リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Prediction of geomagnetically induced currents (GICs) flowing in Japanese power grid for Carrington-class magnetic storms」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Prediction of geomagnetically induced currents (GICs) flowing in Japanese power grid for Carrington-class magnetic storms

Ebihara, Yusuke Watari, Shinichi Kumar, Sandeep 京都大学 DOI:10.1186/s40623-021-01493-2

2021

概要

Large-amplitude geomagnetically induced currents (GICs) are the natural consequences of the solar–terrestrial connection triggered by solar eruptions. The threat of severe damage of power grids due to the GICs is a major concern, in particular, at high latitudes, but is not well understood as for low-latitude power grids. The purpose of this study is to evaluate the lower limit of the GICs that could flow in the Japanese power grid against a Carrington-class severe magnetic storm. On the basis of the geomagnetic disturbances (GMDs) observed at Colaba, India, during the Carrington event in 1859, we calculated the geoelectric disturbances (GEDs) by a convolution theory, and calculated GICs flowing through transformers at 3 substations in the Japanese extra-high-voltage (500-kV) power grid by a linear combination of the GEDs. The estimated GEDs could reach ~ 2.5 V/km at Kakioka, and the GICs could reach, at least, 89 ± 30 A near the storm maximum. These values are several times larger than those estimated for the 13–14 March 1989 storm (in which power blackout occurred in Canada), and the 29–31 October 2003 storm (in which power blackout occurred in Sweden). The GICs estimated here are the lower limits, and there is a probability of stronger GICs at other substations. The method introduced here will be immediately applicable for benchmark evaluation of low-latitude GICs against the Carrington-class magnetic storms if one assumes electrical parameters, such as resistance of transmission lines, with sufficient accuracy.

この論文で使われている画像

参考文献

Alken P, Thébault E, Beggan CD, Amit H, Aubert J, Baerenzung J, Bondar TN,

Brown WJ, Califf S, Chambodut A, Chulliat A, Cox GA, Finlay CC, Fournier

A, Gillet N, Grayver A, Hammer MD, Holschneider M, Huder L, Hulot G,

Jager T, Kloss C, Korte M, Kuang W, Kuvshinov A, Langlais B, Léger JM,

Lesur V, Livermore PW, Lowes FJ, Macmillan S, Magnes W, Mandea M,

Marsal S, Matzka J, Metman MC, Minami T, Morschhauser A, Mound JE,

Nair M, Nakano S, Olsen N, Pavón-Carrasco FJ, Petrov VG, Ropp G, Rother

M, Sabaka TJ, Sanchez S, Saturnino D, Schnepf NR, Shen X, Stolle C, Tangborn A, Tøffner-Clausen L, Toh H, Torta JM, Varner J, Vervelidou F, Vigneron

P, Wardinski I, Wicht J, Woods A, Yang Y, Zeren Z, Zhou B (2021) International geomagnetic reference field: the thirteenth generation. Earth

Planets Space 73(1):1–25. https://​doi.​org/​10.​1186/​s40623-​020-​01288-x

Allen J, Sauer H, Frank L, Reiff P (1989) Effects of the March 1989 solar activity.

EOS Trans Am Geophys Union 70(46):1479–1488. https://​doi.​org/​10.​1029/​

89EO0​0409

Beggan CD (2015) Sensitivity of geomagnetically induced currents to varying auroral electrojet and conductivity models. Earth Planets Space

67(1):1–12. https://​doi.​org/​10.​1186/​s40623-​014-​0168-9

Bolduc L (2002) GIC observations and studies in the Hydro-Québec power

system. J Atmos Solar Terr Phys 64(16):1793–1802. https://​doi.​org/​10.​

1016/​S1364-​6826(02)​00128-1

Boteler DH (2019) A 21st century view of the March 1989 magnetic storm.

Space Weather 17(10):1427–1441. https://​doi.​org/​10.​1029/​2019s​w0022​78

Boteler DH, Pirjola RJ (2017) Modeling geomagnetically induced currents.

Space Weather 15(1):258–276. https://​doi.​org/​10.​1002/​2016s​w0014​99

Cagniard L (1953) Basic theory of the magneto-telluric method of geophysical

prospecting. Geophysics 18(3):605–635. https://​doi.​org/​10.​1190/1.​14379​

15

Carrington RC (1859) Description of a singular appearance seen in the Sun on

September 1, 1859. Mon Not R Astron Soc 20:13–15

Cliver EW, Dietrich WF (2013) The 1859 space weather event revisited: limits of

extreme activity. J Space Weather Space Clim 3:A31–A31. https://​doi.​org/​

10.​1051/​swsc/​20130​53

Denton MH, Borovsky JE, Skoug RM, Thomsen MF, Lavraud B, Henderson MG,

McPherron RL, Zhang JC, Liemohn MW (2006) Geomagnetic storms

driven by ICME- and CIR-dominated solar wind. J Geophys Res Space

Phys 111(7):1–12. https://​doi.​org/​10.​1029/​2005J​A0114​36

Ebihara Y, Ejiri M (2003) Numerical simulation of the ring current: review. Space

Sci Rev 105(1–2):377–452. https://​doi.​org/​10.​1023/A:​10239​05607​888

Ebihara Y, Hayakawa H, Iwahashi K, Tamazawa H, Kawamura AD, Isobe H (2017)

Possible cause of extremely bright aurora witnessed in East Asia on 17

Page 9 of 10

September 1770. Space Weather 15(10):1373–1382. https://​doi.​org/​10.​

1002/​2017S​W0016​93

Fujii I, Ookawa T, Nagamachi S, Owada T (2015) The characteristics of geoelectric fields at Kakioka, Kanoya, and Memambetsu inferred from voltage

measurements during 2000 to 2011. Earth Planets Space 67(1):1–17.

https://​doi.​org/​10.​1186/​s40623-​015-​0241-z

Fujita S, Fujii I, Endo A, Tominaga H (2018) Numerical modeling of spatial

profiles of geomagnetically induced electric field intensity in and around

Japan. Tech Rep Kakioka Magn Obs 14(2):35–50

Groom RW, Bahr K (1992) Corrections for near surface effects: decomposition

of the magnetotelluric impedance tensor and scaling corrections for

regional resistivities: a tutorial. Surv Geophys 13(4–5):341–379. https://​doi.​

org/​10.​1007/​bf019​03483

Hale GE (1931) The spectrohelioscope and its work. Part III. Solar eruptions and

their apparent terrestrial effects. Astrophys J 73:379. https://​doi.​org/​10.​

1086/​143316

Hayakawa H, Ebihara Y, Hand DP, Hayakawa S, Kumar S, Mukherjee S, Veenadhari B (2018a) Low-latitude aurorae during the extreme space weather

events in 1859. Astrophys J 869(1):57. https://​doi.​org/​10.​3847/​1538-​4357/​

aae47c

Hayakawa H, Ebihara Y, Vaquero JM, Hattori K, Carrasco VMS, de la Cruz GM,

Hayakawa S, Watanabe Y, Iwahashi K, Tamazawa H, Kawamura AD, Isobe H

(2018b) A great space weather event in February 1730. Astron Astrophys.

https://​doi.​org/​10.​1051/​0004-​6361/​20183​2735

Hayakawa H, Ebihara Y, Willis DM, Hattori K, Giunta AS, Wild MN, Hayakawa S,

Toriumi S, Mitsuma Y, Macdonald LT, Shibata K, Silverman SM (2018c) The

great space weather event during 1872 February recorded in East Asia.

Astrophys J 862(1):15. https://​doi.​org/​10.​3847/​1538-​4357/​aaca40

Hayakawa H, Ebihara Y, Willis DM, Toriumi S, Iju T, Hattori K, Wild MN, Oliveira

DM, Ermolli I, Ribeiro JR, Correia AP, Ribeiro AI, Knipp DJ (2019) Temporal

and spatial evolutions of a large sunspot group and great auroral storms

around the Carrington event in 1859. Space Weather 17(11):1553–1569.

https://​doi.​org/​10.​1029/​2019s​w0022​69

Kappenman JG (2004) Space weather and the vulnerability of electric power

grids. In: Daglis IA (ed) Effects of space weather on technology infrastructure. Kluwer Acad., Dordrecht, pp 257–299

Keika K, Ebihara Y, Kataoka R (2015) What caused the rapid recovery of the Carrington storm? Earth Planets Space 67(1):1–12. https://​doi.​org/​10.​1186/​

s40623-​015-​0234-y

Knipp DJ, Bernstein V, Wahl K, Hayakawa H (2021) Timelines as a tool for learning about space weather storms. J Space Weather Space Clim. https://​doi.​

org/​10.​1051/​swsc/​20210​11

Kumar S, Veenadhari B, Tulasi Ram S, Selvakumaran R, Mukherjee S, Singh R,

Kadam BD (2015) Estimation of interplanetary electric field conditions for

historical geomagnetic storms. J Geophys Res Space Phys 120(9):7307–

7317. https://​doi.​org/​10.​1002/​2015j​a0216​61

Lehtinen M, Pirjola R (1985) Currents produced in earthed conductor networks

by geomagnetically-induced electric fields. Ann Geophys 3(4):479–484

Li XL, Temerin M, Tsurutani BT, Alex S (2006) Modeling of 1–2 September 1859

super magnetic storm. Adv Space Res-Series 38(2):273–279. https://​doi.​

org/​10.​1016/j.​asr.​2005.​06.​070

Liu CM, Liu LG, Pirjola R (2009) Geomagnetically induced currents in the highvoltage power grid in China. IEEE Trans Power Deliv 24(4):2368–2374.

https://​doi.​org/​10.​1109/​Tpwrd.​2009.​20284​90

Love JJ, Swidinsky A (2014) Time causal operational estimation of electric fields

induced in the Earth’s lithosphere during magnetic storms. Geophys Res

Lett 41(7):2266–2274. https://​doi.​org/​10.​1002/​2014G​L0595​68

Maehara H, Shibayama T, Notsu Y, Notsu S, Honda S, Nogami D, Shibata K

(2015) Statistical properties of superflares on solar-type stars based on

1-min cadence data. Earth Planets Space 67(1):1–10. https://​doi.​org/​10.​

1186/​s40623-​015-​0217-z

Marshall RA, Dalzell M, Waters CL, Goldthorpe P, Smith EA (2012) Geomagnetically induced currents in the New Zealand power network. Space

Weather 10(8):1–13. https://​doi.​org/​10.​1029/​2012S​W0008​06

METI (2015) FY 2014 report on specification researches of standard technologies of electrical power equipment, summarized by the Institute of

Applied Energy. Ministry of Economy, Trade and Industry of Japan

Morina D, Serra I, Puig P, Corral A (2019) Probability estimation of a Carringtonlike geomagnetic storm. Sci Rep 9(1):2393. https://​doi.​org/​10.​1038/​

s41598-​019-​38918-8

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Ebihara et al. Earth, Planets and Space

(2021) 73:163

Nakamura S, Ebihara Y, Fujita S, Goto T, Yamada N, Watari S, Omura Y (2018)

Time domain simulation of geomagnetically induced current (GIC) flowing in 500-kV power grid in Japan including a three-dimensional ground

inhomogeneity. Space Weather 16(12):1946–1959. https://​doi.​org/​10.​

1029/​2018s​w0020​04

Nakano S, Iyemori T (2003) Local time distribution of net field-aligned currents

derived from high-altitude satellite data. J Geophys Rese Space Phys.

https://​doi.​org/​10.​1029/​2002j​a0095​19

Nakano S, Iyemori T (2005) Storm-time field-aligned currents on the nightside

inferred from ground-based magnetic data at midlatitudes: relationships

with the interplanetary magnetic field and substorms. J Geophys Res

Space Phys. https://​doi.​org/​10.​1029/​2004j​a0107​37

NERC (The North American Electric Reliability Corporation) (2016) Benchmark

geomagnetic disturbance event description. The North American Electric

Reliability Corporation

Ngwira CM, Pulkkinen A, Wilder FD, Crowley G (2013) Extended study of

extreme geoelectric field event scenarios for geomagnetically induced

current applications. Space Weather 11(March 1989):121–131. https://​doi.​

org/​10.​1002/​swe.​20021

Ohtani S, Nosé M, Rostoker G, Singer H, Lui ATY, Nakamura M (2001) Stormsubstorm relationship: contribution of the tail current to Dst. J Geophys

Res Space Phys 106(A10):21199–21209. https://​doi.​org/​10.​1029/​2000J​

A0004​00

Ohtani S, Gjerloev JW, Anderson BJ, Kataoka R, Troshichev O, Watari S (2018)

Dawnside wedge current system formed during intense geomagnetic

storms. J Geophys Res Space Phys 123(11):9093–9109. https://​doi.​org/​10.​

1029/​2018j​a0256​78

Pirjola RJ, Viljanen AT, Pulkkinen AA (2007) Research of geomagnetically

induced currents (GIC) in Finland. In: Paper presented at the 2007 7th

international symposium on electromagnetic compatibility and electromagnetic ecology

Power System Relaying and Control Committee K, Substation Protection Subcommittee Working Group K17 (2019) Geomagnetic disturbances (GMD)

impacts on protection systems. Power System Relaying and Control

Committee (PSRC)

Pulkkinen A, Lindahl S, Viljanen A, Pirjola R (2005) Geomagnetic storm of 29–31

October 2003: geomagnetically induced currents and their relation to

problems in the Swedish high-voltage power transmission system. Space

Weather. https://​doi.​org/​10.​1029/​2004S​W0001​23

Pulkkinen A, Pirjola R, Viljanen A (2007) Determination of ground conductivity and system parameters for optimal modeling of geomagnetically

induced current flow in technological systems. Earth Planets Space

59(9):999–1006. https://​doi.​org/​10.​1186/​BF033​52040

Pulkkinen A, Pirjola R, Viljanen A (2008) Statistics of extreme geomagnetically

induced current events. Space Weather. https://​doi.​org/​10.​1029/​2008s​

w0003​88

Pulkkinen A, Bernabeu E, Eichner J, Beggan C, Thomson AWP (2012) Generation of 100-year geomagnetically induced current scenarios. Space

Weather 10(4):1–19. https://​doi.​org/​10.​1029/​2011S​W0007​50

Page 10 of 10

Püthe C, Manoj C, Kuvshinov A (2014) Reproducing electric field observations

during magnetic storms by means of rigorous 3-D modelling and distortion matrix co-estimation. Earth Planets Space 66(1):1–10. https://​doi.​org/​

10.​1186/​s40623-​014-​0162-2

Siscoe G, Crooker NU, Clauer CR (2006) Dst of the Carrington storm of 1859.

Adv Space Res 38(2):173–179. https://​doi.​org/​10.​1016/j.​asr.​2005.​02.​102

Sugiura M (1991) WDC Kyoto. http://​wdc.​kugi.​kyoto-u.​ac.​jp/​dstdir/​dst2/​onDst​

index.​html. 2021

Takahashi T, Mizuno Y, Shibata K (2016) Scaling relations in coronal mass

ejections and energetic proton events associated with solar superflares.

Astrophys J 833(1):L8. https://​doi.​org/​10.​3847/​2041-​8205/​833/1/​l8

Takasu N, Oshi T, Miyawaki F, Saito S, Fujiwara Y (1994) An experimental analysis

of DC excitation of transformers by geomagnetically induced currents.

IEEE Trans Power Deliv 9(2):1173–1182. https://​doi.​org/​10.​1109/​61.​296304

Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S (2003) The extreme magnetic

storm of 1–2 September 1859. J Geophys Res 108(A7):1268–1268. https://​

doi.​org/​10.​1029/​2002J​A0095​04

Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S (2005) Reply to comment by S.-I.

Akasofu and Y. Kamide on “The extreme magnetic storm of 1–2 September 1859.” J Geophys Res Space Phys 110(A9):1997–1999. https://​doi.​org/​

10.​1029/​2005J​A0111​21

Viljanen A, Pulkkinen A, Amm O, Pirjola R, Korja T (2004) Fast computation of

the geoelectric field using the method of elementary current systems

and planar Earth models. Ann Geophys 22(1):101–113. https://​doi.​org/​10.​

5194/​angeo-​22-​101-​2004

Watari S, Nakamura S, Ebihara Y (2021) Measurement of geomagnetically induced current (GIC) around Tokyo. Japan. Earth Planets Space

73(102):1–19. https://​doi.​org/​10.​1186/​s40623-​021-​01422-3

Wik M, Pirjola R, Lundstedt H, Viljanen A, Wintoft P, Pulkkinen A (2009) Space

weather events in July 1982 and October 2003 and the effects of

geomagnetically induced currents on Swedish technical systems. Ann

Geophys 27(4):1775–1787. https://​doi.​org/​10.​5194/​angeo-​27-​1775-​2009

Winter LM, Gannon J, Pernak R, Huston S, Quinn R, Pope E, Ruffenach A,

Bernardara P, Crocker N (2017) Spectral scaling technique to determine

extreme Carrington-level geomagnetically induced currents effects.

Space Weather 15(5):713–725. https://​doi.​org/​10.​1002/​2016s​w0015​86

Yokoyama N, Kamide Y, Miyaoka H (1998) The size of the auroral belt during

magnetic storms. Ann Geophys 16(5):566–566. https://​doi.​org/​10.​1007/​

s0058​50050​626

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る