang et al. [4] investigated the development
process of jets issued from various nozzle shapes. ...

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Castiglioni, G.; Russo, R.N.; Mardall, J.; Mancini, N. Thermal System with High Aspect Ratio Vent. U.S. Patent 10,464,397,

5 November 2019.

Rajaratnam, N. Turbulent Jets; Elsevier: Amsterdam, The Netherlands, 1976; Chapter 13; p. 267.

Shakouchi, T. Jet Flow Engineering-Fundamentals and Application; Morikita-Shuppan Co.: Tokyo, Japan, 2004. (In Japanese)

Yang, X.; Long, X.; Yao, X. Numerical investigation on the mixing process in a steam ejector with different nozzle structures. Int.

J. Therm. Sci. 2012, 56, 95–106. [CrossRef]

Deo, R.C.; Mi, J.; Nathan, G.J. The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet. Exp.

Therm. Fluid Sci. 2007, 32, 545–559. [CrossRef]

Batchelor, G. Fluid Mechanics. J. Fluid Mech. 1989, 205, 593–594. [CrossRef]

Luo, M.; Wang, Z.; Zhang, H.; Arens, E.; Filingeri, D.; Jin, L.; Ghahramani, A.; Chen, W.; He, Y.; Si, B. High-density thermal

sensitivity maps of the human body. Build. Environ. 2020, 167, 106435. [CrossRef]

Corke, T.C.; Enloe, C.L.; Wilkinson, S.P. Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech.

2010, 42, 505–529. [CrossRef]

Kriegseis, J.; Simon, B.; Grundmann, S. Towards in-flight applications? A review on dielectric barrier discharge-based boundarylayer control. Appl. Mech. Rev. 2016, 68, 020802. [CrossRef]

Moreau, E. Airflow control by non-thermal plasma actuators. J. Phys. Appl. Phys. 2007, 40, 605. [CrossRef]

Benard, N.; Moreau, E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators

applied to airflow control. Exp. Fluids 2014, 55, 1846. [CrossRef]

Kotsonis, M. Diagnostics for characterisation of plasma actuators. Meas. Sci. Technol. 2015, 26, 092001. [CrossRef]

Pham, A.V.; Inaba, K.; Saito, M.; Sakai, M. Effect of Plasma Actuator on Velocity and Temperature Profiles of High Aspect Ratio

Rectangular Jet. Fluids 2022, 7, 281. [CrossRef]

Jakob, H.; Kim, M.K. Feasibility Study on the Use of Non-Thermal Plasma for a Cold Radio Blackout Experiment. In Proceedings

of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 2150. [CrossRef]

Jukes, T.N.; Choi, K.S.; Johnson, G.A.; Scott, S.J. Characterization of surface plasma-induced wall flows through velocity and

temperature measurements. AIAA J. 2006, 44, 764–771. [CrossRef]

Benard, N.; Bonnet, J.P.; Touchard, G.; Moreau, E. Flow Control by Dielectric Barrier Discharge Actuators: Jet Mixing Enhancement.

AIAA J. 2008, 46, 2293–2305. [CrossRef]

Fluids 2023, 8, 186

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

24 of 24

Corke, T.; Matlis, E. Phased plasma arrays for unsteady flow control. In Proceedings of the Fluids 2000 Conference and Exhibit,

Graz, Austria, 24–29 September 2000; p. 2323. [CrossRef]

Parekh, D.; Kibens, V.; Glezer, A.; Wiltse, J.; Smith, D. Innovative jet flow control-mixing enhancement experiments. In

Proceedings of the 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 15–18 January 1996; p. 308. [CrossRef]

Strykowski, P.; Wilcoxon, R. Mixing enhancement due to global oscillations in jets with annular counterflow. AIAA J. 1993,

31, 564–570. [CrossRef]

Ginevsky, A.; Vlasov, Y.V.; Vlasov, E.V.; Karavosov, R. Acoustic Control of Turbulent Jets; Springer Science & Business Media: Berlin,

Germany, 2004; p. 4.

Suzuki, H.; Kasagi, N.; Suzuki, Y. Active control of an axisymmetric jet with distributed electromagnetic flap actuators. Exp.

Fluids 2004, 36, 498–509. [CrossRef]

Kozato, Y.; Kikuchi, S.; Imao, S.; Kato, Y.; Okayama, K. Flow control of a rectangular jet by DBD plasma actuators. Int. J. Heat

Fluid Flow 2016, 62, 33–43. [CrossRef]

Thielicke, W.; Sonntag, R. Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. J. Open Res.

Softw. 2021, 9. [CrossRef]

El-Gabry, L.A.; Thurman, D.R.; Poinsatte, P.E. Procedure for Determining Turbulence Length Scales Using Hotwire Anemometry;

Technical Report; National Aeronautics and Space Administration: Hampton, VA, USA, 2014.

Roach, P. The generation of nearly isotropic turbulence by means of grids. Int. J. Heat Fluid Flow 1987, 8, 82–92. [CrossRef]

Tesaˇr, V. Axisymmetric nozzles with chamfered contraction. Sens. Actuators A Phys. 2017, 263, 147–158. [CrossRef]

Fukagata, K.; Yamada, S.; Ishikawa, H. Plasma actuators: Fundamentals and research trends. J. Jpn. Soc. Fluid Mech. 2010,

29, 243–250.

List, E. Turbulent jets and plumes. Annu. Rev. Fluid Mech. 1982, 14, 189–212. [CrossRef]

Von Helmholtz, H. Über Discontinuirliche Flüssigkeits-Bewegungen; Akademie der Wissenschaften zu Berlin: Berlin, Germany, 1868.

Thompson, W.S. Hydrokinetic solutions and observations. Phil. Mag. 1871, 1, 374. [CrossRef]

Caulfield, C.; Peltier, W. The anatomy of the mixing transition in homogeneous and stratified free shear layers. J. Fluid Mech.

2000, 413, 1–47. [CrossRef]

Wu, J.Z.; Ma, H.Y.; Zhou, M.D. Vorticity and Vortex Dynamics; Springer Science & Business Media: New York, NY, USA, 2007.

Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R.

Soc. Lond. Ser. A Math. Phys. Sci. 1991, 434, 9–13. [CrossRef]

Pope, S.B.; Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000; p. 242.

Wiltse, J.M.; Glezer, A. Direct excitation of small-scale motions in free shear flows. Phys. Fluids 1998, 10, 2026–2036. [CrossRef]

Chen, J.E.; Theurich, T.; Krack, M.; Sapsis, T.; Bergman, L.A.; Vakakis, A.F. Intense cross-scale energy cascades resembling

“mechanical turbulence” in harmonically driven strongly nonlinear hierarchical chains of oscillators. Acta Mech. 2022, 233, 1289–

1305. [CrossRef]

Hinze, J. Isotropic turbulence. In Turbulence, 2nd ed.; McGraw-Hill: New York, NY, USA, 1975; p. 790.

Tennekes, H.; Lumley, J.L. A First Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972; p. 300.

Palkin, E.; Hadžiabdi´c, M.; Mullyadzhanov, R.; Hanjali´c, K. Control of flow around a cylinder by rotary oscillations at a high

subcritical Reynolds number. J. Fluid Mech. 2018, 855, 236–266. [CrossRef]

Mao, X.; Wang, B. Spanwise localized control for drag reduction in flow passing a cylinder. J. Fluid Mech. 2021, 915, A112.

[CrossRef]

Melander, M.V.; Hussain, F. Coupling between a coherent structure and fine-scale turbulence. Phys. Rev. 1993, 48, 2669.

[CrossRef]

Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology, 5th ed.; Academic Press: Boston, MA, USA, 2013; p. 100.

[CrossRef]

Rossby, C.G. Dynamics of Steady Ocean Currents in the Light of Experimental Fluid Mechanics; Massachusetts Institute of Technology

and Woods Hole Oceanographic Institution: Cambridge, MA, USA, 1936.

Rossby, C.G. Planetary flow pattern in the atmosphere. Quart. J. Roy. Meteor. Soc. 1940, 66, 68–87.

Sakamoto, H.; Haniu, H. A Study on Vortex Shedding From Spheres in a Uniform Flow. J. Fluids Eng. 1990, 112, 386–392.

[CrossRef]

Katopodes, N.D. Free-Surface Flow: Environmental Fluid Mechanics; Butterworth-Heinemann: Oxford, UK, 2018; p. 384.

Gungor, A.; Khalid, M.S.U.; Hemmati, A. Classification of vortex patterns of oscillating foils in side-by-side configurations. J.

Fluid Mech. 2022, 951, A37. [CrossRef]

Marzouk, S.; Hnaien, N. Experimental study of an acoustically excited plane jet at low Reynolds numbers. J. Appl. Fluid Mech.

2019, 12, 527–537. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る