リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The boundary of the subducting slab and mantle wedge of an incipient arc: P-T-D history, mixing, and fluid-related processes recorded in the Dalrymple Amphibolite, Palawan Ophiolite (the Philippines)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The boundary of the subducting slab and mantle wedge of an incipient arc: P-T-D history, mixing, and fluid-related processes recorded in the Dalrymple Amphibolite, Palawan Ophiolite (the Philippines)

VALERA, Gabriel Theophilus Vinalay 京都大学 DOI:10.14989/doctor.k23713

2022.03.23

概要

沈み込むスラブと、その構造的上位に位置するマントルウヱッジとの境界部では、複雑な物理的・化学的過程が進行している。そしてスラブーマントルウエッジ境界を構成する物質の種類や、そこで起きている物理的・化学的過程は、沈み込みが始まってからの時間経過に応じ、時間発展することが期待される。

 第1章では、フィリピン・パラワン島に露出するDalrymple Amphiboliteのたどった温度-圧力-変形履歴と岩石形成過程を調べた。パラワンオフィオライトの溶け残りマントルかんらん岩類(ダナイトやハルツバージャイト)の構造的下位に位置するDalrymple Amphiboliteは、強く剪断変形を受けたマトリクス(鉱物組合せは藍晶石+Ca角閃石+黒雲母+チタン鉄鉱土ザクロ石)中に、変苦鉄質岩と少量の変堆積岩のブロックが散在する、ブロックインマトリクス構造を呈する。

 Zr-in-rutile地質温度計やquartz-in-garnet地質圧力計をザク口石角閃岩ブロックに適用したところ、昇温変成期の温度圧力条件を約625°C, 11.5kbarから約700°C, 13kbarと見積もることができた。さらに、Zr-in-rutile地質温度計とクリノゾイサイト+ルチル+石英=アノーサイト+チタン石+水の平衡を用いたTZARS地質圧力計を、角閃岩ブロックと緑簾石角閃岩ブロックに適用し、ピーク変成条件である約605-710°C, 10-13kbarを得た。一方、ブロックを取り囲むマトリクス部分の構成鉱物に地質温度計と地質圧力計を適用したところ、ザク口石角閃岩ブロックから得たピーク変成条件と同様の、約700QC、13kbarを得た。こうして推定したかつての沈み込み帯の地温勾配の値(約16°C/km)とブロックインマトリクス構造の存在は、通常のメタモルフィック・ソールには見られない特徴であり、むしろ沈み込み帯初期にできたとされる、メランジュの産状を典型的に示す高温エクロジャイト岩体に類似している。従ってDalrymple Amphiboliteは、沈み込み開始直後の非常に温かい沈み込み帯の状態からしばらく時間経過してはいるが、成熟した段階に至る前の、沈み込み帯初期のスラブーマントルウヱッジ境界の状態を表していると考えられる。変苦鉄質岩ブロックとマトリクスから得られたピーク温度圧ヵ条件が似ていることは、マトリクス形成時の変形が、これらの岩石が地下約45kmでピーク変成条件に達する前に始まったことを示す。

 第2章では、Dalrymple Amphiboliteのブロックとマトリクスの全岩化学組成を用いて、変苦鉄質岩ブロックの原岩決定や、変形したマトリクスの形成に機械的混合や流体流入が果たした役割の評価を行った。その結果、変苦鉄質岩ブロックの原岩は、非変成のパラワンオフィオライトにみられる玄武岩質溶岩に似た中央海嶺玄武岩であり、両者は成因関係があることがわかった。すなわち変苦鉄質岩ブロックは、沈み込むスラブの玄武岩から斑レイ岩部分が変成したものである。一方、マトリクスは多様な鉱物組合せを示す。マトリクスの成因を明らかにするため、マトリクスの構成元素/成分の挙動を、相関係数を用いて調べ、それぞれ異なる挙動をする2つの元素/成分グループを検出した。グループ1はTiO2、Al203、Zr、Thと軽希土類元素であり、グループ2はCr、Ni、MgOである。これらの元素/成分グループの存在は、マトリクスが変堆積岩(グループ1)と変苦鉄質岩(グループ2)を端成分とした機械的混合によって生じたことを示唆する。そこで、これら2つの端成分の混合比を変化させてマトリクスのモデル全岩化学組成を作成し、マトリクスの全岩化学組成の実測値と比較することで、不動元素/成分(Cr、Ni、Zr、TiO2、AI2O3)によるアイソコンを最小二乗法で作成した。そして、最大の決定係数(r2)を与える混合比を、マトリクスの原岩が機械的混合によって形成された際の混合比とみなした。こうして得られたマトリクスのモデル全岩化学組成を原岩、実測値を物質移動経験後の組成と位置付け、すべての元素/成分についてアイソコン解析を行った。マトリクスに藍晶石、チタン鉄鉱、ジルコンが遍在することから、TiO2、AI2O3、Cr、Nd、Zr、Hfを不動元素/成分とした。この手法によって、適切な端成分の決定、端成分の混合割合の決定、流入流体の影響の見積もりを行うことに成功した。特に多くのマトリクス試料の全岩化学組成が、多量の変堆積岩と少量の変苦鉄質岩の機械的混合によって説明できることがわかった。このことは、鉱物化学組成、すなわちマトリクスのルチルの鉱物化学組成(Cr、Nb濃度)にも記録されている。Dalrymple Amphiboliteのマトリクスが変苦鉄質岩成分と変堆積岩成分が卓越する化学組成を示すことは、超苦鉄質岩に由来する低温のMgに富む鉱物(蛇紋石、緑泥石、滑石)が卓越する高77T型変成帯とは対照的であり、Dalrymple Amphiboliteの記録する、より温かい沈み込み地温勾配を反映しているのかもしれない。上述のアイソコン解析によって、混合プロセス後の流体関与現象により、流体によって移動しやすい元素/成分(CaOやSiO2)や、マトリクスで安定に存在した鉱物に取り込まれなかった元素/成分が、選択的に溶出したことがわかった。マトリクスの鉱物組合せが、全岩化学組成変化に強く影響していることは、従来、不動元素であると考えられてきた元素(重希土類元素やY)が、多くの試料で多少の増減を示すことからわかる。マトリクスの全岩化学組成へのK2O、Rb、Baの添加は、後退変成時の流体流入による2次的な鉱物成長(例えば藍晶石を置換する白雲母)に起因する。こうした後退変成期の流体流入による影響は、初期の岩石一水反応によるこれらの元素の減少を上書きし、見えなくしている可能性がある。

 従来Dalrymple Amphiboliteは、通常のメタモルフィック・ソールだととらえられてきた。しかし本研究で行った野外調査、地質温度計・地質圧力計による解析、鉱物化学組成および全岩化学組成の分析/解析の結果、Dalrymple Amphiboliteには、沈み込み開始直後から成熟するまでの間の、中間的な状態の弧一海溝系のスラブーマントルウヱッジ境界で起きた、複雑な変形・変成作用、機械的混合、何段階にもわたる流体流入現象が記録されていることが明らかとなった。本研究で得られた知見は、Dalrymple Amphiboliteと類似の沈み込み帯地温勾配を持つ、他の温かい沈み込み帯にも応用できると考えられる。

参考文献

Preface

Agard, P., Plunder, A., Angiboust, S., Bonnet, G., Ruh, J., 2018. The subduction plate interface: rock record and mechanical coupling (from long to short timescales). Lithos 320–321, 537–566.

Agard, P., Yamato, P., Soret, M., Pringent, C., Guillot, S., Plunder, A., Dubacq, B., Chauvet, A., Monie, P., 2016. Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation. Earth and Planetary Science Letters 451, 208–220.

Bebout, G.E., 2013. Metasomatism in subduction zones of subduction zones of subducted oceanic slabs, mantle wedges, and the slab-mantle interface In: Harlov, D.E., Austrheim, H. Metasomatism (eds.) Metasomatism and the chemical transformation of rock. Lecture notes in Earth system sciences, Springer-Verlag Berlin Heidelberg, 289–349.

Bebout, G.E., Penniston-Dorland, S.C., 2016. Fluid and mass transfer at subduction interfaces-The field metamorphic record. Lithos 240–243, 228–258.

Codillo, E.A., Le Roux, V., Marschall, H.R., 2018. Arc-like magmas generated by melange- peridotite interaction in the mantle wedge. Nature Communications 9, 1–11.

Debari, S.M., Greene, A.R., 2011. Vertical stratification of composition, density and inferred magmatic processes in exposed arc crustal section. In: Brown, D., Ryan, P.D. (Eds.), Arc continent collision. Springer-Verlag, Berlin Heidelberg, 121–144.

Elliot, T., 2003. Tracers of the slab. In: Eiler, J. (Ed.). Inside the subduction factory. Geophysical Monograph 138. American Geophysical Union, Washington D.C. 23–45.

van Hinsbergen, D.J.J, Peters, K., Maffione, M., Spakman, W., Guilmette, C., Thieulot, C., Plümper, O., Gürer, D., Brouwer, F.M., Aldanmaz, E., Kaymackci, N., 2015. Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions. Geochemistry, Geophysics, Geosystems 16, 1771–1785.

Kawamoto, T., Kanzaki, M., Mibe, K., Matsukage, K. N., Ono, S. 2012. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism. Proceedings of the National Academy of Sciences of the United States of America 109, 18695–18700.

Marschall, H.R., Schumacher, J.C., 2012. Arc magmas sourced from melange diapirs in subduction zones. Nature Geoscience 5, 862–867.

Nielsen, S.G., Marschall, H.R., 2017. Geochemical evidence for mélange melting in global arcs. Science Advances 3:e1602402, 1–6.

Pearce, J.A., Cann, J.R., 1971. Ophiolite origin investigated by discriminant analysis using Ti, Zr, and Y. Earth and Planetary Science Letters 12, 339–349.

Schmidt, M.W., Poli, S., 2014. Devolatilization during subduction. In: Holland H.D., Turekian, K.K. (Eds), Treatise on Geochemistry, 2nd Edition. Elsevier Ltd, 669–701.

Stern, R.J., 2004. Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters 226, 275–292.

Tatsumi, Y., 2005. The subduction factory: How it operates in the evolving Earth. GSA Today 15, 10:1130/1052-5173.

Part 1

Agard, P., Prigent, C., Soret, M., Dubacq, B., Guillot, S., Deldicque, D., 2020. Slabitization: mechanism controlling subduction development and viscous coupling. Earth-Science Reviews 28, 1–28.

Agard, P., Plunder, A., Angiboust, S., Bonnet, G., Ruh, J., 2018. The subduction plate interface: rock record and mechanical coupling (from long to short timescales). Lithos 320–321, 537–566.

Agard, P., Yamato, P., Soret, M., Pringent, C., Guillot, S., Plunder, A., Dubacq, B., Chauvet, A., Monie, P., 2016. Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation. Earth and Planetary Science Letters 451, 208–220.

Angel, R.J., Mazzuccheli, M.L., Alvaro, M., Nestola, F., 2017a. EoSFit-Pinc: A simple GUI for host-inclusion elastic thermobarometry. American Mineralogist 102, 1957–1960.

Angel, R.J., Alvaro, M., Miletich, R., Nestola, F., 2017b. A simple and generalized P-T-V EoS for continuous phase transitions, implemented in EosFit and applied to quartz. Contributions to Mineralogy and Petrology 29, 1–15.

Aurelio, M.A., Forbes, M., Taguibao, K.J.L., Savella, R., Bacud, J., Franke, D., Pubellier, M., Savva, D., Meresse, F., Steuer, S., Carranza, C.D., 2014. Middle to Late Cenozoic tectonic events in south and central Palawan (Philippines) and their implications to the evolution of the southeastern margin of South China Sea: Evidence from onshore structural and offshore seismic data. Marine and Petroleum Geology 58, 658–673.

Bebout, G.E., 2013. Metasomatism in subduction zones of subduction zones of subducted oceanic slabs, mantle wedges, and the slab-mantle interface In: Harlov, D.E., Austrheim, H. Metasomatism (eds.) Metasomatism and the chemical transformation of rock. Lecture notes in Earth system sciences, Springer-Verlag Berlin Heidelberg, 289–349.

Bebout, G.E., Barton, M.D., 2002. Tectonic and metasomatic mixing in a High-T, subduction-zone melange – insights into the geochemical evolution of the slab-mantle interface. Chemical Geology 187, 79–106.

Bebout, G.E., Penniston-Dorland, S.C., 2016. Fluid and mass transfer at subduction interfaces-The field metamorphic record. Lithos 240–243, 228–258.

Beitter, T., Wagner, T., Marki, G., 2008. Formation of kyanite-quartz veins of the Alpe Sponda, Central Alps, Switzerland: Implications for Al transport during regional metamorphism. Contributions to Mineralogy and Petrology 156, 689–707.

Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta 57, 683–684.

Cao, L., Shao, L., Qiao, P., Cui, Y., Zhang, G., Zhang, X., 2020. Formation and paleogeographic evolution of the Palawan continental terrane along the Southeast Asian margin revealed by detrital fingerprints. The Geological Society of America Bulletin 133, 1167–1193.

Codillo, E.A., Le Roux, V., Marschall, H.R., 2018. Arc-like magmas generated by melange- peridotite interaction in the mantle wedge. Nature Communications 9, 1–11.

Cowan, R.J., Searle, M.P., Waters, D.J., 2014. Structure of the metamorphic sole to the Oman Ophiolite, Sumeini Window and Wadi Tayyin; Implications for ophiolite obduction processes. Geological Society, London, Special Publications 392, 155–175.

De Capitani, C., Brown, T.H., 1987. The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochimica et Cosmochimica Acta 51, 2639–2652.

De Capitani, C., Petrakakis, K., 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software. American Mineralogist 95, 1006–1016.

Dilek, Y., Furnes, H., 2014. Ophiolites and their origins. Elements 10, 93–100.

Dycoco, J.M.A., Payot, B.D., Valera, G.T.V., Labis, F.A.C., Pasco, J.A., Perez, A.d.C., Tani, K., 2021. Juxtaposition of Cenozoic and Mesozoic ophiolites in Palawan island, Philippines: New insights on the evolution of the Proto-South China Sea. Tectonophysics 819. 229085.

Droop, G.T.R., 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine 51, 431–435.

Encarnacion, J.P., Essene, E.J., Mukasa, S.B., Hall, C.H., 1995. High-pressure and -temperature subophiolitic kyanite-garnet amphibolites generated during initiation of Mid-Tertiary subduction, Palawan, Philippines. Journal of Petrology 36, 1481–1503.

Garcia-Casco, A., Lazaro, C., Rojas-Agramonte, Y., Kröner, A., Res-Roldan, R.L.T., Nuñez, K., Neubauer, F., Millan, G., Blanco-Quintero, I., 2008. Partial melting and counterclockwise P-T path of subducted oceanic crust (Sierra del Colvento Mélange, Cuba). Journal of Petrology 49, 129–161.

Gerya T., Stöckhert, B., Perchuk, A.L., 2002. Exhumation of high-presure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics 21, 1–15.

Gibaga, C.R.L., Arcilla, C.A., Hoang, N., 2020. Volcanic rocks from the Central and Southern Palawan Ophiolites, Philippines: Tectonic and mantle heterogeneity constraints. Journal of Asian Earth Sciences: X, 1–17. DOI: 10.1016/j.jaesx.2020.100038.

Gilgen, S., Diamond, L.W., Mercolli, I., 2016. Sub-seafloor epidosite alteration: Timing, depth and stratigraphic distribution in the Semail Ophiolite, Oman. Lithos 260, 191–210.

Green, E.C.R., White, R.W., Diener, J.F.A., Powell, R., Holland, T.J.B., Palin, R.M., 2016. Activity- composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology 34, 845–869.

Grove, M., Bebout, G.E., 1995. Cretaceous tectonic evolution of coastal southern California: Insights from the Catalina Schist, Tectonics 14, 1290–1308.

Guillot, S., Hattori, K., Agard, P., Schwartz, S., Vidal, O., 2009. Exhumation processes in oceanic and continental subduction contexts: A review In: Lallemand, S., Funiciello, F. (eds.) Subduction zone geodynamics. Springer-Verlag Berlin Heidelberg, 175–205.

Hacker, B.R., 1990. Simulation of the metamorphic and deformational history of the metamorphic sole of the Oman ophiolite. Journal of Geophysical Research 95, 4895–4907.

Holland, T.J.B., Powell, R., 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology 29, 333–383.

Jagoutz, O., Behn, M.D., 2013. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature 504, 131–134.

Jørgensen, T.R.C., Tinkham, D.K., Lesher, C.M., 2019. Low-P and high-T metamorphism of basalts: Insights from the Sudbury impact melt sheet aureole and thermodynamic modelling. Journal of Metamorphic Geology 37, 271–313.

Kapp, P., Manning, C.E., Tropper, P., 2009. Phase-equilibrium constraints on titanite and rutile activities in mafic epidote amphibolites and geobarometry using titanite-rutile equilibria. Journal of Metamorphic Geology 27, 509–521.

Kawamoto, T., Yoshikawa, M., Kumagai, Y., Mirabueno, H.T., Okuno, M., Kobayashi, T., 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proceedings of the National Academy of Sciences 110, 9663–9668.

Keenan, T.E., Encarnacion, J., Buchwaldt, R., Fernandez, D., Mattinson, J., Rasoazanamparany, C., Leutkemeyer, P.B., 2016. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology. Proceedings of the National Academy of Sciences 113, E7359–E7366.

Kohn, M.J., Spear, F.S., 1990. Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont. American Mineralogist 75, 89–96.

Labis, F.A.C., Payot, B.D., Valera, G.T.V., Pasco, J.A., Dycoco, J.M.A., Tamura, A., Morishita, T., Arai, S., 2020. Melt-rock interaction in the subarc mantle: records from the plagioclase peridotites of the southern Palawan Ophiolite, Philippines. International Geology Review 63, 1067–1089.

Lamont, T.N., Roberts, N.M.W., Searle, M.P., Gopon, P., Waters, D.J., Millar, I., 2020. The age, origin and emplacement of the Tsiknias Ophiolite, Tinos, Greece, Tectonics, 39, 1–45.

Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist 35, 219–246.

Locatelli, M., Verlaguet, A., Agard, P., Pettke, T., Federico, L., 2019. Fluid pulses during stepwise brecciation at intermediate subduction depths (Monviso Eclogites, W. Alps): First internally then externally sourced. Geochemistry, Geophysics, Geosystems 20, 5285–5318.

Manning, C.E., Frezzotti, M.L., 2020. Subduction-zone fluids. Elements 16, 395–400.

Marschall, H.R., Schumacher, J.C., 2012. Arc magmas sourced from melange diapirs in subduction zones. Nature Geoscience 5, 862–867.

Meinhold, G., Anders, B., Kostopoulos, D., Reischmann, T., 2008. Rutile chemistry and thermometry as provenance indicator: An example from Chios Island, Greece. Sedimentary Geology 203, 98–111.

Muller, C., 1991. Biostratigraphy and geological evolution of the Sulu sea and surrounding area. In: Silver, E.A., Rangin, C., von Breymann, M.T. et al. Proceedings of the Ocean Drilling Program Scientific Results 124, College Station, Texas, 121–131.

Padrones, J.T., Tani, K., Tsutsumi, Y., Imai, A., 2017. Imprints of Late Mesozoic tectono-magmatic events on Palawan Continental Block in northern Palawan, Philippines. Journal of Asian Earth Sciences 142, 56–76.

Peacock, S., Wang, K., 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from Southwest and Northeast Japan. Science 286, 937–939.

Penniston-Dorland, S.C., Kohn, M.J., Piccoli, P.M., 2018. A melange of subduction temperatures: Evidence from Zr-in-rutile thermometry for strengthening of the subduction interface. Earth and Planetary Science Letters 482, 525–535.

Picazo, S.N., Ewing, T.A., Müntener, O., 2019. Paleocene metamorphism along the Pennine- Austroalpine suture constrained by U-Pb dating of titanite and rutile (Malenco, Alps). Swiss Journal of Geosciences 112, 517–542.

Rangin, C., Silver, E.A., 1991. Neogene tectonic evolution of the Celebes-Sulu basins: New insights from Leg 124 Drilling. Proceedings of the Ocean Drilling Program. Scientific Results 124, 51–63.

Raschka, H., Nacario, E., Rammlair, D., Samonte, C., Steiner, L., 1985. Geology of the ophiolite of central Palawan island, Philippines. Ofioliti 10, 375–390.

Rioux, M., Garber, J., Bauer, A., Bowring, S., Searle, M., Kelemen, P., Hacker, B., 2016. Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: New constraints on the tectonic evolution during ophiolite formation from high-precision U- Pb zircon geochronology. Earth and Planetary Science Letters 451, 185–195.

Schmidt, C., Ziemann, M.A., 2000. In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. American Mineralogist 85, 1725–1734.

Schumacher, J.C., 1991. Empirical ferric iron corrections: necessity, assumptions and effects on selected geothermobarometers. Mineralogical Magazine 55, 3–18.

Seyfried, W.E., Berndt, M.E., Seewald, J.S., 1988. Hydrothermal alteration processes at mid-ocean ridges: Constraints from diabase alteration experiments, hot-spring fluids and composition of the oceanic crust. Canadian Mineralogist 26, 787–804.

Soret, M., Agard, P., Dubacq, B., Plunder, A., Yamato, P., 2017. Petrological evidence for stepwise accretion of metamorphic soles during subduction infancy (Semail ophiolite, Oman and UAE). Journal of Metamorphic Geology 35, 1051–1080.

Starr, P.G., Pattison, D.R.M., 2019. Metamorphic devolatilization of basalts across the greenschist- amphibolite facies transition zone: Insights from isograd mapping, petrography and thermodynamic modelling. Lithos 342–343, 295–314.

Steele-MacInnis, M., Lecumberri-Sanchez, P., Bodnar, R.J., 2012. HOKIEFLINCS_H2O-NACL: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl. Computers & Geosciences 49, 334–337.

Suzuki, K., Kawakami, T., 2019. Metamorphic pressure-temperature conditions of the Lützow-Holm Complex of East Antarctica deduced from Zr-in-rutile geothermometer and Al2SiO5 minerals enclosed in garnet. Journal of Mineralogical and Petrological Sciences 114, 267–279.

Thomas, J.B., Spear, F.S., 2018. Experimental study of quartz inclusions in garnet at pressures up to 3.0 GPa: evaluating validity of the quartz-in-garnet inclusion elastic thermobarometer. Contributions to Mineralogy and Petrology 42, 1–14.

Tomkins, H. S., Powell, R., Ellis, D. J., 2007. The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology 25, 703–713.

Ulmer, P., Trommsdorff, V., 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science 268, 858–861.

van Hinsbergen, D.J.J, Peters, K., Maffione, M., Spakman, W., Guilmette, C., Thieulot, C., Plümper, O., Gürer, D., Brouwer, F.M., Aldanmaz, E., Kaymackci, N., 2015. Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions. Geochemistry, Geophysics, Geosystems 16, 1771–1785.

Vielzeuf, D., Schmidt, M.W., 2001. Melting relations in hydrous systems revisited: Application to metapelites, metagreywackes and metabasalts. Contributions to Mineralogy and Petrology 141, 251–267.

Wakabayashi, J., 2017. Structural context and variation of ocean plate stratigraphy, Franciscan Complex, California: Insight into mélange origins and subduction-accretion processes. Progress in Earth and Planetary Science 4, 1–23.

Wei, C.J., Duan, Z.Z., 2018. Phase relations in metabasic rocks: Constraints from the results of experiments, phase modelling and ACF analysis. In: Zhang, L.F., Zhang, Z., Schertl, H.-P., Wei, C. (eds.) HP-UHP Metamorphism and tectonic evolution of orogenic belts. Geological Society, London, Special Publications 474, 1–21.

Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–187.

Yumul, G.P.Jr., Dimalanta, C.B., Tamayo, R.A.Jr., Maury, R.C., 2003. Collision, subduction and accretion events in the Philippines: A synthesis. The Island Arc 12, 77–91.

Zack, T., Moraes, R., Kronz, A., 2004. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology 148, 471–488.

Part 2

Agard, P., Plunder, A., Angiboust, S., Bonnet, G., Ruh, J., 2018. The subduction plate interface: Rock record and mechanical coupling (from long to short timescales). Lithos 320–321, 537– 566.

Agard, P., Yamato, P., Soret, M., Pringent, C., Guillot, S., Plunder, A., Dubacq, B., Chauvet, A., Monie, P., 2016. Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation. Earth and Planetary Science Letters 451, 208–220.

Angel, R.J., Mazzuccheli, M.L., Alvaro, M., Nestola, F., 2017. EoSFit-Pinc: A simple GUI for host- inclusion elastic thermobarometry. American Mineralogist 102, 1957–1960.

Angiboust, S., Pettke T., Hoog, J.C.M., Caron, B., Oncken, O., 2014. Channelized fluid flow and eclogite-facies metasomatism along the subduction shear zone. Journal of Petrology 55, 883– 916.

Arai, S., Ishimaru, S., 2008. Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: A review. Journal of Petrology 49, 665–695.

Bebout, G.E., 2013. Metasomatism in subduction zones of subduction zones of subducted oceanic slabs, mantle wedges, and the slab-mantle interface In: Harlov, D.E., Austrheim, H. Metasomatism (eds.) Metasomatism and the chemical transformation of rock. Lecture notes in Earth system sciences, Springer-Verlag Berlin Heidelberg, 289–349.

Bebout, G.E., Barton, M.D., 2002. Tectonic and metasomatic mixing in a High-T, subduction-zone melange – Insights into the geochemical evolution of the slab-mantle interface. Chemical Geology 187, 79–106.

Bebout, G.E., Penniston-Dorland, S.C., 2016. Fluid and mass transfer at subduction interfaces - The field metamorphic record. Lithos 240–243, 228–258.

Codillo, E.A., Le Roux, V., Marschall, H.R., 2018. Arc-like magmas generated by melange- peridotite interaction in the mantle wedge. Nature Communications 9, 1–11.

Droop, G.T.R., 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine 51, 431–435.

Dycoco, J.M.A., Payot, B.D., Valera, G.T.V., Labis, F.A.C., Pasco, J.A., Perez, A.d.C., Tani, K., 2021. Juxtaposition of Cenozoic and Mesozoic ophiolites in Palawan island, Philippines: New insights on the evolution of the Proto-South China Sea. Tectonophysics 819, 229085.

Elliot, T., 2003. Tracers of the Slab. In: Eiler, J. (Ed.) Inside the subduction factory. Geophysical Monograph 138, American Geophysical Union, Washington D.C. 23–45.

Encarnacion, J.P., Essene, E.J., Mukasa, S.B., Hall, C.H., 1995. High-pressure and -temperature subophiolitic kyanite-garnet amphibolites generated during initiation of Mid-Tertiary subduction, Palawan, Philippines. Journal of Petrology 36, 1481–1503.

Gerya T., Stöckhert, B., Perchuk, A.L., 2002. Exhumation of high-presure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics 21, 1–15.

Gibaga, C.R., Arcilla, C.A., Hoang, N., 2020. Volcanic rocks from the Central and Southern Palawan Ophiolites, Philippines: Tectonic and mantle heterogeneity constraints. Journal of Asian Earth Sciences: X. 4, j.jaesx.2020.100038

Gorman, J.K., Penniston-Dorland, S.C., Marschall, H.R., Walker, R.J., 2019. The roles of mechanical mixing and fluid transport in the formation of reaction zones in subduction-related mélange: Evidence from highly siderophile elements. Chemical Geology 2019, 96–111.

Grant, J.A.,1986. The isocon diagram – a simple solution to Gresen’s equation for metasomatic alteration. Economic Geology 81, 1976–1982.

Gresens, R.L., 1967. Composition-volume relationships of metasomatism. Chemical Geology 2, 47– 65.

Gromet, L.P., Dymek, R.F., Haskin, L.A., Korotev, R.L., 1984. The “North American Shale Composite”: its compilation, major and trace element characteristics. Geochimica et Cosmochima Acta 48, 2469–2482.

Guillot, S., Hattori, K., Agard, P., Schwartz, S., Vidal, O., 2009. Exhumation processes in oceanic and continental subduction contexts: A review In: Lallemand, S., Funiciello, F. (eds.) Subduction zone geodynamics. Springer-Verlag Berlin Heidelberg, 175–205.

Hofmann, A.W., 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust and oceanic crust. Earth and Planetary Science Letters 90, 297–314.

Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Candian Journal of Earth Sciences 8, 523–548.

Kapp, P., Manning, C.E., Tropper, P., 2009. Phase-equilibrium constraints on titanite and rutile activities in mafic epidote amphibolites and geobarometry using titanite-rutile equilibria. Journal of Metamorphic Geology 27, 509–521.

Keenan, T.E., Encarnacion, J., Buchwaldt, R., Fernandez, D., Mattinson, J., Rasoazanamparany, C., Leutkemeyer, P.B., 2016. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology. Proceedings of the National Academy of Sciences 113, E7359–E7366.

Kelemen, P.B., Koga, K., Shimizu, N., 1997. Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust. Earth and Planetary Science Letters 146, 475–488.

Labis, F.A.C., Payot, B.D., Valera, G.T.V., Pasco, J.A., Dycoco, J.M.A., Tamura, A., Morishita, T., Arai, S., 2020. Melt-rock interaction in the subarc mantle: Records from the plagioclase peridotites of the southern Palawan Ophiolite, Philippines. International Geology Review 63, 1067–1089.

Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist 35, 219–246.

Li, C.F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y.J., Zhao, X.X., Liu, Q.S., Kulhanek, D.K.,Wang, J., Song, T.R., Zhao, J.F., Qiu, N., Guan, Y., Zhou, Z., Williams, T., Bao, R., Briais, A., Brown, E., Chen, Y., Clift, P., Colwell., F., Dadd, K., Ding, W., Almeida, I., Huang, X., Hyun, S., Jiang, T., Koppers, A., Li, Q., Liu, C., Liu, Z., Nagai, R., Peleo-Alampay, A., Su, X., Tejada, M., Trinh, H., Yeh, Y., Zhang, C., Zhang, F., Zhang, G., 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems 15, 4958–4983.

Lopez-Moro, F.J., 2012. EASYGRESGRANT – A Microsoft Excel spreadsheet to quantify volume changes and to perform mass-balance modeling in metasomatic systems. Computer and Geosciences 39, 191–196.

Manning, C.E., Frezzotti, M.L., 2020. Subduction-zone fluids. Elements 16, 395–400.

Marschall, H.R., Schumacher, J.C., 2012. Arc magmas sourced from melange diapirs in subduction zones. Nature Geoscience 5, 862–867.

Meinhold, G., Anders, B., Kostopoulos, D., Reischmann, T., 2008. Rutile chemistry and thermometry as provenance indicator: An example from Chios Island, Greece. Sedimentary Geology 203, 98–111.

Nakashima, T., Shimoda, G., Tatsumi, Y., 2000. Porphyritic magnesian andesites in the Setouchi Volcanic Belt, SW Japan. Bulletin of the Volcanological Society of Japan 45, 259–269.

Nielsen, S.G., Marschall, H.R., 2017. Geochemical evidence for mélange melting in global arcs. Science Advances 3:e1602402, 1–6.

Payot, B.D., Arai., S., Yoshikawa, M., Tamura, A., Okuno, M., Rivera, D.J.V., 2018. Mantle evolution from ocean to arc: The record in spinel peridotite xenoliths in Mt. Pinatubo, Philippines. Minerals 8, 1–16. Doi: 10.3390/min8110515.

Peacock, S., Wang, K., 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from Southwest and Northeast Japan. Science 286, 937–939.

Pearce, J.A., Cann, J.R., 1971. Ophiolite origin investigated by discriminant analysis using Ti, Zr, and Y. Earth and Planetary Science Letters 12, 339–349.

Pearce, J., Stern, R., Bloomer, S., Fryer, P., 2005. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems 6 (2004GC000895).

Penniston-Dorland, S.C., Gorman, J.K., Bebout, G.E., Piccoli, P.M., Walker, R.K., 2014. Reaction rind formation in the Catalina Schist: Deciphering a history of mechanical mixing and metasomatic alteration. Chemical Geology 384, 47–61.

Penniston-Dorland, S.C., Kohn, M.J., Piccoli, P.M., 2018. A melange of subduction temperatures: Evidence from Zr-in-rutile thermometry for strengthening of the subduction interface. Earth and Planetary Science Letters 482, 525–535.

Sachs, L., 1984. Applied statistics: A handbook of techniques, 2nd Ed. Spriver-Verlag, New York, 1– 707.

Schumacher, J.C., 1991. Empirical ferric iron corrections: Necessity, assumptions and effects on selected geothermobarometers. Mineralogical Magazine 55, 3–18.

Shimoda, G., Nagai.M., Morishita, Y., 2004. Rare earth elements compositions of Setouchi high Mg andesites (HMAs) and basalt; an implication for a mantle compositional shift beneath the SW Japan arc during the Japan Sea opening. Bulletin of the Geological Survey of Japan 55, 31–38.

Soret, M., Agard, P., Dubacq, B., Plunder, A., Yamato, P., 2017. Petrological evidence for stepwise accretion of metamorphic soles during subduction infancy (Semail ophiolite, Oman and UAE). Journal of Metamorphic Geology 35, 1051–1080.

Starr, P.G., Pattison, D.R.M., 2019. Metamorphic devolatilization of basalts across the greenschist- amphibolite facies transition zone: Insights from isograd mapping, petrography and thermodynamic modelling. Lithos 342–343, 295–314.

Tatsumi, Y., 2005. The subduction factory: How it operates in the evolving Earth. GSA Today 15, 10:1130/1052-5173.

Tomkins, H. S., Powell, R., Ellis, D. J., 2007. The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology 25, 703–713.

Ulmer, P., Trommsdorff, V., 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science 268, 858–861.

Valera, G.T.V., Kawakami, T., Payot, B.D., 2021. The slab-mantle wedge interface of an incipient subduction zone: Insights from the P-T-D evolution and petrological characteristics of the Dalrymple Amphibolite, Palawan Ophiolite, Philippines. Journal of Metamorphic Geology. DOI: 10.1111/jmg.12644, 1–33.

Valera, G.T.V., Payot, B.D., Arai, S., Takeuchi, M., Ishimaru, S., Tamura A., 2019. Petrologic nature of the active subarc crust-mantle boundary: Mixed magmatic-metasomatic processes recorded in xenoliths from Sabtang island, Luzon arc. Journal of Volcanology and Geothermal Research 374, 80–99.

Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–187.

Yumul, G.P.Jr., Dimalanta, C.B., Gabo-Ratio, J.A.S., Queaño, K.L., Armada, L.T., Padrones, J.T., Faustino-Eslava, D.V., Payot, B.D., Marquez, E.J., 2020. Mesozoic rock suites along western Philippines: Exposed proto-South China Sea fragments? Journal of Asian Earth Sciences: X 4, 100031.

Zack, T., Moraes, R., Kronz, A., 2004. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology 148, 471–488.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る