リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Static and dynamic characteristics of double transverse coupled cavity VCSELs for high speed modulations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Static and dynamic characteristics of double transverse coupled cavity VCSELs for high speed modulations

Hameeda R Ibrahim Ahmed MA Hassan Xiaodong Gu Moustafa Ahmed Fumio Koyama 東京工業大学 DOI:https://doi.org/10.1587/elex.18.20210419

2021.11.25

概要

We present experimental results for extending the 3-dB modu- lation bandwidth of an 850-nm vertical-cavity surface-emitting laser (VC- SEL) with passive double transverse-coupled cavities (DTCC). The 3-dB modulation bandwidth of DTCC-VCSEL is 21 GHz while that of a con- ventional VCSEL (C-VCSEL) fabricated in the same wafer is 12 GHz. We realize eye-opening at large-signal modulations of 36 Gbps (NRZ) and 44 Gbps (PAM4). Intensity fluctuations of single-transverse-coupled cav- ity (STCC)-VCSEL and DTCC-VCSEL were also examined at different bias currents under CW operations. The result shows a DTCC-VCSEL is more stable with lower intensity fluctuations.

参考文献

[1] K. Iga: “Vertical-cavity surface-emitting laser: Its conception and evolution,” Jpn. J. Appl. Phys. 47 (2008) 1 (DOI: 10.1143/JJAP.47.1).

[2] F. Koyama: “Recent advances of VCSEL photonics,” J. Lightw. Tech- nol. 24 (2006) 4502 (DOI: 10.1109/JLT.2006.886064).

[3] N. Suzuki, et al.: “High speed 1.1-µm-range InGaAs-based VC- SELs,” IEICE Trans. Electron. E92-C (2009) 942 (DOI: 10.1587/transele.E92.C.942).

[4] A. Larsson, et al.: “High speed VCSELs and VCSEL arrays for single and multicore fiber lnterconnects,” Proc. SPIE 9381 (2015) 93810D-1 (DOI: 10.1117/12.2082614).

[5] D.M. Kuchta, et al.: “A 71-Gb/s NRZ modulated 850-nm VCSEL- based optical link,” IEEE Photon. Technol, Lett. 27 (2015) 577 (DOI: 10.1109/LPT.2014.2385671).

[6] W.H.S. Wanckel and H.E. Hofmann: “Small-signal analysis of ultra- high-speed multi-mode VCSELs,” IEEE J. Quantum Electron. 52(2016) 2400311 (DOI: 10.1109/JQE.2016.2574540)

[7] D.M. Kuchta, et al.: “A 56.1 Gb/s NRZ modulated 850 nm VCSEL-based optical link,” OSA/OFC (2013). (DOI: 10.1364/ OFC.2013.OW1B.5).

[8] W. Hamad, et al.: “Small-signal analysis of high-performance VCSELs,” IEEE Photon. J. 11 (2019) 1501212 (DOI: 10.1109/ JPHOT.2019.2901722).

[9] P. Westbergh, et al.: “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett. 49 (2013) 1021 (DOI: 10.1049/ el.2013.2042).

[10] P. Bardella and I. Montrosset: “A new design procedure for DBR lasers exploiting the photon–photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Topics Quantum Electron. 19 (2013) 1502408 (DOI: 10.1109/JSTQE.2013.2250260).

[11] K. Szczerba, et al.: “60 Gbits error-free 4-PAM operation with 850 nm VCSEL,” Electron. Lett. 49 (2013) 953 (DOI: 10.1049/el.2013.1755).

[12] S.T.M. Fryslie, et al.: “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol, Lett. 27 (2015) 415 (DOI: 10.1109/LPT.2014.2376959)

[13] C.H. Cheng, et al.: “850/940-nm VCSEL for optical communication and 3D sensing,” Opto-Elect. Adv. 1 (2018) 180005 (DOI: 10.29026/ oea.2018.180005).

[14] D. Kuchta, et al.: “64 Gb/s transmission over 57 m MMF using an NRZ modulated 850 nm VCSEL,” Proc. Opt. Fiber Commun. Conf. (2014) Th3C.2 (DOI: 10.1364/OFC.2014.Th3C.2).

[15] E. Haglund, et al.: “30 GHz bandwidth 850 nm VCSEL with sub- 100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51 (2015) 1096 (DOI: 10.1049/el.2015.0785).

[16] E. Haglund, et al.: “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightw. Technol. 34 (2016) 269 (DOI: 10.1109/JLT.2015.2458935).

[17] M. Liu, et al.: “50 Gb/s error-free data transmission of 850 nm oxide-confined VCSELs,” Proc. OFC (2016) Tu3D.2 (DOI: 10.1364/ OFC.2016.Tu3D.2).

[18] X. Zhao, et al.: “Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth,” Opt. Exp. 15 (2007) 14810 (DOI: 10.1364/OE.15.014810).

[19] S.H. Lee, et al.: “Bandwidth enhancement of injection-locked dis- tributed reflector lasers with wire like active regions,” Opt. Exp. 18 (2010) 16370 (DOI: 10.1364/OE.18.016370).

[20] C. Chen and K.D. Choquette: “Analog and digital functionalities of composite-resonator vertical-cavity lasers,” J. Lightw. Technol. 28 (2010) 1003 (DOI: 10.1109/JLT.2010.2041747).

[21] A. Paraskevopoulos, et al.: “Ultra-high-bandwidth (> 35 GHz) electrooptically-modulated VCSEL,” OFC/NFOES 2006 (2006) PDP22 (DOI: 10.1109/OFC.2006.216055).

[22] H. Dalir and F. Koyamad: “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Exp. 8 (2011) 1075 (DOI: 10.1587/elex.8.1075).

[23] H. Dalir and F. Koyama, “29 GHz directly modulated 980 nm vertical- cavity surface emitting lasers with bow-tie shape transverse cou- pled cavity,” Appl. Phys. Lett. 103 (2013) 091109 (DOI: 10.1063/ 1.4820149).

[24] H. Dalir and F. Koyama: “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance,” Appl. Phys. Express 7 (2014) 022102 (DOI: 10.7567/APEX.7.022102).

[25] M. Ahmed, et al.: “Enhancing the modulation bandwidth of VC- SELs to the millimeter-waveband using strong transverse slow- light feedback,” Optics Express 23 (2015) 15365 (DOI: 10.1364/ OE.23.015365).

[26] X. Gu, et al.: “850 nm transverse-coupled-cavity vertical-cavity surface-emitting laser with direct modulation bandwidth of over 30 GHz,” Appl. Phys. Express 8 (2015) 082702 (DOI: 10.7567/ APEX.8.082702).

[27] S.T.M. Fryslie, et al.: “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27 (2015) 415 (DOI: 10.1109/LPT.2014.2376959).

[28] S. Hu, et al.: “Low chirp and high-speed operation of transverse coupled cavity VCSEL,” Japanese Journal of Applied Physics 54 (2015) 090304 (DOI: 10.7567/JJAP.54.090304).

[29] H. Ibrahim, et al.: “Modulation bandwidth enhancement of double transverse coupled cavity VCSELs,” 21st Microoptics Conference, (2016) 13A-7.

[30] H. Ibrahim, et al.: “Design of 100 Gbps double transverse cou- pled cavity VCSELs,” 22nd Microoptics Conference (2017) (DOI: 10.23919/MOC.2017.8244494).

[31] H. Ibrahim, et al.: “Modelling and characterization of the noise characteristics of the vertical cavity surface-emitting lasers subject to slow light feedback,” Pramana 93 (2019) 72 (DOI: 10.1007/s12043-019-1831-2).

[32] E. Heidari, et al.: “Hexagonal transverse-coupled-cavity VCSEL re- defining the high-speed lasers,” Nanophotonics 9 (2020) 743 (DOI: 10.1515/nanoph-2020-0437).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る