リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Clinical significance of RAS pathway alterations in pediatric acute myeloid leukemia」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Clinical significance of RAS pathway alterations in pediatric acute myeloid leukemia

鏑木, 多映子 カブラギ, タエコ Kaburagi, Taeko 群馬大学

2021.09.30

概要

【背景・目的】
小児急性骨髄性白血病(AML)の長期予後は分子生物学的異常や治療反応性による層別化治療により向上しているが、いまだに30-40%は再発難治の経過をたどり、より詳細な予後因子解析が求められている。RAS経路の遺伝子異常は血液腫瘍のみならず他の悪性腫瘍でも多く認められているが、小児AMLにおけるそれらの異常について、臨床的意義は不明である。近年成人AMLにおいて PTPN11やNF1が予後不良因子であると報告されており、我々は小児AMLにおけるRAS経路異常の臨床的意義の解明を行った。

【方法】
日本小児白血病リンパ腫研究グループ(JPLSG) AML-05臨床試験に登録された0-18歳の初発AML患者443例中、genomic DNAが使用可能な328症例を対象に解析を行った。PTPN11(exons 2– 4, and 13),CBL (exons 8– 9)、NRAS (exons 1– 2)、KRAS (exons 1– 2)についてサンガーシーケンス法で解析し、NF1は欠失や多領域にわたる変異が報告されているため次世代シーケンサーを用いて変異、コピー数異常を網羅的に解析した。また、他の分子生物学的背景の検索としてKIT、 NPM1、CEBPA、CSF3R、WT1、ASXL1、ASXL2、BCOR、BCORL1、RAD21、SMC3、STAG2、RUNX1、FLT3-internal tandem duplication (ITD)、NUP98-NSD1、FUS-ERGについてサンガーシーケンスにて、 KMT2A-partial tandem duplication (PTD)についてMPLA法にて、PRDM16、MECOMの発現について RT-PCRにて解析を行った。RAS経路異常を有する症例の臨床的特徴や他の分子生物学的異常との関連、予後との相関を検証した。

【結果】
328例中80例(24.4%)にRAS経路遺伝子異常を認め、内訳はNF1 (n = 7, 2.1%), PTPN11 (n = 15, 4.6%), CBL (n = 6, 1.8%), NRAS (n = 44, 13.4%), KRAS (n = 12, 3.7%)であり、これらは相互排他的に認められた。また、FLT3-ITDやKIT変異など他のシグナル伝達経路遺伝子異常とも相互排他的であった。NF1異常については変異のvariant allele frequencyとコピー数解析より、少なくとも7例中4例は両アレルの異常による正常機能喪失があると考えられた。

Kaplan-Meier法による予後解析ではNF1異常は有意にOverall survival(OS)が不良((2-year OS, 42.9% vs. 82.3%, p = 0.003))、PTPN11変異は有意にEvent-free survival(EFS)が不良(2-year EFS, 30.0% vs. 59.8%, p = 0.013)、NRASは有意にEFS、OSとも良好であった(2-year OS, 97.7% vs. 79.0%, p = 0.014; 2-year EFS, 74.9% vs. 55.9%, p = 0.021)。Cox regression解析では NF1はOSにおいて独立した予後不良因子[hazard ratio (HR), 4.109; 95% confidence interval (CI), 1.471– 11.48; p = 0.007]、NRASはEFS、OSにおいて独立した予後良好因子(OS: HR, 0.309; 95% CI, 0.112– 0.849; p = 0.023; EFS: HR, 0.530; 95% CI, 0.293– 0.961; p =0.037)であった。PTPN11変異は独立した予後因子とはならなかった(HR, 1.239; 95% CI, 0.616– 2.494; p = 0.548)。

【考察】
本研究により、小児AMLにおいてNF1異常、PTPN11変異が予後不良因子、NRAS変異は予後良好因子である可能性が示された。これまでNF1については遺伝子が大きく変異や欠失など様々な異常を呈するため成人AMLを含めても報告が少なかったが、コピー数異常を含めた網羅的な解析によりNF1異常が予後不良因子である可能性を見出した。RAS経路異常は成人領域において様々な腫瘍で治療標的として注目されている。これまでにNF1異常を有するAMLについて、in vitroではmTOR阻害剤による増殖抑制も報告されており、分子標的薬の開発により予後の改善も期待できる。 RAS経路異常の詳細な解析は小児AMLの適切な予後層別化と、新規治療開発へつながる可能性があると考える。

この論文で使われている画像

参考文献

1. Bolouri H, Farrar JE, Triche T Jr, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24(1):103-112.

2. Fröhling S, Scholl C, Gilliland DG, Levine RL. Genetics of myeloid malignancies: Pathogenetic and clinical implications. J Clin Oncol. 2005;23(26):6285-6295.

3. Eisfeld AK, Kohlschmidt J, Mrózek K, et al. NF1 mutations are recurrent in adult acute myeloid leukemia and confer poor outcome. Leukemia. 2018;32(12):2536-2545.

4. Alfayez M, Issa GC, Patel KP, et al. The clinical impact of PTPN11 mutations in adults with acute myeloid leukemia. Leukemia. 2020 Jun 19. [Epub ahead of print]

5. Murakami N, Okuno Y, Yoshida K, et al. Integrated molecular profiling of juvenile myelomonocytic leukemia. Blood. 2018;131(14):1576-1586.

6. Tartaglia M, Martinelli S, Iavarone I, et al. Somatic PTPN11 mutations in childhood acute myeloid leukaemia. Br J Haematol. 2005;129(3):333-339.

7. Loh ML, Reynolds MG, Vattikuti S, et al. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group. Leukemia. 2004;18(11):1831-1834.

8. Meshinchi S, Stirewalt DL, Alonzo TA, et al. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood. 2003;102(4):1474-1479.

9. Sano H, Shimada A, Taki T, et al. RAS mutations are frequent in FAB type M4 and M5 of acute myeloid leukemia, and related to late relapse: a study of the Japanese Childhood AML Cooperative Study Group. Int J Hematol. 2012;95(5):509-515.

10. Coenen EA, Driessen EM, Zwaan CM, et al. CBL mutations do not frequently occur in paediatric acute myeloid leukaemia. Br J Haematol. 2012;159(5):577-584.

11. Balgobind BV, Van Vlierberghe P, van den Ouweland AM, et al. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood. 2008;111(8):4322-4328.

12. Sargin B, Choudhary C, Crosetto N, et al. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood. 2007;110(3):1004-1012.

13. Abbas S, Rotmans G, Löwenberg B, Valk PJ. Exon 8 splice site mutations in the gene encoding the E3-ligase CBL are associated with core binding factor acute myeloid leukemias. Haematologica. 2008;93(10):1595-1597

14. Parkin B, Ouillette P, Wang Y, et al. NF1 inactivation in adult acute myelogenous leukemia. Clin Cancer Res. 2010;16(16):4135-4137.

15. Boudry-Labis E, Roche-Lestienne C, Nibourel O, et al. Neurofibromatosis-1 gene deletions and mutations in de novo adult acute myeloid leukemia. Am J Hematol. 2013;88(4):306-311.

16. Haferlach C, Grossmann V, Kohlmann A, et al. Deletion of the tumor-suppressor gene NF1 occurs in 5% of myeloid malignancies and is accompanied by a mutation in the remaining allele in half of the cases. Leukemia. 2012;26(4):834-839.

17. Tartaglia M, Kalidas K, Shaw A, et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet. 2002;70(6):1555-1563.

18. Sanada M, Suzuki T, Shih LY, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460(7257):904-908.

19. Matsuo H, Yoshida K, Fukumura K, et al. Recurrent CCND3 Mutations in MLL-rearranged Acute Myeloid Leukemia. Blood Adv. 2018;2(21):2879-2889.

20. Shimada A, Taki T, Tabuchi K, et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood. 2006;107(5):1806-1809.

21. Döhner K, Schlenk RF, Habdank M, et al H. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106(12):3740-3746.

22. Mizushima Y, Taki T, Shimada A, et al. Prognostic significance of the BAALC isoform pattern and CEBPA mutations in pediatric acute myeloid leukemia with normal karyotype: A study by the Japanese Childhood AML Cooperative Study Group. Int J Hematol. 2010;91(5):831-837

23. Sano H, Ohki K, Park MJ, et al. CSF3R and CALR mutations in paediatric myeloid disorders and the association of CSF3R mutations with translocations, including t(8; 21). Br J Haematol. 2015;170(3):391-397.

24. Sano H, Shimada A, Tabuchi K, et al. WT1 mutation in pediatric patients with acute myeloid leukemia: a report from the Japanese Childhood AML Cooperative Study Group. Int J Hematol. 2013;98(4):437-445

25. Yamato G, Shiba N, Yoshida K, et al. ASXL2 mutations are frequently found in pediatric AML patients with t(8;21)/ RUNX1-RUNX1T1 and associated with a better prognosis. Genes Chromosomes Cancer. 2017;56(5):382-393.

26. Damm F, Chesnais V, Nagata Y, et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood. 2013;122(18):3169-3177.

27. Thol F, Bollin R, Gehlhaar M, et al. Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood. 2014;123(6):914-920.

28. Shiba N, Hasegawa D, Park MJ, et al. CBL mutation in chronic myelomonocytic leukemia secondary to familial platelet disorder with propensity to develop acute myeloid leukemia (FPD/AML). Blood. 2012;119(11):2612-2614.

29. Xu F, Taki T, Yang HW, et al. Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol. 1999;105(1):155-162.

30. Shiba N, Ichikawa H, Taki T, et al. NUP98-NSD1 gene fusion and its related gene expression signature are strongly associated with a poor prognosis in pediatric acute myeloid leukemia. Genes Chromosomes Cancer. 2013;52(7):683-693.

31. Kong XT, Ida K, Ichikawa H, et al. Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16;21)(p11;q22) and identification of a novel transcript. Blood. 1997;90(3):1192-1199.

32. Balgobind BV, Hollink IH, Reinhardt D, et al. Low frequency of MLL-partial tandem duplications in paediatric acute myeloid leukaemia using MLPA as a novel DNA screenings technique. Eur J Cancer. 2010;46(10):1892-1899.

33. Jo A, Mitani S, Shiba N, et al. High expression of EVI1 and MEL1 is a compelling poor prognostic marker of pediatric AML. Leukemia. 2015;29(5):1076-1083.

34. Yoshizato T, Nannya Y, Atsuta Y, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood. 2017;129(17):2347-2358.

35. Kanda, Y. Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant. 2013;48(3):452-458.

36. Smith KS, Yadav VK, Pei S, et al. SomVarIUS: somatic variant identification from unpaired tissue samples. Bioinformatics. 2016;32(6):808-813.

37. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209-2221.

38. Giannakis M, Mu XJ, Shukla SA, Genomic correlates of immune-cell Infiltrates in colorectal carcinoma. Cell Rep. 2016;15(4):857-865.

39. Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003;34(2):148-150.

40. Tartaglia M, Martinelli S, Cazzaniga G, et al. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood. 2004;104(2):307-13.

41. Bentires-Alj M, Paez JG, David FS, et al. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 2004;64(24):8816-8820.

42. Martinelli S, Stellacci E, Pannone L, et al. Molecular diversity and associated phenotypic spectrum of germline CBL mutations. Hum Mutat. 2015;36(8):787-796.

43. Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989;49(17):4682-4689.

44. Shiba N, Ohki K, Kobayashi T, et al. High PRDM16 expression identifies a prognostic subgroup of pediatric acute myeloid leukaemia correlated to FLT3-ITD, KMT2A-PTD, and NUP98-NSD1: the results of the Japanese Paediatric Leukaemia/Lymphoma Study Group AML-05 trial. Br J Haematol. 2016;172(4):581-591.

45. Goemans BF, Zwaan CM, Martinelli S, et al. Differences in the prevalence of PTPN11 mutations in FAB M5 paediatric acute myeloid leukaemia. Br J Haematol. 2005;130(5):801-803

46. Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-447.

47. Yamato G, Shiba N, Yoshida K, et al. RUNX1 mutations in pediatric acute myeloid leukemia are associated with distinct genetic features and an inferior prognosis. Blood. 2018;131(20):2266-2270.

48. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2003;101(3):837-845.

49. Goemans BF, Zwaan CM, Miller M, et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia. 2005;19(9):1536-1542.

50. Kales SC, Ryan PE, Nau MM, Lipkowitz S. Cbl and human myeloid neoplasms: the Cbl oncogene comes of age. Cancer Res. 2010;70(12):4789-4794.

51. Locatelli F, Niemeyer CM. How I treat juvenile myelomonocytic leukemia. Blood. 2015;125(7):1083-1090.

52. Niemeyer CM, Flotho C. Juvenile myelomonocytic leukemia: who's the driver at the wheel? Blood. 2019;133(10):1060-1070.

53. Luna-Fineman S, Shannon KM, Atwater SK, et al. Myelodysplastic and Myeloproliferative Disorders of Childhood: A Study of 167 Patients. Blood. 1999;93(2):459-466.

54. Niemeyer CM. RAS diseases in children. Haematologica. 2014;99(11):1653-1662.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る