リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Superposed epoch analyses of geoelectric field disturbances in Japan in response to different geomagnetic activities」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Superposed epoch analyses of geoelectric field disturbances in Japan in response to different geomagnetic activities

Zhang, T. Ebihara, Y. 京都大学 DOI:10.1029/2021sw002893

2022.05

概要

An increase in geomagnetically induced currents (GICs) is an inevitable result of geomagnetic field disturbances, and is harmful to the power grid, in particular, at high latitudes. At mid and low latitudes, the amplitude of the GICs is, in general, small, but large-amplitude GICs are often observed during magnetic storms. It is of importance to understand major characteristics and extreme values of GICs at mid and low latitudes. For the geoelectric field disturbances ΔE observed at Kakioka (27.8° geomagnetic latitude) in Japan in 1996–2004, we performed superposed epoch analyses with respect to three types of geomagnetic disturbances: (a) storm sudden commencements (SSCs)/sudden impulses (SIs), (b) main phase of magnetic storms, and (c) bay disturbances. It is shown that the SSCs/SIs and the main phase of the magnetic storms are equally important for causing large-amplitude disturbances of ΔE at Kakioka. GICs are thought to be amplified when the SIs and/or the bay disturbances occur during the magnetic storms. The maximum value of ΔE tends to be correlated with the maximum value of ΔH during the three types of events, where ΔH is the horizontal component of the geomagnetic field. Assuming that a quasi-linear relationship between the maximum ΔE and the maximum ΔH is valid, we estimated GICs at three substations in Japan for an extreme SSCs/SIs, and the extreme magnetic storms. This scheme could be applicable to estimate roughly the GICs against extreme events, and to forecast the maximum GICs in a real-time manner.

この論文で使われている画像

参考文献

Akasofu, S.-I., & Meng, C.-I. (1969). A study of polar magnetic substorms. Journal of Geophysical Research, 74(1), 293–313. https://doi.

org/10.1029/JA074i001p00293

Araki, T. (1994). Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves (M. J. Engebretson, K. Takahashi, & M. Scholer Eds.).

American Geophysical Union. https://doi.org/10.1029/GM081

Araki, T. (2014). Historically largest geomagnetic sudden commencement (SC) since 1868. Earth Planets and Space, 66(1), 1–6. https://doi.

org/10.1186/s40623-014-0164-0

Araki, T., Keika, K., Kamei, T., Yang, H., & Alex, S. (2006). Nighttime enhancement of the amplitude of geomagnetic sudden commencements

and its dependence on IMF-Bz. Earth Planets and Space, 58(1), 45–50. https://doi.org/10.1186/BF03351912

Araki, T., Takeuchi, T., & Araki, Y. (2004). Rise time of geomagnetic sudden commencements-statistical analysis of ground geomagnetic data.

Earth Planets and Space, 56(2), 289–293. https://doi.org/10.1186/BF03353411

Boteler, D. (2015). The evolution of Québec Earth models used to model geomagnetically induced currents. IEEE Transactions on Power Delivery, 30(5), 2171–2178. https://doi.org/10.1109/TPWRD.2014.2379260

Boteler, D. H., & Pirjola, R. J. (2017). Modeling geomagnetically induced currents. Space Weather, 15(1), 258–276. https://doi.

org/10.1002/2016SW001499

Burton, R. K., McPherron, R. L., & Russell, C. T. (1975). An empirical relationship between interplanetary conditions and Dst. Journal of

Geophysical Research, 80(31), 4204–4214. https://doi.org/10.1029/ja080i031p04204

Cagniard, L. (1953). Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 18(3), 605–635.

https://doi.org/10.1190/1.1437915

14 of 16

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Space Weather

10.1029/2021SW002893

Carter, B. A., Yizengaw, E., Pradipta, R., Halford, A. J., Norman, R., & Zhang, K. (2015). Interplanetary shocks and the resulting geomagnetically

induced currents at the equator. Geophysical Research Letters, 42(16), 6554–6559. https://doi.org/10.1002/2015GL065060

Carter, B. A., Yizengaw, E., Pradipta, R., Weygand, J. M., Piersanti, M., Pulkkinen, A., et al. (2016). Geomagnetically induced currents

around the world during the 17 March 2015 storm. Journal of Geophysical Research: Space Physics, 121(10), 10496–10507. https://doi.

org/10.1002/2016JA023344

Dimmock, A. P., Rosenqvist, L., Welling, D. T., Viljanen, A., Honkonen, I., Boynton, R. J., & Yordanova, E. (2020). On the regional variability

of dB/dt and its significance to GIC. Space Weather, 18(8), 1–20. https://doi.org/10.1029/2020SW002497

Ebihara, Y., & Ejiri, M. (2003). Numerical simulation of the ring current: Review. Space Science Reviews, 105(1–2), 377–452. https://doi.

org/10.1023/A:1023905607888

Ebihara, Y., Watari, S., & Kumar, S. (2021). Prediction of geomagnetically induced currents (GICs) flowing in Japanese power grid for Carrington-class magnetic storms. Earth Planets and Space, 73(1), 163. https://doi.org/10.1186/s40623-021-01493-2

Echer, E., Gonzalez, W. D., & Tsurutani, B. T. (2011). Statistical studies of geomagnetic storms with peak Dst≤-50nT from 1957 to 2008. Journal

of Atmospheric and Solar-Terrestrial Physics, 73(11–12), 1454–1459. https://doi.org/10.1016/j.jastp.2011.04.021

Echer, E., Tsurutani, B. T., & Gonzalez, W. D. (2013). Interplanetary origins of moderate (-100 nT < Dst ≤ -50 nT) geomagnetic storms during

solar cycle 23 (1996–2008). Journal of Geophysical Research: Space Physics, 118(1), 385–392. https://doi.org/10.1029/2012JA018086

Engebretson, M. J., Pilipenko, V. A., Steinmetz, E. S., Moldwin, M. B., Connors, M. G., Boteler, D. H., et al. (2021). Nighttime magnetic perturbation events observed in Arctic Canada: 3. Occurrence and amplitude as functions of magnetic latitude, local time, and magnetic disturbance

indices. Space Weather, 19(3), 1–18. https://doi.org/10.1029/2020SW002526

Etemadi, A. H., & Rezaei-Zare, A. (2014). Optimal placement of GIC blocking devices for geomagnetic disturbance mitigation. IEEE Transactions on Power Systems, 29(6), 2753–2762. https://doi.org/10.1109/TPWRS.2014.2309004

Fujii, I., Ookawa, T., Nagamachi, S., & Owada, T. (2015). The characteristics of geoelectric fields at Kakioka, Kanoya, and Memambetsu inferred

from voltage measurements during 2000 to 2011. Earth Planets and Space, 67(1), 1–17. https://doi.org/10.1186/s40623-015-0241-z

Fujita, S., Fujii, I., Endo, A., & Tominaga, H. (2018). Numerical Modeling of Spatial Profiles of Geomagnetically Induced Electric Field Intensity

in and Around Japan (Technical Report of the Kakioka Magnetic Observatory (2018) 14(2), pp. 35–50). https://www.kakioka-jma.go.jp/publ/

journal_DB/pdf_files/technical_report_of_KMO_19_02_b.pdf

Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. (1994). What is a geomagnetic

storm? Journal of Geophysical Research, 99(A4), 5771. https://doi.org/10.1029/93ja02867

Gosling, J. T., Asbridge, J. R., Bame, S. J., Hundhausen, A. J., & Strong, I. B. (1967). Discontinuities in the solar wind associated with

sudden geomagnetic impulses and storm commencements. Journal of Geophysical Research, 72(13), 3357–3363. https://doi.org/10.1029/

JZ072i013p03357

Groom, R. W., & Bailey, R. C. (1989). Some effects of multiple lateral inhomogeneities in magnetotellurics. Geophysical Prospecting, 37(January), 697–712. https://doi.org/10.1111/j.1365-2478.1989.tb02230.x

Guo, S. X., Liu, L. G., Pirjola, R. J., Wang, K. R., & Dong, B. (2015). Impact of the EHV power system on geomagnetically induced currents in

the UHV power system. IEEE Transactions on Power Delivery, 30(5), 2163–2170. https://doi.org/10.1109/TPWRD.2014.2381248

Hajra, R., Tsurutani, B. T., Echer, E., Gonzalez, W. D., & Gjerloev, J. W. (2016). Supersubstorms (SML < −2500 nT): Magnetic storm and solar

cycle dependences. Journal of Geophysical Research: Space Physics, 121(8), 7805–7816. https://doi.org/10.1002/2015JA021835

Kataoka, R. (2013). Probability of occurrence of extreme magnetic storms. Space Weather, 11(5), 214–218. https://doi.org/10.1002/swe.20044

Kataoka, R., & Miyoshi, Y. (2006). Flux enhancement of radiation belt electrons during geomagnetic storms driven by coronal mass ejections and

corotating interaction regions. Space Weather, 4(9), 1–11. https://doi.org/10.1029/2005SW000211

Kataoka, R., & Ngwira, C. (2016). Extreme geomagnetically induced currents. Progress in Earth and Planetary Science, 3(1), 23. https://doi.

org/10.1186/s40645-016-0101-x

Kepko, L., McPherron, R. L., Amm, O., Apatenkov, S., Baumjohann, W., Birn, J., et al. (2015). Substorm current wedge revisited. Space Science

Reviews, 190(1–4), 1–46. https://doi.org/10.1007/s11214-014-0124-9

Kotz, S., & Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications. Imperial College Press.

Kubota, Y., Kataoka, R., Den, M., Tanaka, T., Nagatsuma, T., & Fujita, S. (2015). Global MHD simulation of magnetospheric response of

preliminary impulse to large and sudden enhancement of the solar wind dynamic pressure. Earth Planets and Space, 67(1), 94. https://doi.

org/10.1186/s40623-015-0270-7

Lehtinen, M., & Pirjola, R. (1985). Currents produced in earthed conductor networks by geomagnetically-induced electric fields. Annales

Geophysicae, 3(4), 479–484.

Lesher, R. L., Byerly, R. T., & Porter, J. W. (1994). Sunburst – A network of GIC monitoring systems. IEEE Transactions on Power Delivery,

9(1), 128–137. https://doi.org/10.1109/61.277687

Liu, C. M., Liu, L. G., & Pirjola, R. (2009). Geomagnetically induced currents in the high-voltage power grid in China. IEEE Transactions on

Power Delivery, 24(4), 2368–2374. https://doi.org/10.1109/TPWRD.2009.2028490

Love, J. J., & Swidinsky, A. (2014). Time causal operational estimation of electric fields induced in the Earth’s lithosphere during magnetic

storms. Geophysical Research Letters, 41(7), 2266–2274. https://doi.org/10.1002/2014GL059568

Lu, M., Nagarajan, H., Yamangil, E., Bent, R., Backhaus, S., & Barnes, A. (2018). Optimal transmission line switching under geomagnetic disturbances. IEEE Transactions on Power Systems, 33(3), 2539–2550. https://doi.org/10.1109/TPWRS.2017.2761178

Mayaud, P. N. (1975). Analysis of storm sudden commencements for the years 1868–1967. Journal of Geophysical Research, 80(1), 111–122.

https://doi.org/10.1029/ja080i001p00111

McPherron, R. L., Aubry, M. P., Russell, C. T., & Coleman, P. J. (1973). Satellite studies of magnetospheric substorms on August 15, 1968: 4.

Ogo 5 magnetic field observations. Journal of Geophysical Research, 78(16), 3068–3078. https://doi.org/10.1029/ja078i016p03068

McPherron, R. L., & Chu, X. (2018). The midlatitude positive bay index and the statistics of substorm occurrence. Journal of Geophysical

Research: Space Physics, 123(4), 2831–2850. https://doi.org/10.1002/2017JA024766

Meng, C.-I., & Akasofu, S.-I. (1969). A study of polar magnetic substorms: 2. Three-dimensional current system. Journal of Geophysical

Research, 74(16), 4035–4053. https://doi.org/10.1029/JA074i016p04035

METI. (2015). FY 2014 report on Specification Researches of Standard Technologies of Electrical Power Equipment, Summarized by the Institute

of Applied Energy. Ministry of Economy, Trade and Industry of Japan.

Moriña, D., Serra, I., Puig, P., & Corral, Á. (2019). Probability estimation of a Carrington-like geomagnetic storm. Scientific Reports, 9(1), 2393.

https://doi.org/10.1038/s41598-019-38918-8

Nakamura, S., Ebihara, Y., Fujita, S., Goto, T., Yamada, N., Watari, S., & Omura, Y. (2018). Time domain simulation of geomagnetically

induced current (GIC) flowing in 500-kV power grid in Japan including a three-dimensional ground inhomogeneity. Space Weather, 16(12),

1946–1959. https://doi.org/10.1029/2018SW002004

ZHANG AND EBIHARA

15 of 16

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Space Weather

10.1029/2021SW002893

NERC. (2016). Screening Criterion for Transformer Thermal Impact Assessment Project 2013-03 (Geomagnetic Disturbance Mitigation)

TPL-007-1 Transmission System Planned Performance for Geomagnetic Disturbance Events. North American Electric Relaibility Corporation. https://www.nerc.com/pa/Stand/Reliability%20Standards/TPL-007-1.pdf

Newell, P. T., & Gjerloev, J. W. (2011). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal

of Geophysical Research, 116(A12). https://doi.org/10.1029/2011JA016779

Ngwira, C. M., Pulkkinen, A., Leila Mays, M., Kuznetsova, M. M., Galvin, A. B., Simunac, K., et al. (2013). Simulation of the 23 July

2012 extreme space weather event: What if this extremely rare CME was Earth directed? Space Weather, 11(12), 671–679. https://doi.

org/10.1002/2013SW000990

Ngwira, C. M., Sibeck, D., Silveira, M. V. D., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. (2018). A study of intense local dB/

dt variations during two geomagnetic storms. Space Weather, 16(6), 676–693. https://doi.org/10.1029/2018SW001911

Nishida, A., & Jacobs, J. A. (1962). World-wide changes in the geomagnetic field. Journal of Geophysical Research, 67(2), 525–540. https://doi.

org/10.1029/JZ067i002p00525

Odstrcil, D. (2003). Modeling 3-D solar wind structure. Advances in Space Research, 32(4), 497–506. https://doi.org/10.1016/

S0273-1177(03)00332-6

Ogilvie, K. W., Burlaga, L. F., & Wilkerson, T. D. (1968). Plasma observations on explorer 34. Journal of Geophysical Research, 73(21),

6809–6824. https://doi.org/10.1029/JA073i021p06809

Ohtani, S., Nosé, M., Rostoker, G., Singer, H., Lui, A. T. Y., & Nakamura, M. (2001). Storm-substorm relationship: Contribution of the tail

current to Dst. Journal of Geophysical Research, 106(A10), 21199–21209. https://doi.org/10.1029/2000JA000400

Overbye, T. J., Shetye, K. S., Hutchins, T. R., Qiu, Q., & Weber, J. D. (2013). Power grid sensitivity analysis of geomagnetically induced currents.

IEEE Transactions on Power Systems, 28(4), 4821–4828. https://doi.org/10.1109/TPWRS.2013.2274624

Piersanti, M., Di Matteo, S., Carter, B. A., Currie, J., & D’Angelo, G. (2019). Geoelectric field evaluation during the September 2017 geomagnetic storm: MA.I.GIC. Model. Space Weather, 17(8), 1241–1256. https://doi.org/10.1029/2019SW002202

Piersanti, M., & Villante, U. (2016). On the discrimination between magnetospheric and ionospheric contributions on the ground manifestation of

sudden impulses. Journal of Geophysical Research: Space Physics, 121(7), 6674–6691. https://doi.org/10.1002/2015JA021666

Pulkkinen, A., Bernabeu, E., Eichner, J., Beggan, C., & Thomson, A. W. P. (2012). Generation of 100-year geomagnetically induced current

scenarios. Space Weather, 10(4). https://doi.org/10.1029/2011SW000750

Pulkkinen, A. A., Pirjola, R., & Viljanen, A. (2007). Determination of ground conductivity and system parameters for optimal modeling of geomagnetically induced current flow in technological systems. Earth Planets and Space, 59(9), 999–1006. https://doi.org/10.1186/BF03352040

Püthe, C., Manoj, C., & Kuvshinov, A. (2014). Reproducing electric field observations during magnetic storms by means of rigorous 3-D modelling and distortion matrix co-estimation. Earth Planets and Space, 66(1), 162. https://doi.org/10.1186/s40623-014-0162-2

Shiota, D., & Kataoka, R. (2016). Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather, 14(2), 56–75. https://doi.org/10.1002/2015SW001308

Siscoe, G., Crooker, N. U., & Clauer, C. R. (2006). Dst of the Carrington storm of 1859. Advances in Space Research, 38(2), 173–179. https://

doi.org/10.1016/j.asr.2005.02.102

Siscoe, G. L., Formisano, V., & Lazarus, A. J. (1968). Relation between geomagnetic sudden impulses and solar wind pressure changes—An

experimental investigation. Journal of Geophysical Research, 73(15), 4869–4874. https://doi.org/10.1029/JA073i015p04869

Takeuchi, T., Araki, T., Luehr, H., Rasmussen, O., Watermann, J., Milling, D. K., et al. (2000). Geomagnetic negative sudden impulse due to a

magnetic cloud observed on May 13, 1995. Journal of Geophysical Research, 105(A8), 18835–18846. https://doi.org/10.1029/2000JA900055

Tsurutani, B. T. (2003). The extreme magnetic storm of 1–2 September 1859. Journal of Geophysical Research, 108(A7), 1268. https://doi.

org/10.1029/2002JA009504

Tsurutani, B. T., & Lakhina, G. S. (2014). An extreme coronal mass ejection and consequences for the magnetosphere and Earth. Geophysical

Research Letters, 41(2), 287–292. https://doi.org/10.1002/2013GL058825

Vasyliunas, V. M. (2011). The largest imaginable magnetic storm. Journal of Atmospheric and Solar-Terrestrial Physics, 73(11–12), 1444–1446.

https://doi.org/10.1016/j.jastp.2010.05.012

Viljanen, A., Pulkkinen, A., Amm, O., Pirjola, R., & Korja, T. (2004). Fast computation of the geoelectric field using the method of elementary

current systems and planar Earth models. Annales Geophysicae, 22(1), 101–113. https://doi.org/10.5194/angeo-22-101-2004

Wang, C., Li, C. X., Huang, Z. H., & Richardson, J. D. (2006). Effect of interplanetary shock strengths and orientations on storm sudden

commencement rise times. Geophysical Research Letters, 33(14), L14104. https://doi.org/10.1029/2006GL025966

Watari, S., Nakamura, S., & Ebihara, Y. (2021). Measurement of geomagnetically induced current (GIC) around Tokyo, Japan. Earth Planets and

Space, 73(1), 102. https://doi.org/10.1186/s40623-021-01422-3

Woodroffe, J. R., Morley, S. K., Jordanova, V. K., Henderson, M. G., Cowee, M. M., & Gjerloev, J. G. (2016). The latitudinal variation of geoelectromagnetic disturbances during large ( Dst ≤−100 nT) geomagnetic storms. Space Weather, 14(9), 668–681. https://doi.

org/10.1002/2016SW001376

Yokoyama, N., & Kamide, Y. (1997). Statistical nature of geomagnetic storms. Journal of Geophysical Research, 102(A7), 14215–14222. https://

doi.org/10.1029/97JA00903

Zhang, J. J., Yu, Y. Q., Wang, C., Du, D., Wei, D., & Liu, L. G. (2020). Measurements and simulations of the geomagnetically induced currents

in low-latitude power networks during geomagnetic storms. Space Weather, 18(8). https://doi.org/10.1029/2020SW002549

ZHANG AND EBIHARA

16 of 16

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る