リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「プロテオミクスによる動脈硬化症及び石灰化大動脈弁疾患の病態制御関連因子解明」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

プロテオミクスによる動脈硬化症及び石灰化大動脈弁疾患の病態制御関連因子解明

東 秀行 富山大学

2022.03.02

概要

心血管疾患は、生命危機や重篤な後遺症をもたらす疾患として世界的に認知されており、その罹患者数は年々増加の一途をたどっている。心血管疾患の一つであるアテローム性動脈硬化症では、プラークの形成及び破裂に伴う血流障害によって心血管イベントを発生させる。そのため、動脈硬化の予防には、プラークの予防や安定化を目的とした生体内脂質量を制御するスタチンの投与が第一選択とされている。また、心臓内の血流動態に支障をきたす石灰化大動脈弁疾患では、弁尖の肥厚や硬化が心血管イベント発生の起点となる病状であり、その治療法として外科的治療が適用されている。しかし、これら疾患の疾病率や死亡率は未だ高水準であることから、既存の薬物療法や外科的療法では本疾患の克服には至っていない。

近年の創薬研究において、心血管病変に関連した生体応答について、この発生に関わる分子的要因の同定と臨床での検証が進められている。これらを進める上で、疾患の表現型に直接寄与するタンパク質や翻訳後修飾を対象としたプロテオミクスの有用性が高い。質量分析装置を用いたプロテオミクスとして、タンパク質分解酵素によって生成されるペプチドを測定対象とし、ペプチドから全長のタンパク質情報を解析する手法が用いられている。心血管疾患において、病理的炎症応答と翻訳後修飾であるadenosine diphosphate(ADP)-リボシル化、また、心血管イベントとhigh density lipoprotein(HDL)との関係性が明らかにされてきており、これらの心血管疾患の病態制御における役割に関心が高まっている。また、大動脈弁の石灰化について、薬物療法の確立に向けた病態制御に関わる因子の同定が期待されている。しかし、従来のプロテオミクスではこれら翻訳後修飾や病態制御タンパク質の同定に必要とされる検出感度に達しておらず、これらを対象とするプロテオミクスの心血管疾患研究への活用は困難とされてきた。本研究では、翻訳後修飾や微量な疾患関連タンパク質の解析を実現可能とするプロテオミクスを構築し、動脈硬化症や石灰化大動脈弁疾患の病態進行や病態制御に関わる因子を解明することを目的とした。

1.ヒトマクロファージ様細胞(THP-1細胞)、マウス肝臓及び脾臓におけるADP-リボシル化タンパク質の網羅的解析1,2)
病理的炎症応答の抑制は、循環血液中脂質量に依存せず、再発性心血管イベントの発生率を低下させることが示されており、心血管疾患における炎症制御の重要性が高まっている。ADP-リボシル化は細胞応答を調節する翻訳後修飾であり、炎症性サイトカインであるinterferon-gamma(IFN-γ)刺激時には、マクロファージにおけるpoly-ADP-ribose polymerase(PARP)14の発現誘導及び抗炎症作用が示されている。そこで、IFN-γ刺激時にPARP14が炎症抑制作用を示す機序に迫るために、PARP14が高発現するマクロファージ、マウス肝臓及び脾臓を用いて、IFN-γ刺激によるADP-リボシル化タンパク質の変動を解析した。

翻訳後修飾タンパク質の微量性や構造複雑性などのために、一般的なプロテオミクスでは修飾タンパク質の検出は困難である。そこで、ヒトマクロファージ様細胞株であるTHP-1細胞由来のADPリボシル化ペプチド試料を用い、ADP-リボシル化ペプチドのデータ取得法及び解析法を検討した。データ取得では、ADP-リボシル化に特有な4種のフラグメントイオン、並びにhigh-energy collision dissociation(HCD)とelectron transfer/high-energy collision dissociation(EThcD)の2種の解離法を活用し、修飾ペプチドに対する選択性や同定した修飾ペプチド情報の信頼性を向上させた。さらに、データ取得にgas phase segmentationを適用し、ADP-リボシル化ペプチドに対する検出効率を向上させた。データ解析では、HCDはADP-リボシル化ペプチドのアミノ酸配列の同定に、また、EThcDは信頼性の高い修飾アミノ酸位置の同定に優位であることを明らかにした。

本手法を用いることで、THP-1細胞において、145種のADP-リボシル化タンパク質が同定され、IFN-γ刺激時にはリボソームやヒートショックタンパク質のADP-リボシル化が誘導されることを示した。さらに、THP-1細胞におけるPARP14自身のADP-リボシル化を検出し、IFN-γ刺激に応答してPARP14(D1604)のADP-リボシル化が亢進されることを見出した。また、IFN-γ刺激後の肝臓ではリボソームやヒートショックタンパク質、脾臓ではヘモグロビンやアルブミンタンパク質のADP-リボシル化が誘導されることを明らかにした。以上の結果から、マクロファージ、肝臓及び脾臓において、IFN-γ刺激に応答してPARP14はADP-リボシル化を促進し、そして炎症抑制に関連するシグナル伝達を担うことが示唆された。

2.HDL亜分画中コレステリルエステル転送蛋白(CETP)の代謝速度論的解析3)
循環血液中HDL-cholesterol(HDL-C)濃度は、心血管イベントの発症頻度と負の相関関係にあることが示されている。しかし、血液中HDL-C濃度上昇を作用機序とするCETP阻害薬について、臨床試験では動脈硬化症に対する有効性が認められていない。近年、HDLの機能を精査する研究として、HDLサイズ亜分画におけるHDL関連タンパク質の分布様式が示されており、CETPの分布様式に関し明らかにすることで、HDLによる病態制御機構の解明に繋がることが期待される。

血漿中には高発現タンパク質が多数存在し、かつCETPの血漿中存在量は非常に少ないことから、従来のHDL関連タンパク質の分布様式を明らかにしてきたプロテオミクスでは、CETPの代謝速度論的解析に必要なデータ取得は困難である。そこで、従来の質量分析装置と比べ高分解能を有するOrbitrap Fusion Lumosの有用性を検証し、本装置を用いた高分解能測定によってCETPの安定同位体標識トレーサーペプチドを検出可能とした。本手法を用いることで、CETPはα1に20%及びα2に70%と、HDLの中でも大きな亜分画に分布し、血漿中へ分泌後はこれら亜分画間を移行せずに消失することを示した。以上の結果から、脂質輸送タンパク質であるCETPについて、生体内ではHDL亜分画間のサイズ制御には寄与せず、亜分画のサイズ維持に関与することが示唆された。

3.ヒト石灰化大動脈弁におけるタンパク質の網羅的解析4,5)
大動脈弁は、弁の大動脈側のfibrosa層、中間のspongiosa層、そして左心室側のventricularis層の3層構造を有し、fibrosa層の根元付近が石灰化の発症部位となる。しかし、石灰化大動脈弁においては、弁尖の不均一な層構造、血漿由来の高発現タンパク質及びドナー間差などが障壁となり、弁組織全体を用いたプロテオミクスでは病態関連分子の同定に至っていない。そこで、弁の組織から細胞分画まで4種の大動脈弁由来試料を調製し、網羅的なタンパク質発現解析に用いた。

ヒト大動脈弁組織おけるプロテオミクスでは、不均一な層構造に起因する影響を軽減するために石灰化弁の病変部位及び各組織層から試料を採取した。石灰化弁の病変部位では、線維化部位にて筋線維形成や酸化ストレスに関連するタンパク質、石灰化部位にてalkalinephosphatase, tissue nonspecificisozyme(TNAP)などの石灰化に関連するタンパク質の発現増加が示された。石灰化弁の各組織層では、fibrosa層にてapolipoproteinBなどの炎症に関わる血漿タンパク質の発現増加が示され、弁の石灰化と炎症応答との関連性が示唆された。さらに、血漿由来の高発現タンパク質に起因する影響を軽減するために、弁組織の主な構成細胞である弁間質細胞を単離及び培養した。Fibrosa層由来とventricularis層由来の弁間質細胞とを比較した際に、fibrosa層由来細胞では石灰化誘導条件下において顕著な石灰化が観察された。石灰化を誘導したfibrosa層由来弁間質細胞では、弁組織において検出された石灰化関連タンパク質に加え、線維化に関わるfibronectin-1などの発現誘導が示された。最後に、ヒト初代培養弁間質細胞の石灰化能にドナー間差をもたらす因子としてTNAPを同定し、TNAPが発現しかつ石灰化誘導に感受性を示す弁間質細胞の細胞質及び核分画における網羅的な石灰化関連タンパク質情報を得た。以上の結果から、4種のヒト大動脈弁由来試料を用いたプロテオミクスによって、石灰化と炎症や線維化との関連性を示唆し、さらに、石灰化誘導時の網羅的なタンパク質発現や細胞内局在情報を明らかにした。

結論
動脈硬化症及び石灰化大動脈弁疾患における病態制御因子同定及びその機構解明に向けて、質量分析装置を基盤とするプロテオミクスを実施した。ADP-リボシル化タンパク質の網羅的同定を可能としたプロテオミクスでは、IFN-γ刺激時のマクロファージ、肝臓及び脾臓におけるPARP14関連ADP-リボシル化シグナルを示唆し、炎症応答におけるPARP14関連ADP-リボシル化シグナルを精査する研究が進展していくことで、PARP14による炎症抑制機構の解明に貢献することが期待される。CETPの安定同位体標識トレーサー検出を可能としたプロテオミクスでは、CETPのHDLサイズ亜分画における代謝様式を示し、生体内HDLの役割が明らかにされていくことによって、HDLによる病態制御に関わる因子の解明並びに適切な創薬標的の提示に繋がることが期待される。石灰化大動脈弁を用いたプロテオミクスでは、4種の弁組織由来試料を用いて、弁組織を対象とした解析で直面する課題を克服し、弁石灰化病態に関連する因子を見出した。本研究にて構築した手法並びに得られた知見は、創薬標的の同定に向けた病態制御因子の同定及び病態制御機構の解明に寄与し、そして心血管疾患における新医薬品の創出に繋がっていくものと考えられる。

この論文で使われている画像

参考文献

Abdelkarim GE, Gertz K, Harms C, Katchanov J, Dirnagl U, Szabó C, Endres M (2001) Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. Int J Mol Med. 7:255-60.

Abplanalp J, Leutert M, Frugier E, Nowak K, Feurer R, Kato J, Kistemaker HVA et al., (2017) Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat Commun. 8:2055.

Aday AW, Ridker PM (2019) Targeting residual inflammatory risk: A shifting paradigm for atherosclerotic disease. Front Cardiovasc Med. 6:16.

Akimov V, Barrio-Hernandez I, Hansen SVF, Hallenborg P, Pedersen AK, Bekker-Jensen DB, Puglia M et al., (2018) UbiSite approach for comprehensive mapping of lysine and Nterminal ubiquitination sites. Nat Struct Mol Biol. 25:631-40.

Amemiya H, Suzuki S, Ota K, Takahashi K, Sonoda T, Ishibashi M, Omoto R et al., (1990) A novel rescue drug, 15-deoxyspergualin. First clinical trials for recurrent graft rejection in renal recipients. Transplantation. 49:337-43.

Andraski AB, Singh SA, Lee LH, Higashi H, Smith N, Zhang B, Aikawa M, Sacks FM (2019) Effects of replacing dietary monounsaturated fat with carbohydrate on HDL (high-density lipoprotein) protein metabolism and proteome composition in humans. Arterioscler Thromb Vasc Biol. 39:2411-30.

Angel PM, Nusinow D, Brown CB, Violette K, Barnett JV, Zhang B, Baldwin HS, Caprioli RM (2011) Networked-based characterization of extracellular matrix proteins from adult mouse pulmonary and aortic valves. J Proteome Res. 10:812-23.

Armitage J, Holmes MV, Preiss D (2019) Cholesteryl ester transfer protein inhibition for preventing cardiovascular events: JACC review topic of the week. J Am Coll Cardiol. 73:477-87.

Barrett PH, Bell BM, Cobelli C, Golde H, Schumitzky A, Vicini P, Foster DM (1998) SAAM II: Simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metabolism. 47:484-92.

Barter PJ, Brewer HB Jr, Chapman MJ, Hennekens CH, Rader DJ, Tall AR (2003) Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol. 23:160-7.

Berton G, Sorio C, Laudanna C, Menegazzi M, Carcereri De Prati A, Suzuki H (1991) Activation of human monocyte-derived macrophages by interferon gamma is accompanied by increase of poly(ADP-ribose) polymerase activity. Biochim Biophys Acta. 1091:101-9.

Biemann K (1990) Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. Methods Enzymol. 193:455-79.

Bilan V, Leutert M, Nanni P, Panse C, Hottiger MO (2017) Combining higher-energy collision dissociation and electron-transfer/higher-energy collision dissociation fragmentation in a product-dependent manner confidently assigns proteomewide ADP-ribose acceptor sites. Anal Chem. 89:1523-30.

Bilan V, Selevsek N, Kistemaker HAV, Abplanalp J, Feurer R, Filippov DV, Hottiger MO (2017) New quantitative mass spectrometry approaches reveal different ADP-ribosylation phases dependent on the levels of oxidative stress. Mol Cell Proteomics. 16:949-58.

Bonam SR, Ruff M, Muller S (2019) HSPA8/HSC70 in immune disorders: A molecular rheostat that adjusts chaperone-mediated autophagy substrates. Cells. 8:849.

Bouchareb R, Mahmut A, Nsaibia MJ, Boulanger MC, Dahou A, Lépine JL, Laflamme MH et al., (2015) Autotaxin derived from lipoprotein(a) and valve interstitial cells promotes inflammation and mineralization of the aortic valve. Circulation. 132:677-90.

Burgmaier M, Schutters K, Willems B, van der Vorst EP, Kusters D, Chatrou M, Norling L et al., (2014) AnxA5 reduces plaque inflammation of advanced atherosclerotic lesions in apoE(-/-) mice. J Cell Mol Med. 18:2117-24.

Carter-O'Connell I, Vermehren-Schmaedick A, Jin H, Morgan RK, David LL, Cohen MS (2018)

Combining chemical genetics with proximity-dependent labeling reveals cellular targets of poly(ADP-ribose) polymerase 14 (PARP14). ACS Chem Biol. 13:2841-48.

Chan KL, Teo K, Dumesnil JG, Ni A, Tam J; ASTRONOMER Investigators (2010) Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial.

Circulation. 121:306-14.

Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL, Giordano TJ et al., (2002) Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics. 1:304-13.

Chen JH, Yip CY, Sone ED, Simmons CA (2009) Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am J Pathol. 174:1109-19.

Cho SH, Goenka S, Henttinen T, Gudapati P, Reinikainen A, Eischen CM, Lahesmaa R, Boothby M (2009) PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. Blood. 113:2416-25.

Constans J, Wendling G, Peuchant E, Camilleri G, Conri C (1996) Lipoprotein(a) in 505 hospitalized patients with various pathological states: correlations with cardiovascular diseases and therapies. Int Angiol. 15:1-5

Cowell SJ, Newby DE, Prescott RJ, Bloomfield P, Reid J, Northridge DB, Boon NA; Scottish Aortic Stenosis and Lipid Lowering Trial, Impact on Regression (SALTIRE) Investigators (2005) A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med. 352:2389-97.

Cushing MC, Liao JT, Anseth KS (2005) Activation of valvular interstitial cells is mediated by transforming growth factor-beta1 interactions with matrix molecules. Matrix Biol. 24:428-37.

Daniels CM, Ong SE, Leung AK (2014) Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells. J Proteome Res. 13:3510-22.

Ebhardt HA, Root A, Sander C, Aebersold R (2015) Applications of targeted proteomics in systems biology and translational medicine. Proteomics. 15:3193-208.

Eckei L, Krieg S, Bütepage M, Lehmann A, Gross A, Lippok B, Grimm AR et al., (2017) The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases. Sci Rep. 7:41746.

Farber JM (1993) HuMig: a new human member of the chemokine family of cytokines. Biochem Biophys Res Commun. 192:223-30.

Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M (2020) The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev. 34:341-59.

Feijs KL, Forst AH, Verheugd P, Lüscher B (2013) Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat Rev Mol Cell Biol. 14:443-51.

Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science. 246:64-71.

Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, Hegele RA et al., (2017) Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 38:2459-72.

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J et al., (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41: D808-15.

Frese CK, Altelaar AF, van den Toorn H, Nolting D, Griep-Raming J, Heck AJ, Mohammed S (2012) Toward full peptide sequence coverage by dual fragmentation combining electrontransfer and higher-energy collision dissociation tandem mass spectrometry. Anal Chem. 84:9668-73.

Gerhardt T, Ley K (2015) Monocyte trafficking across the vessel wall. Cardiovasc Res. 107:321- 30.

Gerszten RE, Asnani A, Carr SA (2011) Status and prospects for discovery and verification of new biomarkers of cardiovascular disease by proteomics. Circ Res. 109:463-74.

Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, Jacobs DR Jr, Bangdiwala S, Tyroler HA (1989) High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 79:8-15.

Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR (1977) High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 62:707-14.

Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics. 1:323-33.

Gromo G, Mann J, Fitzgerald JD (2014) Cardiovascular drug discovery: a perspective from a research-based pharmaceutical company. Cold Spring Harb Perspect Med. 4:a014092.

Gupte R, Liu Z, Kraus WL (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 31:101-26.

Hendriks IA, Larsen SC, Nielsen ML (2019) An advanced strategy for comprehensive profiling of ADP-ribosylation sites using mass spectrometry-based proteomics. Mol Cell Proteomics. 18:1010-26.

Hengel SM, Shaffer SA, Nunn BL, Goodlett DR (2009) Tandem mass spectrometry investigation of ADP-ribosylated kemptide. J Am Soc Mass Spectrom. 20:477-83.

Hipple JA (1948) Spontaneous dissociation of ions. J Phys Colloid Chem. 52:456-62.

Hjortnaes J, Butcher J, Figueiredo JL, Riccio M, Kohler RH, Kozloff KM, Weissleder R, Aikawa E (2010) Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. Eur Heart J. 31:1975-84.

Hottiger MO (2015) Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem. 84:227-63.

Hottiger MO, Hassa PO, Lüscher B, Schüler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci. 35:208-19.

Hunt DF, Yates JR 3rd, Shabanowitz J, Winston S, Hauer CR (1986) Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A. 83:6233-7.

Hutcheson JD, Blaser MC, Aikawa E (2017) Giving calcification its due: recognition of a diverse disease: A first attempt to standardize the field. Circ Res. 120:270-73.

Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villén J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 143:1174-89.

Impens F, Radoshevich L, Cossart P, Ribet D (2014) Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. Proc Natl Acad Sci USA. 111:12432-7.

Inazu A, Brown ML, Hesler CB, Agellon LB, Koizumi J, Takata K, Maruhama Y, Mabuchi H, Tall AR (1990) Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med. 323:1234-8.

Iwata H, Goettsch C, Sharma A, Ricchiuto P, Goh WW, Halu A, Yamada et al., (2016) PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation. Nat Commun. 7:12849.

Jarchum I. (2015) Discovering the power of mass-to-charge. Nat Methods. 12:5.

Jijon HB, Churchill T, Malfair D, Wessler A, Jewell LD, Parsons HG, Madsen KL (2000) Inhibition of poly(ADP-ribose) polymerase attenuates inflammation in a model of chronic colitis. Am J Physiol Gastrointest Liver Physiol. 279:G641-51.

Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 60:2299-301.

Kawamitsu H, Hoshino H, Okada H, Miwa M, Momoi H, Sugimura T (1984) Monoclonal antibodies to poly(adenosine diphosphate ribose) recognize different structures. Biochemistry. 23(16):3771-7.

Kebarle P, Verkerk UH (2009) Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev. 28:898-917.

Kennedy J, Yi EC (2008) Use of gas-phase fractionation to increase protein identifications: application to the peroxisome. Methods Mol Biol. 432:217-28.

Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK et al., (2014) A draft map of the human proteome. Nature. 509:575-81.

Kontush A, Lhomme M, Chapman MJ (2013) Unraveling the complexities of the HDL lipidome. J Lipid Res. 54:2950-63.

Koos R, Brandenburg V, Mahnken AH, Mühlenbruch G, Stanzel S, Günther RW, Floege J, Jahnen-Dechent W, Kelm M, Kühl HP (2009) Association of fetuin-A levels with the progression of aortic valve calcification in non-dialyzed patients. Eur Heart J. 30:2054- 61.

Larsen SC, Hendriks IA, Lyon D, Jensen LJ, Nielsen ML (2018) Systems-wide analysis of serine ADP-ribosylation reveals widespread occurrence and site-specific overlap with phosphorylation. Cell Rep. 24:2493-2505.e4.

Larsen SC, Leutert M, Bilan V, Martello R, Jungmichel S, Young C, Hottiger MO, Nielsen ML (2017) Proteome-wide identification of in vivo ADP-ribose acceptor sites by liquid chromatography-tandem mass spectrometry. Methods Mol Biol. 1608:149-62.

Lee LH, Andraski AB, Pieper B, Higashi H, Sacks FM, Aikawa M, Singh SA (2017) Automation of PRM-dependent D3-Leu tracer enrichment in HDL to study the metabolism of apoAI, LCAT and other apolipoproteins. Proteomics. 17:10.1002/pmic.201600085.

Lee LH, Halu A, Morgan S, Iwata H, Aikawa M, Singh SA (2019) XINA: A workflow for the integration of multiplexed proteomics kinetics data with network analysis. J Proteome Res. 18:775-81.

Leidecker O, Bonfiglio JJ, Colby T, Zhang Q, Atanassov I, Zaja R, Palazzo L, Stockum A, Ahel I, Matic I. (2016) Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat Chem Biol. 12:998-1000.

Lewis GF, Cabana VG (1996) Postprandial changes in high-density lipoprotein composition and subfraction distribution are not altered in patients with insulin-dependent diabetes mellitus. Metabolism. 45:1034-41.

Libby P, Nahrendorf M, Swirski FK (2016) Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: An expanded "cardiovascular continuum". J Am Coll Cardiol. 67:1091-103.

Lord CJ, Ashworth A (2017) PARP inhibitors: Synthetic lethality in the clinic. Science. 355:1152- 58.

Maron DJ, Fazio S, Linton MF (2000) Current perspectives on statins. Circulation. 101:207-13.

Martello R, Leutert M, Jungmichel S, Bilan V, Larsen SC, Young C, Hottiger MO, Nielsen ML (2016) Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue. Nat Commun. 7:12917.

Matsumoto K, Satoh K, Maniwa T, Araki A, Maruyama R, Oda T (2012) Noticeable decreased expression of tenascin-X in calcific aortic valves. Connect Tissue Res. 53:460-8.

Mendivil CO, Furtado J, Morton AM, Wang L, Sacks FM (2016) Novel pathways of apolipoprotein A-I metabolism in high-density lipoprotein of different sizes in humans. Arterioscler Thromb Vasc Biol. 36:156-65.

Miida T, Fielding CJ, Fielding PE (1990) Mechanism of transfer of LDL-derived free cholesterol to HDL subfractions in human plasma. Biochemistry. 29:10469-74.

Miller JD, Chu Y, Brooks RM, Richenbacher WE, Peña-Silva R, Heistad DD (2008) Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J Am Coll Cardiol. 52:843-50.

Miwa M, Sugimura T (1971) Splitting of the ribose-ribose linkage of poly(adenosine diphosphate-robose) by a calf thymus extract. J Biol Chem. 246:6362-4.

Miyosawa K, Watanabe Y, Murakami K, Murakami T, Shibata H, Iwashita M, Yamazaki H et al., (2015) New CETP inhibitor K-312 reduces PCSK9 expression: a potential effect on LDL cholesterol metabolism. Am J Physiol Endocrinol Metab. 309:E177-90.

Nikkilä EA, Kekki M (1972) Plasma triglyceride metabolism in thyroid disease. J Clin Invest. 51:2103-14.

Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, O'Gara PT et al., (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the american college of cardiology/american heart association task force on practice guidelines. Circulation. 129:2440-92.

Nowak K, Rosenthal F, Karlberg T, Bütepage M, Thorsell AG, Dreier B, Grossmann J et al., (2020) Engineering Af1521 improves ADP-ribose binding and identification of ADPribosylated proteins. Nat Commun. 11:5199.

O'Brien KD, Probstfield JL, Caulfield MT, Nasir K, Takasu J, Shavelle DM, Wu AH, Zhao XQ, Budoff MJ (2005) Angiotensin-converting enzyme inhibitors and change in aortic valve calcium. Arch Intern Med. 165:858-62.

Oda T, Matsumoto K (2016) Proteomic analysis in cardiovascular research. Surg Today. 46:285- 96.

Oka S, Kato J, Moss J (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem. 281:705-13.

Okazaki M, Usui S, Ishigami M, Sakai N, Nakamura T, Matsuzawa Y, Yamashita S (2005) Identification of unique lipoprotein subclasses for visceral obesity by component analysis of cholesterol profile in high-performance liquid chromatography. Arterioscler Thromb Vasc Biol. 25:578-84.

Okui T, Iwashita M, Rogers MA, Halu A, Atkins SK, Kuraoka S, Abdelhamid I et al., (2021) CROT (Carnitine O-Octanoyltransferase) is a novel contributing factor in vascular calcification via promoting fatty acid metabolism and mitochondrial dysfunction. Arterioscler Thromb Vasc Biol. 41:755-68.

Olsen JV, Mann M (2013) Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics. 12:3444-52.

Opdebeeck B, Neven E, Millán JL, Pinkerton AB, D'Haese PC, Verhulst A (2020)

Pharmacological TNAP inhibition efficiently inhibits arterial media calcification in a warfarin rat model but deserves careful consideration of potential physiological bone formation/mineralization impairment. Bone. 137:115392.

Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O'Brien KD (1994) Characterization of the early lesion of 'degenerative' valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 90:844-53.

Pellat-Deceunynck C, Wietzerbin J, Drapier JC (1994) Nicotinamide inhibits nitric oxide synthase mRNA induction in activated macrophages. Biochem J. 297:53-8.

Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics. 11:1475-88.

Price JC, Holmes WE, Li KW, Floreani NA, Neese RA, Turner SM, Hellerstein MK (2012) Measurement of human plasma proteome dynamics with (2)H(2)O and liquid chromatography tandem mass spectrometry. Anal Biochem. 420:73-83.

Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ (2001) Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 104:2525-32.

Rabkin-Aikawa E, Farber M, Aikawa M, Schoen FJ (2004) Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis. 13:841-7.

Rattazzi M, Donato M, Bertacco E, Millioni R, Franchin C, Mortarino C, Faggin E et al., (2020) l-Arginine prevents inflammatory and pro-calcific differentiation of interstitial aortic valve cells. Atherosclerosis. 298:27-35.

Reyes-Soffer G, Millar JS, Ngai C, Jumes P, Coromilas E, Asztalos B, Johnson-Levonas AO et al., (2016) Cholesteryl ester transfer protein inhibition with anacetrapib decreases fractional clearance rates of high-density lipoprotein apolipoprotein A-I and plasma cholesteryl ester transfer protein. Arterioscler Thromb Vasc Biol. 36:994-1002.

Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F et al., (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 377:1119-31.

Roberts AM, Ward CC, Nomura DK (2017) Activity-based protein profiling for mapping and pharmacologically interrogating proteome-wide ligandable hotspots. Curr Opin Biotechnol. 43:25-33.

Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH, Imhof R, Winkler HC et al., (2013) Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol. 20:502-7.

Rosenthal F, Hottiger MO (2014) Identification of ADP-ribosylated peptides and ADP-ribose acceptor sites. Front Biosci (Landmark Ed). 19:1041-56.

Rosenthal F, Messner S, Roschitzki B, Gehrig P, Nanni P, Hottiger MO (2011) Identification of distinct amino acids as ADP-ribose acceptor sites by mass spectrometry. Methods Mol Biol. 780:57-66.

Rosenthal F, Nanni P, Barkow-Oesterreicher S, Hottiger MO (2015) Optimization of LTQorbitrap mass spectrometer parameters for the identification of ADP-ribosylation sites. J Proteome Res. 14:4072-9.

Ross J Jr, Braunwald E (1968) Aortic stenosis. Circulation. 38:61-7.

Rossebø AB, Pedersen TR, Boman K, Brudi P, Chambers JB, Egstrup K, Gerdts E et al., (2008) Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med. 359:1343-56.

Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC et al., (2020) Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 Study. J Am Coll Cardiol. 76:2982-3021.

Rutkovskiy A, Malashicheva A, Sullivan G, Bogdanova M, Kostareva A, Stensløkken KO, Fiane A, Vaage J (2017) Valve interstitial cells: The key to understanding the pathophysiology of heart valve calcification. J Am Heart Assoc. 6:e006339

Rye KA, Hime NJ, Barter PJ (1995) The influence of cholesteryl ester transfer protein on the composition, size, and structure of spherical, reconstituted high density lipoproteins. J Biol Chem. 270:189-96.

Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, Ballantyne CM et al., (2015) Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 372:1500-9.

Sacks FM, Jensen MK (2018) From High-Density Lipoprotein Cholesterol to Measurements of Function: Prospects for the Development of Tests for High-Density Lipoprotein Functionality in Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 38:487-99.

Schirle M, Bantscheff M, Kuster B (2012) Mass spectrometry-based proteomics in preclinical drug discovery. Chem Biol. 19:72-84.

Schlotter F, de Freitas RCC, Rogers MA, Blaser MC, Wu PJ, Higashi H, Halu A et al., (2021) ApoC-III is a novel inducer of calcification in human aortic valves. J Biol Chem. 296:100193.

Schoen FJ (2008) Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation. 118:1864-80.

Schoppet M, Shanahan CM (2008) Role for alkaline phosphatase as an inducer of vascular calcification in renal failure? Kidney Int. 73:989-91.

Sharifi R, Morra R, Appel CD, Tallis M, Chioza B, Jankevicius G, Simpson MA et al., (2013) Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J. 32:1225-37.

Sharma P, Cosme J, Gramolini AO (2013) Recent advances in cardiovascular proteomics. J Proteomics. 81:3-14.

Singh N, Poirier G, Cerutti P (1985) Tumor promoter phorbol-12-myristate-13-acetate induces poly ADP-ribosylation in human monocytes. Biochem Biophys Res Commun. 126:1208- 14.

Singh SA, Aikawa M (2017) Unbiased and targeted mass spectrometry for the HDL proteome. Curr Opin Lipidol. 28:68-77.

Singh SA, Andraski AB, Pieper B, Goh W, Mendivil CO, Sacks FM, Aikawa M (2016) Multiple apolipoprotein kinetics measured in human HDL by high-resolution/accurate mass parallel reaction monitoring. J Lipid Res. 57:714-28.

Spradlin JN, Hu X, Ward CC, Brittain SM, Jones MD, Ou L, To M et al., (2019) Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat Chem Biol. 15:747-55.

Stamler J, Wentworth D, Neaton JD (1986) Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA. 256:2823-8.

Steen H, Mann M (2004) The ABC's (and XYZ's) of peptide sequencing. Nat Rev Mol Cell Biol. 5:699-711.

Stephens EH, Han J, Trawick EA, Di Martino ES, Akkiraju H, Brown LM, Connell JP et al., (2018) Left-ventricular assist device impact on aortic valve mechanics, proteomics and ultrastructure. Ann Thorac Surg. 105:572-80.

Tall AR, Rader DJ (2018) Trials and tribulations of CETP inhibitors. Circ Res. 122:106-112.

Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13:2129-41.

Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 75:1895-904.

Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD (2003) Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics. 2:1096-103.

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å et al., (2015) Proteomics. Tissue-based map of the human proteome. Science. 347:1260419.

Verheugd P, Forst AH, Milke L, Herzog N, Feijs KL, Kremmer E, Kleine H, Lüscher B (2013) Regulation of NF-κB signalling by the mono-ADP-ribosyltransferase ARTD10. Nat Commun. 4:1683.

Vincent CE, Potts GK, Ulbrich A, Westphall MS, Atwood JA 3rd, Coon JJ, Weatherly DB (2013) Segmentation of precursor mass range using "tiling" approach increases peptide identifications for MS1-based label-free quantification. Anal Chem. 85:2825-32.

Wang D, Liem DA, Lau E, Ng DC, Bleakley BJ, Cadeiras M, Deng MC, Lam MP, Ping P (2014) Characterization of human plasma proteome dynamics using deuterium oxide. Proteomics Clin Appl. 8:610-9.

Weiss RM, Ohashi M, Miller JD, Young SG, Heistad DD (2006) Calcific aortic valve stenosis in old hypercholesterolemic mice. Circulation. 114:2065-9.

Welsby I, Hutin D, Gueydan C, Kruys V, Rongvaux A, Leo O (2014) PARP12, an interferonstimulated gene involved in the control of protein translation and inflammation. J Biol Chem. 289:26642-57.

Wu Q, Cheng Z, Zhu J, Xu W, Peng X, Chen C, Li W et al., (2015) Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in nonsmall cell lung cancer A549 cell line. Sci Rep. 5:9520.

Yamazaki H, Fujino H, Kanazawa M, Tamaki T, Sato F, Suzuki M, Kitahara M (2004) Pharmacological and pharmacokinetic features and clinical effects of pitavastatin (Livalo Tablet). Nihon Yakurigaku Zasshi. 123:349-62.

Yanagimoto T, Itoh S, Sawada M, Kamataki T (1997) Mouse cytochrome P450 (Cyp3a11): predominant expression in liver and capacity to activate aflatoxin B1. Arch Biochem Biophys. 340:215-8.

Yates JR 3rd (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom. 33:1-19.

Yutzey KE, Demer LL, Body SC, Huggins GS, Towler DA, Giachelli CM, Hofmann-Bowman MA et al., (2014) Calcific aortic valve disease: a consensus summary from the alliance of investigators on calcific aortic valve disease. Arterioscler Thromb Vasc Biol. 34:2387-93.

Zee BM, Garcia BA (2010) Electron transfer dissociation facilitates sequencing of adenosine diphosphate-ribosylated peptides. Anal Chem. 82:28-31.

Zhang Y, Wang J, Ding M, Yu Y (2013) Site-specific characterization of the Asp- and Glu-ADPribosylated proteome. Nat Methods. 10:981-4.

Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120: 3265-66.

山下 静也 (2019) 動脈硬化の病態と予防・治療. 日本内科学会誌. 108: 96-103.

令和 1 年 (2019) 国民生活基礎調査の概況, 厚生労働省.

令和 2 年 (2020) 人口動態統計月報年計(概数)の概況, 厚生労働省.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る