リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「肝細胞癌に対するレンバニチブ療法の臨床効果に及ぼすNOS3遺伝子多型の影響」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

肝細胞癌に対するレンバニチブ療法の臨床効果に及ぼすNOS3遺伝子多型の影響

東 信太朗 北里大学

2021.07.20

概要

レンバチニブは腫瘍血管新生と腫瘍増殖に関与する複数の受容体チロシンキナーゼ活性を阻害する経口マルチキナーゼ阻害薬である。切除不能な肝細胞癌の第一選択薬として臨床使用されているが、科学的根拠の得られている治療効果予測因子・予後因子は未だ確立されていない。

近年、肝細胞癌に対するソラフェニブ療法の臨床効果と内皮型一酸化窒素合成酵素(endothelial Nitric oxide synthase; eNOS) の一塩基多型 (Single nucleotide polymorphism; SNP)である NOS3 rs2070744 との間に有意な相関が認められた。NOS は L-アルギニンから一酸化窒素 (Nitric oxide; NO) の合成を触媒する酵素ファミリーである。NOS によって合成される NO は血管内皮増殖因子 (Vascular endothelial growth factor; VEGF) の上方制御によって増加し、血管新生を促進させる可能性がある。これは腫瘍の増殖能力を高めるだけでなく、その浸潤性および転移能力をも高めるため、多血性腫瘍である肝細胞癌に対する薬物療法の治療効果に影響を与える可能性がある。レンバチニブはソラフェニブと比較して、腫瘍血管新生や薬剤耐性などに重要な役割を果たしている線維芽細胞増殖因子受容体(Fibroblast growth factor receptor; FGFR) に対する強力なキナーゼ阻害活性を有するため、レンバチニブとソラフェニブの臨床効果に対する NOS3 遺伝子多型の影響は異なる可能性が考えられる。

今回、肝細胞癌に対するレンバチニブ療法の臨床効果に及ぼす NOS3 遺伝子多型の影響を調査し、バイオマーカーとしての NOS3 遺伝子多型の有用性を検証した。

この論文で使われている画像

参考文献

1 Kudo, M. 第 21 回 全国原発性肝癌追跡調査報告(2010~2011). Kanzo 61, 645-691,doi:10.2957/kanzo.61.645 (2020).

2 El-Serag, H. B. et al. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis.Gastroenterology 132, 2557-2576, doi:10.1053/j.gastro.2007.04.061 (2007).

3 El-Serag, H. B. Epidemiology of viral hepatitis and hepatocellular carcinoma.Gastroenterology 142, 1264-1273 e1261, doi:10.1053/j.gastro.2011.12.061 (2012).

4 Tateishi, R. et al. A nationwide survey on non-B, non-C hepatocellular carcinoma in Japan: 2011-2015 update. J Gastroenterol 54, 367-376, doi:10.1007/s00535-018-1532-5 (2019).

5 Morgan, T. R. et al. Alcohol and hepatocellular carcinoma. Gastroenterology 127, S87-96, doi:10.1053/j.gastro.2004.09.020 (2004).

6 Kanwal, F. et al. Trends in the Burden of Nonalcoholic Fatty Liver Disease in a United States Cohort of Veterans. Clin Gastroenterol Hepatol 14, 301-308 e301-302, doi:10.1016/j.cgh.2015.08.010 (2016).

7 Tsilidis, K. K. et al. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 350, g7607, doi:10.1136/bmj.g7607 (2015).

8 Akuta, N. et al. Relationships between Genetic Variations of PNPLA3, TM6SF2 and Histological Features of Nonalcoholic Fatty Liver Disease in Japan. Gut Liver 10, 437-445, doi:10.5009/gnl15163 (2016).

9 Raksayot, M. et al. Independent and additive effects of PNPLA3 and TM6SF2 polymorphisms on the development of non-B, non-C hepatocellular carcinoma. J Gastroenterol 54, 427-436, doi:10.1007/s00535-018-01533-x (2019).

10 Hiraoka, A. et al. Hepatic Function during Repeated TACE Procedures and Prognosis after Introducing Sorafenib in Patients with Unresectable Hepatocellular Carcinoma: Multicenter Analysis. Dig Dis 35, 602-610, doi:10.1159/000480256 (2017).

11 Johnson, P. J. et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol 33, 550-558, doi:10.1200/JCO.2014.57.9151 (2015).

12 European Association for the Study of the Liver. Electronic address, e. e. e. et al. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 69, 182-236, doi:10.1016/j.jhep.2018.03.019 (2018).

13 Chen, L. T. et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with intermediate and advanced/relapsed hepatocellular carcinoma: a TOS-ESMO initiative endorsed by CSCO, ISMPO, JSMO, KSMO, MOS and SSO. Ann Oncol 31, 334-351, doi:10.1016/j.annonc.2019.12.001 (2020).

14 Murakami, T. et al. Percutaneous radiofrequency ablation and transcatheter arterial chemoembolization for hypervascular hepatocellular carcinoma: rate and risk factors for local recurrence. Cardiovasc Intervent Radiol 30, 696-704, doi:10.1007/s00270-007-9003-z (2007).

15 Kudo, M. et al. Lenvatinib as an Initial Treatment in Patients with Intermediate-Stage Hepatocellular Carcinoma Beyond Up-To-Seven Criteria and Child-Pugh A Liver Function: A Proof-Of-Concept Study. Cancers (Basel) 11, doi:10.3390/cancers11081084 (2019).

16 Kudo, M. A New Treatment Option for Intermediate-Stage Hepatocellular Carcinoma with High Tumor Burden: Initial Lenvatinib Therapy with Subsequent Selective TACE. Liver Cancer 8, 299-311, doi:10.1159/000502905 (2019).

17 Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359, 378- 390, doi:10.1056/NEJMoa0708857 (2008).

18 Bruix, J. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet 389, 56-66, doi:10.1016/s0140-6736(16)32453-9 (2017).

19 Kudo, M. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet 391, 1163- 1173, doi:10.1016/s0140-6736(18)30207-1 (2018).

20 Yamashita, T. et al. REFLECT-a phase 3 trial comparing efficacy and safety of lenvatinib to sorafenib for the treatment of unresectable hepatocellular carcinoma: an analysis of Japanese subset. J Gastroenterol 55, 113-122, doi:10.1007/s00535-019-01642-1 (2020).

21 Zhu, A. X. et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology 20, 282-296, doi:10.1016/s1470- 2045(18)30937-9 (2019).

22 Finn, R. S. et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma.N Engl J Med 382, 1894-1905, doi:10.1056/NEJMoa1915745 (2020).

23 Abou-Alfa, G. K. et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N Engl J Med 379, 54-63, doi:10.1056/NEJMoa1717002 (2018).

24 Snyder, S. H. Nitric oxide: first in a new class of neurotransmitters. Science 257, 494-496, doi:10.1126/science.1353273 (1992).

25 Nathan, C. et al. Regulation of biosynthesis of nitric oxide. J Biol Chem 269, 13725-13728 (1994).

26 Stamler, J. S. et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A 89, 444-448, doi:10.1073/pnas.89.1.444 (1992).

27 Lamas, S. et al. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A 89, 6348-6352, doi:10.1073/pnas.89.14.6348 (1992).

28 Craig, D. H. et al. Calmodulin activates electron transfer through neuronal nitric-oxide synthase reductase domain by releasing an NADPH-dependent conformational lock. J Biol Chem 277, 33987-33994, doi:10.1074/jbc.M203118200 (2002).

29 Fleming, I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 459, 793- 806, doi:10.1007/s00424-009-0767-7 (2010).

30 Qian, J. et al. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol 4, 347, doi:10.3389/fphys.2013.00347 (2013).

31 Alderton, W. K. et al. Nitric oxide synthases: structure, function and inhibition. Biochem J 357, 593-615, doi:10.1042/0264-6021:3570593 (2001).

32 Panda, K. et al. Distinct dimer interaction and regulation in nitric-oxide synthase types I, II, and III. J Biol Chem 277, 31020-31030, doi:10.1074/jbc.M203749200 (2002).

33 Hurshman, A. R. et al. Reactions catalyzed by the heme domain of inducible nitric oxide synthase: evidence for the involvement of tetrahydrobiopterin in electron transfer. Biochemistry 41, 3439-3456, doi:10.1021/bi012002h (2002).

34 Verhaar, M. C. et al. Free radical production by dysfunctional eNOS. Heart 90, 494-495, doi:10.1136/hrt.2003.029405 (2004).

35 Luiking, Y. C. et al. Arginine de novo and nitric oxide production in disease states. Am J Physiol Endocrinol Metab 303, E1177-1189, doi:10.1152/ajpendo.00284.2012 (2012).

36 Mocellin, S. et al. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev 27, 317-352, doi:10.1002/med.20092 (2007).

37 Kamm, A. et al. Nitric oxide and its derivatives in the cancer battlefield. Nitric Oxide 93, 102- 114, doi:10.1016/j.niox.2019.09.005 (2019).

38 Choudhari, S. K. et al. Nitric oxide and cancer: a review. World J Surg Oncol 11, 118, doi:10.1186/1477-7819-11-118 (2013).

39 Denninger, J. W. et al. Guanylate cyclase and the ⋅NO/cGMP signaling pathway. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1411, 334-350, doi:10.1016/s0005-2728(99)00024- 9 (1999).

40 Ziche, M. et al. Nitric oxide and angiogenesis. J Neurooncol 50, 139-148, doi:10.1023/a:1006431309841 (2000).

41 Kroll, J. et al. VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochem Biophys Res Commun 252, 743-746, doi:10.1006/bbrc.1998.9719 (1998).

42 Wu, Q. et al. Mathematical Model Predicts Effective Strategies to Inhibit VEGF-eNOS Signaling. J Clin Med 9, doi:10.3390/jcm9051255 (2020).

43 Fukumura, D. et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A 98, 2604-2609, doi:10.1073/pnas.041359198 (2001).

44 Carmeliet, P. et al. Angiogenesis in cancer and other diseases. Nature 407, 249-257, doi:10.1038/35025220 (2000).

45 Namba, T. et al. Angiogenesis induced by endothelial nitric oxide synthase gene through vascular endothelial growth factor expression in a rat hindlimb ischemia model. Circulation 108, 2250-2257, doi:10.1161/01.CIR.0000093190.53478.78 (2003).

46 Oliveira, C. J. R. et al. Nitric oxide and cGMP activate the Ras-MAP kinase pathway- stimulating protein tyrosine phosphorylation in rabbit aortic endothelial cells. Free Radical Biology and Medicine 35, 381-396, doi:10.1016/s0891-5849(03)00311-3 (2003).

47 Lopez-Rivera, E. et al. Matrix metalloproteinase 13 mediates nitric oxide activation of endothelial cell migration. Proc Natl Acad Sci U S A 102, 3685-3690, doi:10.1073/pnas.0408217102 (2005).

48 Kawasaki, K. et al. Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol Cell Biol 23, 5726-5737, doi:10.1128/mcb.23.16.5726-5737.2003 (2003).

49 Brouet, A. et al. Antitumor effects of in vivo caveolin gene delivery are associated with the inhibition of the proangiogenic and vasodilatory effects of nitric oxide. FASEB J 19, 602-604, doi:10.1096/fj.04-2682fje (2005).

50 Kumar, R. et al. A meta-analysis of endothelial nitric oxide synthase gene T786C polymorphism as a risk factor for acute chest syndrome in sickle cell disease. Meta Gene 27, doi:10.1016/j.mgene.2020.100827 (2021).

51 Li, H. et al. Physiological mechanisms regulating the expression of endothelial-type NO synthase. Nitric Oxide 7, 132-147, doi:10.1016/s1089-8603(02)00127-1 (2002).

52 Nakayama, M. et al. T-786-->C mutation in the 5'-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 99, 2864-2870, doi:10.1161/01.cir.99.22.2864 (1999).

53 Joshi, M. S. et al. Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear. FASEB J 21, 2655- 2663, doi:10.1096/fj.06-7088com (2007).

54 Katkam, S. K. et al. Impact of eNOS 27-bp VNTR (4b/a) gene polymorphism with the risk of Systemic Lupus Erythematosus in south Indian subjects. Gene 658, 105-112, doi:10.1016/j.gene.2018.03.021 (2018).

55 Munshi, A. et al. VNTR polymorphism in intron 4 of the eNOS gene and the risk of ischemic stroke in a South Indian population. Brain Res Bull 82, 247-250, doi:10.1016/j.brainresbull.2010.05.008 (2010).

56 Sinici, I. et al. Intron 4 VNTR polymorphism of eNOS gene is protective for cardiac syndromeX. J Investig Med 58, 23-27, doi:10.2310/JIM.0b013e3181c6197f (2010).

57 Elakkad, A. M. et al. T-786C variation in the promoter sequence of human eNOS gene markedly influences its expression level. Drug Discov Ther 11, 193-197, doi:10.5582/ddt.2016.01083 (2017).

58 Wang, J. et al. Haplotype-specific effects on endothelial NO synthase promoter efficiency: modifiable by cigarette smoking. Arterioscler Thromb Vasc Biol 22, e1-4, doi:10.1161/01.atv.0000016248.51577.1f (2002).

59 Doshi, A. A. et al. A promoter polymorphism of the endothelial nitric oxide synthase gene is associated with reduced mRNA and protein expression in failing human myocardium. J Card Fail 16, 314-319, doi:10.1016/j.cardfail.2009.12.013 (2010).

60 Mahmoodi, K. et al. Assessment of the role of plasma nitric oxide levels, T-786C genetic polymorphism, and gene expression levels of endothelial nitric oxide synthase in the development of coronary artery disease. J Res Med Sci 22, 34, doi:10.4103/1735-1995.202144 (2017).

61 Nagassaki, S. et al. eNOS genotype is without effect on circulating nitrite/nitrate level in healthy male population. Thromb Res 115, 375-379, doi:10.1016/j.thromres.2004.09.003 (2005).

62 Senthil, D. et al. Genotype-dependent expression of endothelial nitric oxide synthase (eNOS) and its regulatory proteins in cultured endothelial cells. DNA Cell Biol 24, 218-224, doi:10.1089/dna.2005.24.218 (2005).

63 Diler, S. B. et al. The T-786C, G894T, and intron 4 VNTR (4a/b) polymorphisms of the endothelial nitric oxide synthase gene in prostate cancer cases. Russian Journal of Genetics 52, 220-225, doi:10.1134/s1022795416020022 (2016).

64 Safarinejad, M. R. et al. Effects of the T-786C, G894T, and Intron 4 VNTR (4a/b) polymorphisms of the endothelial nitric oxide synthase gene on the risk of prostate cancer. Urol Oncol 31, 1132-1140, doi:10.1016/j.urolonc.2012.01.002 (2013).

65 Miyamoto, Y. et al. Replication protein A1 reduces transcription of the endothelial nitric oxide synthase gene containing a -786T-->C mutation associated with coronary spastic angina. Hum Mol Genet 9, 2629-2637, doi:10.1093/hmg/9.18.2629 (2000).

66 Oliveira-Paula, G. H. et al. Clinical and pharmacogenetic impact of endothelial nitric oxide synthase polymorphisms on cardiovascular diseases. Nitric Oxide 63, 39-51, doi:10.1016/j.niox.2016.08.004 (2017).

67 Levidou, G. et al. Prognostic significance of replication protein A (RPA) expression levels in bladder urothelial carcinoma. BJU Int 108, E59-65, doi:10.1111/j.1464-410X.2010.09828.x (2011).

68 Dahai, Y. et al. A relationship between replication protein A and occurrence and prognosis of esophageal carcinoma. Cell Biochem Biophys 67, 175-180, doi:10.1007/s12013-013-9530-y (2013).

69 Li, S. et al. Genetic variants in RPA1 associated with the response to oxaliplatin-based chemotherapy in colorectal cancer. J Gastroenterol 54, 939-949, doi:10.1007/s00535-019- 01571-z (2019).

70 Wang, J. et al. Oncogene RPA1 promotes proliferation of hepatocellular carcinoma via CDK4/Cyclin-D pathway. Biochem Biophys Res Commun 498, 424-430, doi:10.1016/j.bbrc.2018.02.167 (2018).

71 Li, H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol, 1-17, doi:10.1080/17474124.2021.1842732 (2020).

72 Tu, Y. T. et al. Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in human malignant melanoma and their relation to angiogenesis. Clin Exp Dermatol 31, 413-418, doi:10.1111/j.1365-2230.2006.02123.x (2006).

73 Shang, Z. J. et al. Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in oral squamous cell carcinoma: its correlation with angiogenesis and disease progression. J Oral Pathol Med 34, 134-139, doi:10.1111/j.1600-0714.2004.00259.x (2005).

74 Yagihashi, N. et al. Increased in situ expression of nitric oxide synthase in human colorectal cancer. Virchows Arch 436, 109-114, doi:10.1007/pl00008208 (2000).

75 Yu, S. et al. Increased expression of activated endothelial nitric oxide synthase contributes to antiandrogen resistance in prostate cancer cells by suppressing androgen receptor transactivation. Cancer Lett 328, 83-94, doi:10.1016/j.canlet.2012.09.006 (2013).

76 Zhang, X. et al. Nitric oxide inhibits autophagy and promotes apoptosis in hepatocellular carcinoma. Cancer Sci 110, 1054-1063, doi:10.1111/cas.13945 (2019).

77 El Moety, A. A. A. et al. Evaluation of nitric oxide as a novel diagnostic marker for hepatocellular carcinoma. Alexandria Journal of Medicine 47, 31-35, doi:10.1016/j.ajme.2011.04.001 (2019).

78 Nan, J. et al. Effects of eNOS gene polymorphisms on individual susceptibility to cancer: A meta-analysis. Nitric Oxide 84, 1-6, doi:10.1016/j.niox.2018.12.006 (2019).

79 Yuan, F. et al. Influence of angiotensin I-converting enzyme gene polymorphism on hepatocellular carcinoma risk in China. DNA Cell Biol 32, 268-273, doi:10.1089/dna.2012.1910 (2013).

80 Casadei-Gardini, A. et al. Association of NOS3 and ANGPT2 Gene Polymorphisms with Survival in Patients with Hepatocellular Carcinoma Receiving Sorafenib: Results of the Multicenter Prospective INNOVATE Study. Clin Cancer Res, doi:10.1158/1078-0432.CCR- 19-3897 (2020).

81 Tsuruoka, A. et al. [Preclinical and clinical researches of lenvatinib mesylate (Lenvima capsule), a novel antitumor agent approved for thyroid cancer treatment]. Nihon Yakurigaku Zasshi 146, 283-290, doi:10.1254/fpj.146.283 (2015).

82 Okamoto, K. et al. Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Med Chem Lett 6, 89-94, doi:10.1021/ml500394m (2015).

83 Turner, N. et al. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10, 116-129, doi:10.1038/nrc2780 (2010).

84 Casanovas, O. et al. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299-309, doi:10.1016/j.ccr.2005.09.005 (2005).

85 Grose, R. et al. Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev 16, 179-186, doi:10.1016/j.cytogfr.2005.01.003 (2005).

86 Ingersoll, R. G. et al. Fibroblast growth factor receptor 2 (FGFR2): genomic sequence and variations. Cytogenet Cell Genet 94, 121-126, doi:10.1159/000048802 (2001).

87 Harimoto, N. et al. The significance of fibroblast growth factor receptor 2 expression in differentiation of hepatocellular carcinoma. Oncology 78, 361-368, doi:10.1159/000320463 (2010).

88 Lee, H. J. et al. Fibroblast growth factor receptor isotype expression and its association with overall survival in patients with hepatocellular carcinoma. Clin Mol Hepatol 21, 60-70, doi:10.3350/cmh.2015.21.1.60 (2015).

89 Kunii, K. et al. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res 68, 2340-2348, doi:10.1158/0008-5472.CAN-07-5229 (2008).

90 Meyer, K. B. et al. Allele-specific up-regulation of FGFR2 increases susceptibility to breast cancer. PLoS Biol 6, e108, doi:10.1371/journal.pbio.0060108 (2008).

91 Vanmechelen, M. et al. Fibroblast Growth Factor Receptor-2 Polymorphism rs2981582 is Correlated With Progression-free Survival and Overall Survival in Patients With Metastatic Clear-cell Renal Cell Carcinoma Treated With Sunitinib. Clin Genitourin Cancer 17, e235- e246, doi:10.1016/j.clgc.2018.11.002 (2019).

92 Dy, G. K. et al. A randomized phase II study of gemcitabine and carboplatin with or without cediranib as first-line therapy in advanced non-small-cell lung cancer: North Central Cancer Treatment Group Study N0528. J Thorac Oncol 8, 79-88, doi:10.1097/JTO.0b013e318274a85d (2013).

93 Hunter, D. J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39, 870-874, doi:10.1038/ng2075 (2007).

94 Miura, S. et al. Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer 12, 56, doi:10.1186/1471-2407- 12-56 (2012).

95 Yamauchi, M. et al. Tumor Fibroblast Growth Factor Receptor 4 Level Predicts the Efficacy of Lenvatinib in Patients With Advanced Hepatocellular Carcinoma. Clin Transl Gastroenterol 11, e00179, doi:10.14309/ctg.0000000000000179 (2020).

96 Xu, W. et al. FGFR4 transmembrane domain polymorphism and cancer risk: a meta-analysis including 8555 subjects. Eur J Cancer 46, 3332-3338, doi:10.1016/j.ejca.2010.06.017 (2010).

97 Ye, Y. et al. FGFR4 Gly388Arg Polymorphism Affects the Progression of Gastric Cancer by Activating STAT3 Pathway to Induce Epithelial to Mesenchymal Transition. Cancer Res Treat 52, 1162-1177, doi:10.4143/crt.2020.138 (2020).

98 Sheu, M. J. et al. Fibroblast growth factor receptor 4 polymorphism is associated with liver cirrhosis in hepatocarcinoma. PLoS One 10, e0122961, doi:10.1371/journal.pone.0122961 (2015).

99 Ho, H. K. et al. Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention. J Hepatol 50, 118-127, doi:10.1016/j.jhep.2008.08.015 (2009).

100 Gao, L. et al. Implications of FGF19 on sorafenib-mediated nitric oxide production in hepatocellular carcinoma cells - a short report. Cell Oncol (Dordr) 41, 85-91, doi:10.1007/s13402-017-0354-4 (2018).

101 Guagnano, V. et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov 2, 1118-1133, doi:10.1158/2159-8290.CD-12- 0210 (2012).

102 Lin, Z. Z. et al. Klotho-beta and fibroblast growth factor 19 expression correlates with early recurrence of resectable hepatocellular carcinoma. Liver Int 39, 1682-1691, doi:10.1111/liv.14055 (2019).

103 Gauglhofer, C. et al. Fibroblast growth factor receptor 4: a putative key driver for the aggressive phenotype of hepatocellular carcinoma. Carcinogenesis 35, 2331-2338, doi:10.1093/carcin/bgu151 (2014).

104 Schmidt, B. et al. Molecular subclasses of hepatocellular carcinoma predict sensitivity to fibroblast growth factor receptor inhibition. Int J Cancer 138, 1494-1505, doi:10.1002/ijc.29893 (2016).

105 McConnell, M. et al. Biology of portal hypertension. Hepatol Int 12, 11-23, doi:10.1007/s12072-017-9826-x (2018).

106 Mejias, M. et al. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology 49, 1245-1256, doi:10.1002/hep.22758 (2009).

107 Ohya, K. et al. Early changes in ammonia levels and liver function in patients with advanced hepatocellular carcinoma treated by lenvatinib therapy. Sci Rep 9, 12101, doi:10.1038/s41598- 019-48045-z (2019).

108 Hidaka, H. et al. Portal hemodynamic effects of sorafenib in patients with advanced hepatocellular carcinoma: a prospective cohort study. J Gastroenterol 47, 1030-1035, doi:10.1007/s00535-012-0563-6 (2012).

109 Hidaka, H. et al. Portal hemodynamic effects of lenvatinib in patients with advanced hepatocellular carcinoma: a prospective cohort study. Hepatol Res, doi:10.1111/hepr.13531 (2020).

110 Hoshi, T. et al. Lenvatinib induces death of human hepatocellular carcinoma cells harboring an activated FGF signaling pathway through inhibition of FGFR-MAPK cascades. Biochem Biophys Res Commun 513, 1-7, doi:10.1016/j.bbrc.2019.02.015 (2019).

111 Ulaganathan, V. K. et al. Germline variant FGFR4 p.G388R exposes a membrane-proximal STAT3 binding site. Nature 528, 570-574, doi:10.1038/nature16449 (2015).

112 Gao, L. et al. FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib. J Exp Clin Cancer Res 36, 8, doi:10.1186/s13046-016-0478-9 (2017).

113 Gao, L. et al. Exploiting Plug-and-Play Electrochemical Biosensors to Determine the Role of FGF19 in Sorafenib-Mediated Superoxide and Nitric Oxide Production in Hepatocellular Carcinoma Cells. Methods Mol Biol 2138, 175-183, doi:10.1007/978-1-0716-0471-7_10 (2020).

114 Burke, A. J. et al. The yin and yang of nitric oxide in cancer progression. Carcinogenesis 34, 503-512, doi:10.1093/carcin/bgt034 (2013).

115 Lai, Y. et al. Synthesis and biological evaluation of furoxan-based nitric oxide-releasing derivatives of glycyrrhetinic acid as anti-hepatocellular carcinoma agents. Bioorg Med Chem Lett 20, 6416-6420, doi:10.1016/j.bmcl.2010.09.070 (2010).

116 Finn, R. S. et al. Phase Ib Study of Lenvatinib Plus Pembrolizumab in Patients With Unresectable Hepatocellular Carcinoma. J Clin Oncol 38, 2960-2970, doi:10.1200/JCO.20.00808 (2020).

117 Taketomi, A. et al. Natural killer cell activity in patients with hepatocellular carcinoma. Cancer83, 58-63, doi:10.1002/(sici)1097-0142(19980701)83:1<58::Aid-cncr8>3.0.Co;2-a (1998).

118 Fink, T. et al. Natural killer cell-mediated basal and interferon-enhanced cytotoxicity against liver cancer cells is significantly impaired under in vivo oxygen conditions. Scand J Immunol 58, 607-612, doi:10.1111/j.1365-3083.2003.01347.x (2003).

119 Siemens, D. R. et al. Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide. Cancer Res 68, 4746-4753, doi:10.1158/0008-5472.CAN-08- 0054 (2008).

120 Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy.Science 307, 58-62, doi:10.1126/science.1104819 (2005).

121 Kawamura, Y. et al. Pretreatment Heterogeneous Enhancement Pattern of Hepatocellular Carcinoma May Be a Useful New Predictor of Early Response to Lenvatinib and Overall Prognosis. Liver Cancer 9, 275-292, doi:10.1159/000505190 (2020).

122 Kawamura, Y. et al. (18)F-Fluorodeoxyglucose Uptake in Hepatocellular Carcinoma as a Useful Predictor of an Extremely Rapid Response to Lenvatinib. Liver Cancer 9, 84-92, doi:10.1159/000503577 (2020).

123 Hamnvik, O. P. et al. Clinical risk factors for the development of hypertension in patients treated with inhibitors of the VEGF signaling pathway. Cancer 121, 311-319, doi:10.1002/cncr.28972 (2015).

124 Bair, S. M. et al. Cardiovascular complications associated with novel angiogenesis inhibitors: emerging evidence and evolving perspectives. Trends Cardiovasc Med 23, 104-113, doi:10.1016/j.tcm.2012.09.008 (2013).

125 Mitchell, J. A. et al. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol 93, 141-147, doi:10.1113/expphysiol.2007.038588 (2008).

126 Kappers, M. H. et al. Hypertension induced by the tyrosine kinase inhibitor sunitinib is associated with increased circulating endothelin-1 levels. Hypertension 56, 675-681, doi:10.1161/HYPERTENSIONAHA.109.149690 (2010).

127 Ancker, O. V. et al. The Adverse Effect of Hypertension in the Treatment of Thyroid Cancer with Multi-Kinase Inhibitors. Int J Mol Sci 18, doi:10.3390/ijms18030625 (2017).

128 Eechoute, K. et al. Polymorphisms in endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) predict sunitinib-induced hypertension. Clin Pharmacol Ther 92, 503-510, doi:10.1038/clpt.2012.136 (2012).

129 Granito, A. et al. Prognostic significance of adverse events in patients with hepatocellular carcinoma treated with sorafenib. Therap Adv Gastroenterol 9, 240-249, doi:10.1177/1756283X15618129 (2016).

130 Li, Y. et al. Incidence and risk of sorafenib-induced hypertension: a systematic review and meta-analysis. J Clin Hypertens (Greenwich) 16, 177-185, doi:10.1111/jch.12273 (2014).

131 Wu, S. et al. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. The Lancet Oncology 9, 117-123, doi:10.1016/s1470- 2045(08)70003-2 (2008).

132 Shimose, S. et al. Clinical Significance of Adverse Events for Patients with Unresectable Hepatocellular Carcinoma Treated with Lenvatinib: A Multicenter Retrospective Study. Cancers (Basel) 12, doi:10.3390/cancers12071867 (2020).

133 Ogawa, C. et al. Hand-Foot Syndrome and Post-Progression Treatment Are the Good Predictors of Better Survival in Advanced Hepatocellular Carcinoma Treated with Sorafenib: A Multicenter Study. Oncology 93 Suppl 1, 113-119, doi:10.1159/000481241 (2017).

134 Hiraoka, A. et al. Prognostic factor of lenvatinib for unresectable hepatocellular carcinoma in real-world conditions-Multicenter analysis. Cancer Med 8, 3719-3728, doi:10.1002/cam4.2241 (2019).

135 Hiraoka, A. et al. Sarcopenia and two types of presarcopenia in Japanese patients with chronic liver disease. Eur J Gastroenterol Hepatol 28, 940-947, doi:10.1097/MEG.0000000000000661 (2016).

136 Shachar, S. S. et al. Prognostic value of sarcopenia in adults with solid tumours: A meta- analysis and systematic review. Eur J Cancer 57, 58-67, doi:10.1016/j.ejca.2015.12.030 (2016).

137 Eso, Y. et al. Dose Intensity/Body Surface Area Ratio is a Novel Marker Useful for Predicting Response to Lenvatinib against Hepatocellular Carcinoma. Cancers (Basel) 12, doi:10.3390/cancers12010049 (2019).

138 Uojima, H. et al. Skeletal Muscle Mass Influences Tolerability and Prognosis in Hepatocellular Carcinoma Patients Treated with Lenvatinib. Liver Cancer 9, 193-206, doi:10.1159/000504604 (2020).

139 Lencioni, R. et al. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma.Semin Liver Dis 30, 52-60, doi:10.1055/s-0030-1247132 (2010).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る