リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Detailed Spatial Slip Distribution for Short‐Term Slow Slip Events Along the Nankai Subduction Zone, Southwest Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Detailed Spatial Slip Distribution for Short‐Term Slow Slip Events Along the Nankai Subduction Zone, Southwest Japan

Masayuki Kano Aitaro Kato 東北大学 DOI:10.1029/2020JB019613

2020.06.19

概要

Many short‐term slow slip events (S‐SSEs) occur at the transition zone along the Nankai subduction zone, southwest Japan. Because crustal deformation due to a single S‐SSE is small, the source fault is often represented using a planar uniform single‐fault slip model, resulting in little constraint on the spatial heterogeneity in amounts of slip. To comprehensively investigate the detailed cumulative spatial distribution of S‐SSEs in the entire Nankai subduction zone, we adopted a stacking approach of Global Navigation Satellite System data by referencing low‐frequency earthquakes. We extracted the cumulative displacements due to 12, 11, and 14 S‐SSEs that occurred between 2004 and 2009 in eastern Shikoku, Kii, and Tokai; coherent displacements nearly opposite to the direction of plate subduction were obtained. The inverted slip indicated significant slip laterally elongated along the transition zone at ~30–35 km depth. Small slip patches were inferred in the shallow portions at ~15–20 km depth in eastern Shikoku and at ~10–15 km depth in Tokai, respectively. The shallow patch in eastern Shikoku was located on the downdip edge of the coseismic slip area of the 1946 Nankai earthquake, while the Tokai small slip was located on the shallower side of the anticipated source area of a large earthquake. Large slip patches of S‐SSEs tend to avoid the spatially dense low‐frequency earthquake areas; in major S‐SSE areas, the number of low‐frequency earthquakes is small. This spatial dependence of fault slip style within the transition zone provides new insights on the generation mechanism of slow earthquakes.

この論文で使われている画像

参考文献

Akaike, H. (1980). Likelihood and the Bayes procedure. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, & A. F. M. Smith (Eds.), Bayesian statistics (pp. 143–166). Valencia: University Press.

Ando, M. (1975). Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough, Japan. Tectonophysics, 27, 119–140. https://doi.org/10.1016/0040-1951(75)90102-X

Annoura, S., Obara, K., & Maeda, T. (2016). Total energy of deep low‐frequency tremor in the Nankai subduction zone, Southwest Japan. Geophysical Research Letters, 43, 2562–2567. https://doi.org/10.1002/2016GL067780

Araki, E., Saffer, D. M., Kopf, A. J., Wallace, L. M., Kimura, T., Machida, Y., et al. (2017). Recurring and triggered slow‐slip events near the trench at the Nankai trough subduction megathrust. Science, 356(6343), 1157–1160. https://doi.org/10.1126/science.aan3120

Baba, T., Tanioka, Y., Cummins, P. R., & Uhira, K. (2002). The slip distribution of the 1946 Nankai earthquake estimated from tsunami inversion using a new plate model. Physics of the Earth and Planetary Interiors, 132, 59–73.

Bartlow, N. M. (2020). A long‐term view of episodic tremor and slip in Cascadia. Geophysical Research Letters, 47. https://doi.org/10.1029/ 2019GL085303

Beall, A., Fagereng, Å., & Ellis, S. (2019). Strength of strained two‐phase mixtures: Application to rapid creep and stress amplification in subduction zone Mélange. Geophysical Research Letters, 46, 169–178. https://doi.org/10.1029/2018GL081252

Behr, W. M., Kotowski, A. J., & Ashley, K. T. (2018). Dehydration‐induced rheological heterogeneity and the deep tremor source in warm subduction zones. Geology, 46, 475–478. https://doi.org/10.1130/G40105.1

Bekaert, D. P. S., Hooper, A., & Wright, T. J. (2015). Reassessing the 2006 Guerrero slow‐slip event, Mexico: Implications for large earth- quakes in the Guerrero gap. Journal of Geophysical Research: Solid Earth, 120, 1357–1375. https://doi.org/10.1002/2014JB011557

Central Disaster Management Council (2001). The Central Disaster Management Council of the Japanese government, Tokyo. (Available at http://www.bousai.go.jp/jishin/chubou/20011218/siryou2-2.pdf)

Fagereng, Å., Hillary, G. W. B., & Diener, J. F. A. (2014). Brittle‐viscous deformation, slow slip, and tremor. Geophysical Research Letters, 41, 4159–4167. https://doi.org/10.1002/2014GL060433

Fagereng, A., & Sibson, R. H. (2010). Mélange rheology and seismic style. Geology, 38(8), 751–754. https://doi.org/10.1130/G30868.1 Frank, W. B. (2016). Slow slip hidden in the noise: The intermittence of tectonic release. Geophysical Research Letters, 43, 10,125–10,133. https://doi.org/10.1002/2016GL069537

Frank, W. B., Radiguet, M., Rousset, B., Shapiro, N. M., Husker, A. L., Kostoglodov, V., et al. (2015). Uncovering the geodetic signature of silent slip through repeating earthquakes. Geophysical Research Letters, 42, 2774–2779. https://doi.org/10.1002/2015GL063685

Frank, W. B., Rousset, B., Lasserre, C., & Campillo, M. (2018). Revealing the cluster of slow transients behind a large slow slip event. Science Advances, 4(5), eaat0661. https://doi.org/10.1126/sciadv.aat0661

Fukuda, J. (2018). Variability of the space‐time evolution of slow slip events off the Boso peninsula, Central Japan, from 1996 to 2014. Journal of Geophysical Research: Solid Earth, 123, 732–760. https://doi.org/10.1002/2017JB014709

Gao, X., & Wang, K. (2017). Rheological separation of the megathrust seismogenic zone and episodic tremor and slip. Nature, 543(7645), 416–419. https://doi.org/10.1038/nature21389

Gomberg, J., the Cascadia 2007, & Beyond Working Group (2010). Slow‐slip phenomena in Cascadia from 2007 and beyond: A review. Geological Society of America Bulletin, 122(7–8), 963–978. https://doi.org/10.1130/b30287.1

Graham, S. E., DeMets, C., Cabral‐Cano, E., Kostoglodov, V., Walpersdorf, A., Cotte, N., et al. (2014). GPS constraints on the 2011–2012 Oaxaca slow slip event that preceded the 2012 March 20 Ometepec earthquake, southern Mexico. Geophysical Journal International, 197(3), 1593–1607. https://doi.org/10.1093/gji/ggu019

Haines, J., Wallace, L. M., & Dimitrova, L. (2019). Slow slip event detection in Cascadia using vertical derivatives of horizontal stress rates. Journal of Geophysical Research: Solid Earth, 124, 5153–5173. https://doi.org/10.1029/2018JB016898

Hall, K., Houston, H., & Schmidt, D. (2018). Spatial comparisons of tremor and slow slip as a constraint on fault strength in the northern Cascadia subduction zone. Geochemistry, Geophysics, Geosystems, 19, 2706–2718. https://doi.org/10.1029/2018GC007694

Hirose, F., Nakajima, J., & Hasegawa, A. (2008). Three‐dimensional seismic velocity structure and configuration of the Philippine Sea slab in southwestern Japan estimated by double‐difference tomography. Journal of Geophysical Research, 113, B09315. https://doi.org/ 10.1029/2007JB005274

Hirose, H., Hirahara, K., Kimata, F., Fujii, N., & Miyazaki, S. (1999). A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, Southwest Japan. Geophysical Research Letters, 26(21), 3237–3240. https://doi.org/10.1029/1999GL010999

Hirose, H., & Obara, K. (2010). Recurrence behavior of short‐term slow slip and correlated nonvolcanic tremor episodes in western Shikoku, southwest Japan. Journal of Geophysical Research, 115, B00A21. https://doi.org/10.1029/2008JB006050

Hooper, A., Bekaert, D., Spaans, K., & Ankan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformations. Tectonophysics, 514–517, 1–13. https://doi.org/10.1016/j.tecto.2011.10.013

Ide, S., Beroza, G. C., Shelly, D. R., & Uchide, T. (2007). A scaling law for slow earthquakes. Nature, 447(7140), 76–79. https://doi.org/ 10.1038/nature05780

Itaba, S., Koizumi, N., Matsumoto, N., & Ohtani, R. (2010). Continuous observation of groundwater and crustal deformation for forecasting Tonankai and Nankai earthquakes in Japan. Pure and Applied Geophysics, 167(8‐9), 1105–1114. https://doi.org/10.1007/s00024-010-0095-z

Ito, Y., Hino, R., Kido, M., Fujimoto, H., Osada, Y., Inazu, D., et al. (2013). Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku‐Oki earthquake. Tectonophysics, 600, 14–26. https://doi.org/10.1016/j.tecto.2012.08.022

Kano, M., Aso, N., Matsuzawa, T., Ide, S., Annoura, S., Arai, R., et al. (2018). Development of a slow earthquake database. Seismological Research Letters, 89(4), 1566–1575. https://doi.org/10.1785/0220180021

Kano, M., Kato, A., & Obara, K. (2019). Episodic tremor and slip silently invades strongly locked megathrust in the Nankai trough. Scientific Reports, 9(1), 9270. https://doi.org/10.1038/s41598-019-45781-0

Kato, A., Fukuda, J., & Obara, K. (2013). Response of seismicity to static and dynamic stress changes induced by the 2011 M9.0 Tohoku‐Oki earthquake. Geophysical Research Letters, 40, 3572–3578. https://doi.org/10.1002/grl.50699

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of slow slip leading up to the 2011Mw9.0Tohoku‐oki earthquake. Science, 335(6069), 705–708. https://doi.org/10.1126/science.1215141

Katsumata, A., & Kamaya, N. (2003). Low‐frequency continuous tremor around the Moho discontinuity away from volcanoes in the Southwest Japan. Geophysical Research Letters, 30(1), 1020. https://doi.org/10.1029/2002GL0159812

Kobayashi, A. (2014). A long‐term slow slip event from 1996 to 1997 in the Kii Channel, Japan. Earth, Planets and Space, 66(1), 9.

Kobayashi, A. (2017). Objective detection of long‐term slow slip events along the Nankai trough using GNSS data (1996–2016). Earth, Planets and Space, 69(1), 171.

Kobayashi, A., & Tsuyuki, T. (2019). Long‐term slow slip event detected beneath the Shima peninsula, Central Japan, from GNSS data. Earth, Planets and Space, 71(1), 1–7. https://doi.org/10.1186/s40623-019-1037-3

Miyazaki, S., & Heki, K. (2001). Crustal velocity field of southwest Japan. Journal of Geophysical Research, 106(B3), 4305–4326. https://doi.org/10.1029/2000JB900312

Miyazaki, S., Segall, P., McGuire, J. J., Kato, T., & Hatanaka, Y. (2006). Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake. Journal of Geophysical Research, 111, B03409. https://doi.org/10.1029/2004JB003426

Nakagawa, H., et al. (2009). Development and validation of GEONET new analysis strategy (version 4). Journal of Geographical Survey Institute, 118, 1–8. (in Japanese)

Nakajima, J., & Hasegawa, A. (2007). Subduction of the Philippine Sea plate beneath southwestern Japan: Slab geometry and its rela- tionship to arc magmatism. Journal of Geophysical Research, 112, B08306. https://doi.org/10.1029/2006JB004770

National Research Institute for Earth Science and Disaster Resilience (2019). NIED Hi‐net, https://doi.org/10.17598/nied.0003

Nishimura, T. (2009). Slip distribution of the 1973 Nemuro‐oki earthquake estimated from the re‐examined geodetic data. Earth Planets and Space, 61(11), 1203–1214. https://doi.org/10.1186/BF03352973

Nishimura, T., Matsuzawa, T., & Obara, K. (2013). Detection of short‐term slow slip events along the Nankai trough, Southwest Japan, using GNSS data. Journal of Geophysical Research: Solid Earth, 118, 3112–3125. https://doi.org/10.1002/jgrb.50222

Nishimura, T., Yokota, Y., Tadokoro, K., & Ochi, T. (2018). Strain partitioning and interplate coupling along the northern margin of the Philippine Sea plate, estimated from global navigation satellite system and global positioning system‐acoustic data. Geosphere, 14(2), 1–17. https://doi.org/10.1130/GES01529.1

Obara, K., Hirose, H., Yamamizu, F., & Kasahara, K. (2004). Episodic slow slip events accompanied by non‐volcanic tremors in Southwest Japan subduction zone. Geophysical Research Letters, 31, L23602. https://doi.org/10.1029/2004GL020848

Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. Science, 353(6296), 253–257. https://doi.org/10.1126/ science.aaf1512

Ochi, T., & Kato, T. (2013). Depth extent of the long‐term slow slip event in the Tokai district, Central Japan, a new insight. Journal of Geophysical Research: Solid Earth, 118, 1–14. https://doi.org/10.1002/jgrb.50355

Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half‐space. Bulletin of the Seismological Society of America, 82, 1018–1040.

Ozawa, S., Murakami, M., & Tada, T. (2001). Time‐dependent inversion study of the slow thrust event in the Nankai trough subduction zone, southwestern Japan. Journal of Geophysical Research, 106(B1), 787–802. https://doi.org/10.1029/2000JB900317

Ozawa, S., Nishimura, T., Munekane, H., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2012). Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan. Journal of Geophysical Research, 117, B07404. https://doi.org/10.1029/2011JB009120

Ozawa, S., Tobita, M., & Yarai, H. (2016). A possible restart of an interplate slow slip adjacent to the Tokai seismic gap in Japan. Earth, Planets and Space, 68(1), 1–14. https://doi.org/10.1186/s40623-016-0430-4

Ozawa, S., Yarai, H., Imakiire, T., & Tobita, M. (2013). Spatial and temporal evolution of the long‐term slow slip in the Bungo Channel, Japan. Earth, Planets, and Space, 65(2), 67–73. https://doi.org/10.5047/eps.2012.06.009

Radiguet, M., Perfettini, H., Cotte, N., Gualandi, A., Valette, B., Kostoglodov, V., et al. (2016). Triggering of the 2014 Mw7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. Nature Geoscience, 9, 829–833. https://doi.org/10.1038/ngeo2817

Rousset, B., Bürgmann, R., & Campillo, M. (2019). Slow slip events in the roots of the San Andreas fault. Science Advances, 5(2), eaav3274. https://doi.org/10.1126/sciadv.aav3274

Rousset, B., Campillo, M., Lasserre, C., Frank, W. B., Cotte, N., Walpersdorf, A., et al. (2017). A geodetic matched‐filter search for slow slip with application to the Mexico subduction zone. Journal of Geophysical Research: Solid Earth, 122, 10,498–10,514. https://doi.org/10.1002/2017JB014448

Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research, 88(B12), 10,359–10,370. https://doi.org/ 10.1029/JB088iB12p10359

Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., et al. (2014). Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science, 345(6201), 1165–1169. https://doi.org/10.1126/science.1256074

Sagiya, T., & Thatcher, W. (1999). Coseismic slip resolution along a plate boundary megathrust: The Nankai trough, Southwest Japan. Journal of Geophysical Research, 104(B1), 1111–1129.

Sakaue, H., Nishimura, T., Fukuda, J., & Kato, T. (2019). Spatiotemporal evolution of long‐ and short‐term slow slip events in the Tokai region, central Japan, estimated from a very dense GNSS network during 2013–2016. Journal of Geophysical Research: Solid Earth, 124, 13,207–13,226. https://doi.org/10.1029/2019JB018650

Schwartz, S. Y., & Rokosky, J. M. (2007). Slow slip events and seismic tremor at circum‐Pacific subduction zones. Reviews of Geophysics, 45, RG3004. https://doi.org/10.1029/2006RG000208

Sekine, S., Hirose, H., & Obara, K. (2010). Along‐strike variations in short‐term slow slip events in the southwest Japan subduction zone. Journal of Geophysical Research, 115, B00A27. https://doi.org/10.1029/2008JB006059

Shelly, D. R., Beroza, G. C., & Ide, S. (2007). Non‐volcanic tremor and low‐frequency earthquake swarms. Nature, 446(7133), 305–307. https://doi.org/10.1038/nature05666

Socquet, A., Valdes, J. P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., et al. (2017). An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophysical Research Letters, 44, 4046–4053. https://doi.org/10.1002/2017GL073023

Takagi, R., Uchida, N., & Obara, K. (2019). Along‐strike variation and migration of long‐term slow slip events in the western Nankai subduction zone, Japan. Journal of Geophysical Research: Solid Earth, 124, 3853–3880. https://doi.org/10.1029/2018JB016738

Voss, N., Dixon, T. H., Liu, Z., Malservisi, R., Protti, M., & Schwartz, S. (2018). Do slow slip events trigger large and great megathrust earthquakes? Science Advances, 4(10), eaat8472. https://doi.org/10.1126/sciadv.aat8472

Wallace, L. M., Webb, S. C., Ito, Y., Mochizuki, K., Hino, R., Henrys, S., et al. (2016). Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science, 352(6286), 701–704. https://doi.org/10.1126/science.aaf2349

Wessel, P., & Smith, W. H. F. (1998). New, improved version of generic mapping tools released, Eos trans. AGU, 79, 579.

Yokota, Y., Ishikawa, T., Watanabe, S., Tashiro, T., & Asada, A. (2016). Seafioor geodetic constraints on interplate coupling of the Nankai trough megathrust zone. Nature, 534(7607), 374–377. https://doi.org/10.1038/nature17632

Yokota, Y., & Koketsu, K. (2015). A very long‐term transient event preceding the 2011 Tohoku earthquake. Nature Communications, 6(1), 5934. https://doi.org/10.1038/ncomms6934

Yoshida, S., & Kato, N. (2003). Episodic aseismic slip in a two‐degree‐of‐freedom block‐spring model. Geophysical Research Letters, 30(13), 1681. https://doi.org/10.1029/2003GL017439

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る