リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Growth optimization and sustainable production of swine with tryptophan supplement feed formulations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Growth optimization and sustainable production of swine with tryptophan supplement feed formulations

佐藤, 弘之 東北大学

2023.03.02

概要

Analytical and methodological approaches for the study of dietary tryptophan (Trp)
content have been either inadequate or not yet developed to date. Therefore, neither the
availability nor the digestibility of Trp, which represents the third or fourth limiting AA,
have yet been precisely determined in swine feed. In this chapter, methods for the highly
accurate analysis of these parameters are described.
To determine the Trp content of feed ingredients, a method involving three steps was
established that involved in alkaline hydrolysis, pretreatment of the hydrolysate before
chromatography, and measurement of Trp by ion exchange liquid chromatography.
Optimal conditions were determined for the alkaline hydrolysis and for the ion-exchange
chromatography, including clear separation of the Trp peak from adjacent peaks, and for
sample storage. ...

この論文で使われている画像

参考文献

AAFCO (Association of American Feed Control Official). (2010). Official Publication.

Champaign, IL.

AOAC. (2000). Official Methods of Analysis (17th ed.). Washington, DC: Association of

Official Analytical Chemists.

ARC (Agricultural Research Council). (1981). The Nutrient requirements of pigs. Slough,

England: Commonwealth Agricultural Bureaux.

Adedokun, S.A., Jaynes, P., El-Hack, M. E. Abd., Payne, R.L., & Applegate, T.J. (2014).

Standardized ileal amino acid digestibility of meat and bone meal and soybean meal

in laying hens and broilers. Poultry Science, 93, 420-428.

https://doi.org/10.3382/ps.2013-03495

Adeola, O. (1996). Bioavailability of tryptophan in soybean meal for 10‐ kg pigs using

slope‐ratio assay. Journal of Animal Science, 74, 2411- 2419.

https://doi.org/10.2527/1996.74102411x

Adeola, O. (2009). Bioavailability of threonine and tryptophan in pea‐ nut meal for starter

pigs using slope‐ratio assay. Animal, 3, 677-685.

https://doi.org/10.1017/s1751731109004066

Agriculture & Livestock Industries Corporation in Japan (Alic). (2015). Current demand

and supply of cereal grain and hi-protein feed ingredients in United State of America.

(In Japanese) Available from URL: http://www.alic.go.jp//

86

Ajinomoto Co., Inc. (2003). Amino acids handbook. Tokyo, Japan: Kogyo Chosakai

Publishing Co., Ltd. (In Japanese)

Anderson, R. L., & Nelson, L. A. (1975). A family of models involving intersecting

straight lines and concomitant experimental designs useful in evaluating response to

fertilizer nutrients. Biometrics, 31, 303-318.

https://doi.org/10.2307/2529422

Ariyoshi, S. (1983). Amino Acid in Animal Nutrition (1st ed.). Tokyo, Japan: Chikusan

Shuppan Co., Ltd. (In Japanese).

Australian Meat and Bone Meal Nutritional Technical Review. (2003). Meat and

Livestock Australia 2003. North Sydney, Australia: Meat and Livestock Australia

Ltd.

Baker, D. H. (1978). Nutrient bioavailability in feedstuffs: Methodology for determining

amino acid and B-vitamin availability in cereal grains and soybean meal. Georgia

Nutrition Conference. Atlanta. pp 1-12.

Baker, D. H. (1985). Problems and pitfalls in nutrient estimation. Proc. Anim. Nutr. Res.

Council Symp., 1985, Athens, GA.

Baker, D. H., Allen, N. K., Boomgaardt, J., Graber, G., & Norton, H.W. (1971).

Quantitative aspects of D- and L-tryptophan utilization by the young pig. Journal of

Animal Science, 33, 42-46.

https://doi.org/10.2527/jas1971.33142x

Baker, D.H., Becker, D.H., Norton, H.W., Jensen, A.H., & Harmon, B.G. (1969). Lysine

imbalance of corn protein in the growing pig. Journal of Animal Science, 28, 23-26.

https://doi.org/10.2527/jas1969.28123x

87

Baker, D.H., Katz, R.S., & Easter, R.A. (1975). Lysine requirement of growing pigs at

two levels of dietary protein. Journal of Animal Science, 40, 851-856.

https://doi.org/10.2527/jas1975.405851x

Bass, B.E., Bradley, C.L., Johnson, Z.B., Rush, C.E.Z., Boyd, R.D., Usry, J. L., Maxwell,

C.V., & Frank, J.W. (2017). Influence of dietary L-arginine supplementation of sows

during late pregnancy on piglet birth weight and sow and litter performance during

lactation. Journal of Animal Science, 95, 248-256.

https://doi.org/10.2527/jas2016.0986

Batterham, E. S. (1992). Availability and utilization of amino acid for growing pigs.

Nutritional Research and Review, 5, 1–8.

https://doi. org/10.1079/nrr19920004

Batterham, E. S., Murison, R. D., & Lowe, R. F. (1981). Availability of lysine in vegetable

protein concentrates as determined by the slope‐ratio assay with growing pigs and

rats and chemical techniques. British Journal of Nutrition, 45, 401-410.

https://doi.org/10.1079/bjn19 810115

Batterham, E.S., & Darnell, R.E. (1986a). Effect of pressure and temperature on the

availability of lysine in meat and bone meal as determined by slope-ratio assays with

growing pigs, rats and chicks and by chemical techniques. British Journal of

Nutrition, 55, 441-453.

https://doi.org.10.1079/BJN19860050

Batterham, E.S., Lowe, R.F., & Darnell, R.E. (1986b). Availability of lysine in meat meal,

meat and bone meal and blood meal as determined by the slope-ratio assay with

growing pigs, rats and chicks and by chemical techniques. British Journal of

Nutrition, 55, 427-440.

https://doi.org.10.1079/BJN19860049

88

Batterham, E.S., Murison, R.D., & Lewis, C.E. (1979). Availability of lysine in protein

concentrates as determined by the slope-ratio assay with growing pigs and rats and

by chemical techniques. British Journal of Nutrition, 41, 383-391.

https://doi.org.10.1079/BJN19790047

Becker, D. E., Lassiter, J. W., Terrill, S. W., & Norton, H. W. (1954). Levels of protein in

practical rations for the pig. Journal of Animal Science, 13, 611-621.

https://doi.org/10.2527/jas1954.133611x

Block, R.J., & Weiss, K. W. (1956).

" AMINO ACID HANDBOOK (Methods and

Results of Protein Analysis) ". Charles C. Thomas Publisher, Springfield, Illinois,

U.S.A.

Bloss, R. E., Luecke, R. W., Hoefer, J. A., Thorp, F. Jr., & McMillen, W. N. (1953).

Supplementation of a corn-meat and bone scrap ration for weanling pigs. Journal of

Animal Science, 12,102-106.

https://doi.org/10.2527/jas1953.121102x

Boomgaardt, J., & Baker, D. H. (1973). Tryptophan requirement of growing pigs at three

levels of dietary protein. Journal of Animal Science, 36, 303-306.

https://doi.org/10.2527/jas1973.362303x

Burns, J. M., & Baker, D. H. (1976). Assessment of the quantity of biologically available

phosphorus in yeast RNA and single-cell protein. Poultry Science, 55, 2447-2455.

https://doi.org/10.3382/ps.0552447

Canfield, R. E. (1963). The amino acid sequence of egg white lysozyme. Journal

of Biological Chemistry, 238, 2698-2707.

http://www.jbc.org/content/238/8/2698.citation

89

Canh, T.T., Aarnink, A.J.A., Schutte, J.B., Sutton, A., Langhout, D.J., & Verstegen,

M.W.A. (1998). Dietary protein affects nitrogen excretion and ammonia emission

from slurry of growing–finishing pigs. Livestock Production Science, 56, 181-191.

https://doi.org/10.1016/S0301-6226(98)00156-0

Chung, T.K., & Baker, D.H. (1992). Ideal amino acid pattern for 10-kilogram pigs.

Journal of Animal Science, 70, 3102-3111.

https://doi.org/10.2527/1992.70103102x

Copelin, J. L., Gaskins, C. T., & Tribble, L. F. (1978). Availability of tryptophan, lysine,

and threonine in sorghum for swine. Journal of Animal Science, 46,133-142.

https://doi.org/10.2527/jas1978.461133x

Davis, T.M., Parsons, C.M., Utterback, P.L., & Kirstei, D. (2015). Evaluation of the

pepsin digestibility assay for predicting amino acid digestibility of meat and bone

meals. Poultry Science, 94, 1003-1008.

http://dx.doi.org/10.3382/ps/pev062

De Muelenaere, H.J.H., Chen, M-L., & Harper, A. E. (1967). Assessment of factors

influencing estimation of availability of threonine, isoleucine, and valine in cereal

products. Journal of Agricultural and Food Chemistry, 15,318-323.

https://doi.org/10.1021/jf60150a008

Dibner, J.J. & Richards, J.D. (2005). Antibiotic growth promoters in agriculture: history

and mode of action. Poultry Science, 84, 634-643.

https://doi.org/10.1093/ps/84.4.634

90

Donkoh, A., Moughan, P.J., & Smith, W.C. (1994a). The laboratory rat as a model animal

for determining ileal amino acid digestibility in meat and bone meal for growing pig.

Animal Feed Science and Technology, 49, 57-71.

https://doi.org/10.1016/0377-8401(94)90081-7

Donkoh, A., Moughan, P.J., & Smith, W.C. (1994b). True ileal digestibility of amino acid

in meat and bone meal for the growing pig – application of a routine rat digestibility

assay. Animal Feed Science and Technology, 49, 73-86.

https://doi.org/10.1016/0377-8401(94)90082-5

Easter, R. A., & Baker, D. H. (1980). Lysine and protein levels in corn-soybean meal diets

for growing-finishing swine. Journal of Animal Science, 50, 467-471.

https://doi.org/10.2527/jas1980.503467x

FAO (Food and Agriculture Organization of the United Nations). (2009). FAO. 2009.

2050: A third more mouths to feed [page on the internet]. FAO. Rome, Italy: [cited

27 October 2020].

Available from URL: http://www.fao.org/news/story/en/item/35571/icode/)

Feedstuffs Reference Issue, Feedstuff Ingredient Analysis Table. (1983). 1983 Edition,

Vol. 55, No. 30, Minneapolis, Minnesota., U.S.A.

Finney, D. J. (1978). Statistical methods in biological assay (3rd ed.). London: Charles

Griffin.

Fisher, H., Griminger, P., Lavelle, G. A., & Shapiro, R. (1960). Quantitative aspects of

lysine deficiency and amino acid imbalance. The Journal of Nutrition, 71, 213-220.

https://doi.org/10.1093/jn/71.3.213

91

Furuya, S., Takahashi, S., & Kameoka, K. (1981). A comparative study of the digestibility

by pigs, chickens and rats using identical rations. Japanese Journal of Zootechnical

Science, 52, 459-466.

https://doi.org/10.2508/chikusan.52.459

Furuya, S., Watanabe, M., Abe, H., Shimizu, T., Daimon, H., Sato, K., Konta, T., & Sato,

K. (1997). Reduction of nitrogen excretion of growing-finishing pigs by feeding

reduced protein, amino acid- supplemented diets. Japanese Journal of Swine Science,

34, 15-21. (In Japanese)

Gloaguen, M., Floc’h, N. L., Corrent, E., Primot, Y., & Milgen, J.V. (2014). The use of

free amino acids allows formulating very low crude protein diets for piglets. Journal

of Animal Science, 92, 637-644.

https://doi.org/10.2527/jas2013-6514

Gonçalves, M. A. D., Nitikanchana, S., Tokach, M. D., Dritz, S. S., Bello, N. M.,

Goodband, R. D., Touchette, K. J., Usry, J. L., DeRouchey, J. M., & Woodworth, J.

C. (2015). Effects of standardized ileal digestible tryptophan: lysine ratio on growth

performance of nursery pigs. Journal of Animal Science, 93, 3909-3918.

https://doi.org/10.2527/jas.2015-9083

Green, R.D., & Black, A. (1944). The microbiological assay of tryptophane in proteins

and foods. Journal of Biological Chemistry, 155, 1-8.

Guay, F., Donovan, S. M., & Trottier, N. L. (2006). Biochemical and morphological

developments are partially impaired in intestinal mucosa from growing pigs fed

reduced-protein diets supplemented with crystalline amino acids. Journal of Animal

Science, 84, 1749-1760.

https://doi.org/10.2527/jas2005-558

92

Gupta, J. D., & Elvehjem, C. A. (1957). Biological availability of tryptophan. Journal of

Nutrition, 62, 313-324.

https://doi.org/10.1093/ jn/71.3.213

Hahn, D. J., & Baker, D. H. (1995). Optimum ratio to lysine of threonine, tryptophan, and

sulfur amino acids for finishing swine. Journal of Animal Science, 73, 482-489.

https://doi.org/10.2527/1995.732482x

Haynes, T.E., Li, P., Li, X., Shimotori, K., Sato, H., Flynn, N.E., Wang, J., Knabe, D.A.,

& Wu, G. (2009). L-glutamine or L-alanyl-L-glutamine prevents oxidant- or

endotoxin- induced death of neonatal enterocytes. Amino Acids, 37, 131-142.

https://doi.org/10.1007/s00726-009-0243-x

He, L., Wu, L., Xu, Z., Li, T., Yao, K., Cui, Z., Yin, Y., & Wu, G. (2016). Low-protein

diets affect ileal amino acid digestibility and gene expression of digestive enzymes

in growing and finishing pigs. Amino Acids, 48, 21-30.

https://doi.org/10.1007/s00726-015-2059-1

Heger, J., & Frydrych, Z. (1985). Efficiency of utilization of essential amino acids in

growing rats at different level of intake. British Journal of Nutrition, 54, 499-508.

https://doi.org/10.1079/bjn19850135

Henderson, L.M., & Snell, E. E. (1948). A uniform medium for determination of amino

acids with various microorganisms. Journal of Biological Chemistry, 172, 15-29.

Hendriks, W.H., Butts, C.A., Thomas, D.V., James, K.A.C., Morel, P.C.A, & Verstegen,

M.W.A. (2002). Nutritional quality and variation of meat and bone meal. AsianAustralasian Journal of Animal Science, 15, 1507-1516.

https://doi.org/10.5713/ajas.2002.1507

93

Hendriks, W.H., Cottam, Y.H., Morel, P.C.H., & Thomas, D.V. (2004). Source of the

variation in meat and bone meal nutritional quality. Asian-Australian Journal of

Animal Science, 17, 94-101.

https://doi.org/10.5713/ajas.2004.94

Hernández, F., Martínez, S., López, C., Megías, M. D., López, M., & Madrid, J. (2011).

Effect of dietary crude protein levels in a commercial range, on the nitrogen balance,

ammonia emission and pollutant characteristics of slurry in fattening pigs. Animal,

5, 1290-1298.

https://doi.org/10.1017/S1751731111000115

Hill, R. L., & Schmidt, W. R. (1962). The complete enzymic hydrolysis of proteins.

Journal of Biological Chemistry, 237, 389-396.

https://doi.org/10.1016/S0021-9258(18)93931-1

Hirakawa, D. and D. H. Baker. 1986. Assessment of lysine bioavailability in an intact

protein mixture: comparison of chick growth and precision-fed rooster assays.

Nutrition Research, 6, 815-826.

https://doi.org/10.1016/S0271-5317(86)80164-6

Hugli, T.E., & Moore, S. (1972). Determination of the tryptophan content of proteins by

ion exchange chromatography of alkaline hydrolysates. Journal of Biological

Chemistry, 247, 2828-2834.

https://doi.org/10.1016/S0021-9258(19)45285-X

Ikumo, H., Takigawa, A., & Kameoka, K. (1983). Study on Tryptophane Determination

in Feedstuffs. The Japanese Journal of Zootechnical Science, 54, 788-793.

94

Jørgensen, H., Sauer, W.C., & Thacker,

P.A. (1984). Amino acid availabilities in

soybean meal, sunflower meal, fish meal and meat and bone meal fed to growing

pigs. Journal of Animal Science, 58, 926-934.

https://doi.org/10.2527/jas1984.584926x

Kerr, B. J., Easter, R. A., Baker, D. H., McKeith, F. K., Bechtel, P. J., & Giesting, D. W.

(1983). Response of growing-finishing pigs to lysine supplementation of reduced

crude protein diets. Journal of Animal Science, 57 (Suppl. 1): 252.

Kerr, B.J., Urriola, P.E., Jha, R., Thomson, J.E., Curry, S.M., & Shurson, G.C. (2019).

Amino acid composition and digestible amino acid content in animal protein byproduct meal fed to growing pigs. Journal of Animal Science, 97, 4540-4547.

https://doi:10.1093/jas/skz294

Knox, R., Kohler, G. O., Palter, R., & Walker, H. G. (1970). Determination of tryptophan

in feeds. Analytical biochemistry, 36, 136-143.

https://doi.org/10.1016/0003-2697(70)90341-6

Kosaka, K., & Yoshida, M. (1969). Application of the slope ratio technique to the

estimation of thiamine activity of thiamine analogues. Japanese Poultry Science, 6,

82-88.

https://doi.org/10.2141/jpsa.6.82

Lee, D.N., Cheng, Y.H., Wu, F.Y., Sato, H., Shinzato, I., Chen, S.P., & Yen, H.T. (2003).

Effect of dietary glutamine supplement on performance and intestinal morphology

of weaned pigs. Asian-Australasian Journal of Animal Science. 16, 1770-1776.

https://doi.org/10.5713/ajas.2003.1770

95

Lenis, N. P., van Diepen, H.T.M., Bikker, P., Jongbloed, A.W., & van der Meulen, J.

(1999). Effect of ratio between essential and nonessential amino acids in the diet on

utilization of nitrogen and amino acids by growing pigs. Journal of Animal Science,

77, 1777-1787.

https://doi.org/10.2527/1999.7771777x

Levesque, C. L., Moehn, S., Pencharz, P. B., & Ball, R. O. (2011). The metabolic

availability of threonine in common feedstuffs fed to adult sows is higher than

published ileal digestibility estimates. Journal of Nutrition, 141, 406-410.

https://doi.org/10.3945/jn.110.129759

Lewis, A. J., & Bayley, H. S. (1995). Amino acid bioavailability. In C. B. Ammerman, D.

H. Baker, & A. J. Lewis (Eds.), Bioavailability of nutrients for animals; amino acid,

minerals, and vitamins (pp. 35-65). New York, NY: Academic Press.

Liu, J.B., Yan, H.L., Cao, S.C., Liu, J., Li, Z.X., & Zhang, H.F. (2019). The response of

performance in grower and finisher pigs to diets formulated to different tryptophan

to lysine ratios. Livestock Science, 222, 25-30.

https://doi.org/10.1016/j.livsci.2019.01.016

Liu, T. Y., & Chang, Y. H. (1971). Hydrolysis of proteins with p-toluene-sulfonic acid:

determination of tryptophan. Journal of Biological Chemistry, 246, 2842-2848.

https://doi.org/10.1016/S0021-9258(18)62259-8

Lombard, J. H., & Lange, D. J. (1965). The chemical determination of tryptophan in foods

& mixed diets. Analytical Biochemistry, 10, 260-265.

https://doi.org/10.1016/0003-2697(65)90266-6

96

Lucas, B., & Sotelo, A. (1980). Effect of different alkalies, temperature, and hydrolysis

times on tryptophan determination of pure proteins and of foods. Analytical

biochemistry, 109, l92-197.

https://doi.org/10.1016/0003-2697(80)90028-7

Ma, W., Mao, P., Guo, L., & Qiao, S. (2020). Crystalline amino acids supplementation

improves the performance and carcass traits in late-finishing gilts fed low-protein

diets. Animal Science Journal, 91. https://doi.org/10.1111/asj.13317

Mathelson, N.A. (1974). The determination of tryptophan in purified proteins & in

feeding-stuffs. British Journal of Nutrition, 31, 393-400.

https://doi.org/10.1079/BJN19740047

Matsubara, H., & Sasaki, R. M. (1969). High recovery of tryptophan from acid

hydrolysates of proteins. Biochemical and Biophysical Research Communications,

35, 175-181.

https://doi.org/10.1016/0006-291X(69)90263-0

Meade, R. J. (1972). Biological availability of amino acids. Journal of Animal Science,

35, 713-723.

https://doi.org/10.2527/jas1972.353713x

Miller, E. L. (1967). Determination of the tryptophan content of feeding-stuffs with

particular reference to cereals. Journal of the Science of Food and Agriculture, 18,

381-386.

https://doi.org/10.1002/jsfa.2740180901

97

Ministry of Agriculture, Forestry and Fisheries in Japan. (2014). Restart of meat and bone

meal for feed in fish farming (The draft). Ministry of Agriculture, Forestry and

Fisheries. Tokyo, Japan; [cited August 2014]. (In Japanese) Available from URL:

http://www.maff.go.jp/j/council/sizai/siryou/38/pdf/ref_data.pdf

Morales, A., Buenabad, L., Castillo, G., Arce, N., Araiza, B.A., Htoo, J.K., & Cervantes,

M. (2015). Low-protein amino acid–supplemented diets for growing pigs: Effect on

expression of amino acid transporters, serum concentration, performance, and

carcass composition. Journal of Animal Science, 93. 2154-2164.

https://doi.org/10.2527/jas2014-8834

Mori, B., & Nakatsuji, H. (1977). Utilization in rats of

14C-L-lysine-labeled

casein

browned by amino-carbonyl reaction. Agricultural and Biological Chemistry, 41,

345-350.

https://doi.org/10.1271/bbb1961.41.345

NARO (National Agriculture and Food Research Organization). (2013). Japanese

Feeding Standard for Swine (2013). Tokyo, Japan: Japan Livestock Industry

Association. (In Japanese)

NRC (National Research Council). (1979). Nutrient Requirements of Domestic Animals,

No.2. Nutrient Requirements of Swine. 8th Revised ed. National Academy of Science,

Washington, D. C., U.S.A.

NRC (National Research Council). (1988). Nutrient Requirements of Domestic Animals,

Nutrient Requirements of Swine. 9th Revised ed. National Academy Press,

Washington, D. C., U.S.A.

98

NRC (National Research Council). (1998). Nutrient Requirements of Domestic Animals.

Nutrient Requirements of Swine. 10th Revised Edition. Washington, DC: The

National Academies press.

https://doi.org/10.17226/6016

NRC (National Research Council). (2012). Nutrient Requirements of Swine. 11th Revised

Edition. Washington, DC: The National Academies Press.

https://doi.org/10.17226/13298

Nemechek, J.E., Tokach, M.D., Dritz, S.S., Goodband, R.D., & DeRouchey, J.M. (2014).

Evaluation of standardized ileal digestible valine: lysine, total lysine: crude protein,

and replacing fish meal, meat and bone meal, and poultry byproduct meal with

crystalline amino acids on growth performance of nursery pigs from seven to twelve

kilograms. Journal of Animal Science, 92, 1548-1561.

https://doi:10.2527/jas/2013-6322

Netke, S. P., Scott, H. M., & Allee, C. L. (1969). Effect of excess amino acids on the

utilization of the first limiting amino acid in chick diets. The Journal of Nutrition.

99, 75-81.

https://doi.org/10.1093/jn/99.1.75

Newsholme, P., Procopio, J., Lima, M.M.R., Curi, T.C.P., & Curi, R. (2003). Glutamine

and glutamate-their central role in cell metabolism and function. Cell biochemistry

and Function, 21, 1-9.

https://doi.org/: 10.1002/cbf.1003

Oelshelegel, F. J., Schroeder, Jr. J. R., & Stahmann, M. A. (1970). A simple procedure for

basic hydrolysis of proteins and rapid determination of tryptophan using a starch

column. Analytical biochemistry, 34, 331-337.

https://doi.org/10.1016/0003-2697(70)90116-8

99

Ohta, F., Takagi, T., Sato, H., & Ignarro, L.J. (2007). Low-dose L-arginine administration

increases microperfusion of hindlimb muscle without affecting blood pressure in rats.

Proceedings of the National Academy of Sciences of the United States of America,

104, 1407-1411.

https://doi.org/10.1073/pnas.0610207104

Opieñska-Blauth, J., Charȩziński, M., & Berbeć, H. (1963). A new, rapid method of

determining tryptophan. Analytical biochemistry, 6, 69-76.

https://doi.org/10.1016/0003-2697(63)90009-5

Osada, T., Takada, R., & Shinzato, I. (2011). Potential reduction of green-house gas

emission from swine manure by using a low-protein diet supplemented with

synthetic amino acids. Animal feed science and technology, 167, 562-574.

https://doi.org/10.1016/j.anifeedsci.2011.04.079

Ousterhout. L. E., Grau, C. R. & Lundholm, B. D. (1959). Biological availability of amino

acids in fish meals and other protein sources. The Journal of Nutrition, 69, 65-73.

https://doi.org/10.1093/jn/69.1.65

Parsons, C.M. (1986). Determination of digestible and available amino acids in meat meal

using conventional and cecectomized cockerels or chick growth assays. British

Journal of Nutrition, 56, 227-240.

https://doi.0rg/10.1079/BJN19860102

Parsons, C.M., Castanon, F., & Han, Y. (1997). Protein and amino acid quality of meat

and bone meal. Poultry Science, 76, 361-368.

https://doi.org/10.1093/ps/76.2.361

100

Portejoie, S., Dourmad, J.Y., Martinez, J., & Lebreton, Y. (2004). Effect of lowering

dietary crude protein on nitrogen excretion, manure composition and ammonia

emission from fattening pigs. Livestock Production Science, 91, 45-55.

https://doi.org/10.1016/j.livprodsci.2004.06.013

Powell, S., Bidner, T. D., Payne, R. L, & Southern, L. L. (2011). Growth performance of

20- to 50kilogram pigs fed low-crude-protein diets supplemented with histidine,

cystine, glycine, glutamic acid, or arginine. Journal of Animal Science, 89, 36433650.

https://doi.org/10.2527/jas2010-3757

Ravindran, V., Hendriks, W.H., Camden, B.J., Thomas, D.V., Morel, P.C.H., & Butts, C.A.

(2002). Amino acid digestibility of meat and bone meals for broiler chickens.

Australian Journal of Agricultural Research, 53, 1257-1264.

https://doi:10.1071/AR02055

Rider, A., & Perez-Maldonado. (2004). Developing a slope ratio chick assay for amino

acid availability. Barton ACT, Australia: Rural Industries Research and

Development Corporation (established by Australian Government).

Rivera, L.P.H., Peo, E. R. Jr., Stahly, T. S., Moser, B. D., & Cunningham, P. J. (1976).

Availability of tryptophan in some feedstuffs for swine. Journal of Animal Science,

43, 432-441.

https://doi.org/10.2527/jas1976.432432x

Robel, E. J. & Frobish, L. T. (1977). Evaluation of the chick bioassay for estimating sulfur

amino acid, lysine, and tryptophan availability in soybean meal. Poultry Science,

56,1399-1404.

https://doi.org/10.3382/ps.0561399

101

Robel, E. J. (1967). Ion-exchange chromatography for the determination of tryptophan.

Analytical Biochemistry, 18, 406-413.

https://doi.org/10.1016/0003-2697(67)90098-X

Rogers, Q.A., & Harper, A.E. (1965). Amino acid diets and maximal growth in the rat.

The Journal of Nutrition, 87, 267-273.

https://doi.org/10.1093/jn/87.3.267

Russell, L. E., Easter, R. A., Gomez-Rojas, V., Cromwell, G. L., & Stahly, T. S. (1986).

A note on the supplementation of low-protein, maize-soybean meal diets with lysine,

tryptophan, threonine, and methionine for growing pigs. Animal Science, 82, 291295.

https://doi.org/10.1017/S000335610001802X.

Russell, L. E., Giesting, D. W., & Easter, R. A. (1983). Methionine, isoleucine, valine,

and glutamic acid additions to a low protein diet for growing pigs. Journal of Animal

Science, 57 (Suppl. 1): 267.

Russell, L.E., Cromwell, G.L., & Stahly, T.S. (1983). Tryptophan, threonine, isoleucine

and methionine supplementation of a 12% protein, Lysine-supplemented cornsoybean meal diet for growing pigs. Journal of Animal Science, 56,1115-1123.

https://doi.org/10.2527/jas1983.5651115x

Russell, L.E., Kerr, B.R., & Easter, R.A. (1987). Limiting amino acids in an 11% crude

protein corn-soybean meal diet for growing pigs. Journal of Animal Science, 65,

1266-1272.

https://doi.org/10.2527/jas1987.6551266x

SAS. (1982). SAS User's Guide: Basics. SAS Institute Inc., Cary, NC.

102

Sauer, W.C., Cichon, R., & Misir, R. (1982). Amino acid availability and protein quality

of canola and rapeseed meal for pigs and rats. Journal of Animal Science, 54, 292301.

https://doi.org/10.2527/jas1982.542292x

Sharda, D.P., Mahan, D.C., & Wilson, R.F. (1976). Limiting amino acids in low-protein

corn-soybean meal diets for growing-finishing swine. Journal of Animal Science, 42,

1175-1181.

https://doi.org/10.2527/jas1976.4251175x

Shirley, R.B., & Parsons, C.M. (2000). Effect of Pressure Processing on Amino Acid

Digestibility of Meat and Bone Meal for Poultry. Poultry Science, 79, 1775-1781.

https://doi.org/10.1093/ps/79.12.1775

Slump, P., & Schreuder, H. A. W. (1969). Determination of tryptophan in foods.

Analytical biochemistry, 27, 182-186.

https://doi.org/10.1016/0003-2697(69)90231-0

Smith, R. E. (1968). Assessment of the availability of amino acids in fish meal, soybean

meal and feather meal by chick growth assay. Poultry Science, 47, 1624-1630.

https://doi.org/10.3382/ps.0471624

Smith, R. E., & Scott, H. M. (1965). Measurement of the Amino Acid Content of Fish

Meal Proteins by Chick Growth Assay: 2. The Effects of Amino Acid Imbalances

Upon Estimations of Amino Acid Availability by Chick Growth Assay. Poultry

Science, 44,408-413.

https://doi.org/10.3382/ps.0440408

103

Sobotka, W., & Drażbo, A. (2020). Environmental impacts of diets containing different

levels of crude protein and limiting amino acids fed to pigs in a phase feeding system.

Journal of Elementology, 25, 645-655.

https//doi.org/10.5601/jelem.2019.24.4.1926

Spies, J. R. (1967). Determination of tryptophan in proteins. Analytical Chemistry, 39,

1412-1416.

https://doi.org/10.1021/ac60256a004

Spies, J. R. (1968). Determination of tryptophan in corn (Zea mays). Journal of

Agricultural and Food Chemistry, 16, 514-516.

https://doi.org/10.1021/jf60157a014

Spies, J. R., & Chambers, D. C. (1948). Chemical Determination of Tryptophan.

Analytical Chemistry, 20, 30-39.

https://doi.org/10.1021/ac60013a006

Spies, J. R., & Chambers, D. C. (1949). Chemical Determination of Tryptophan in

Proteins. Analytical Chemistry, 21, 1249-1266.

https://doi.org/10.1021/ac60034a033

Standard Nutrient Requirements of Pigs in Japan. (1975). Edited by National Research

Council of Agriculture, Forestry and Fishery. Tokyo, Japan. (In Japanese)

Standard Tables of Feed Compositions in Japan. (1980). Edited by National Research

Council of Agriculture, Forestry and Fishery, Tokyo, Japan. (In Japanese)

Standard Tables of Feed Compositions in Japan. (2009). Edited by National Agriculture

and Food Research Organization (NARO), Tokyo Japan: Japan Livestock Industry

Association. (In Japanese).

104

Stein, H. H., Seve, B., Fuller, M. F., Moughan, P. J., & de Lange, C. F. M. (2007). Amino

acid bioavailability and digestibility in pig feed ingredients: Terminology and

application. Journal of Animal Science, 85, 172-180.

https://doi.org/10.2527/jas.2005-742

Stein, H.H., Kim, S.W., Nielsen, T.T., & Easter, R.A. (2001). Standardized ileal protein

and amino acid digestibility by growing pigs and sows.

Journal of Animal Science,

79, 2113-2122.

https://doi.org/10.2527/2001.7982113x

Stockland, W. L., Meade, R. J., & Nordstrom, J. W. (1971). Lysine, methionine, and

tryptophan supplementation of a corn-meat and bone meal diet for growing swine.

Journal of Animal Science, 32, 262-267.

https://doi.org/10.2527/jas1971.322262x

Sugahara, M., Baker, D. H., & Scott, H. M. (1969). Effect of different patterns of excess

amino acids on performance of chicks fed amino acid-deficient diets. The Journal of

Nutrition, 97, 29-32.

https://doi.org/10.1093/jn/97.1.29

Suto, R., Osada, T., Oginio, A., & Hanari, T. (2016). Reduction potential of greenhouse

gas emission from swine wastewater purification treatment by using a low-protein

diet supplemented with synthetic amino acids. Nihon Chikusan Gakkaiho, 87 (4),

373-380. (In Japanese)

Taguchi, G. (1958).

"Principles of Experimental Design", Vols. I, II, 2nd Ed., Maruzen,

Tokyo, Japan. (In Japanese)

105

Takahashi, S., & Furuya, S. (1967). Suitability of a rat as a pilot animal in pig nutrition

research. Similarity between the two animals in growth and digestibility. Research

Report of Livestock Institute of Agriculture, Forestry and Fisheries, 14, 63-67.

Thomas, O. P. (1980). Amino acid availability. Arkansas Nutrition Conference, p101.

Toledo, J.B., Furlan, A.C., Pozza, P.C., Carraro, J., Moresco, G., Ferreira, S.L., & Gallego,

A.G. (2014). Reduction of the crude protein content of diets supplemented with

essential amino acids for piglets weighing 15 to 30 kilograms. Revista Brasileira de

Zootecnia, 43, 301-309.

https://doi.org/10.1590/S1516-35982014000600004

Wang, T. C., & Fuller, M. F. (1989). The optimum dietary amino acid pat‐ tern for growing

pigs. British Journal of Nutrition, 62, 77-89.

https:// doi.org/10.1079/bjn19890009

Wang, T. C., & Fuller, M. F. (1990). The effect of the plane of nutrition on the optimum

dietary amino acid pattern for growing pigs. Animal Production, 50, 155-164.

https://doi.org/10.1017/s000335610 0004554

Wang, T.C., & Fuller, M.F. (1989). The optimum dietary amino acid pattern for growing

pigs. British Journal of Nutrition, 62, 77-89.

https://doi.org/10.1079/BJN/19890009

Wang, T.C., & Fuller, M.F. (1990). The effect of the plane of nutrition on the optimum

dietary amino acid pattern for growing pigs. Animal Science, 50, 155-164.

https://doi./org/10.1017/S0003356100004554

106

Wang, W., Wu, Z. ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る