リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「植物抵抗性誘導剤によるアブラナ科植物黒斑細菌病の抑制機構に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

植物抵抗性誘導剤によるアブラナ科植物黒斑細菌病の抑制機構に関する研究

坂田, 七海 筑波大学 DOI:10.15068/0002005702

2022.11.28

概要

近年、Pseudomonas cannabina pv. alisalensis (Pcal)によるアブラナ科植物黒斑細菌病 が問題となっている。アブラナ科植物黒斑細菌病をはじめとする細菌病に対する現 在の防除法としては、銅剤や抗生物質などの殺菌剤が広く使用されている。しかし、これらの薬剤に対する Pcal 耐性菌の出現が既に報告されており、殺菌剤に代わる持 続可能な防除法の開発が喫緊の課題となっている。そこで、持続可能な防除法とし て植物抵抗性誘導剤が注目されている。植物抵抗性誘導剤は、その複雑な作用機構 から病原菌がこれを打破することは難しく、耐性菌の出現は、これまでに報告され ていない。その中で、2020 年よりキャベツとハクサイの黒斑細菌病に対する防除薬 剤として使用されているアシベンゾラル S-メチル (ASM)に着目した。ASM は、サリ チル酸の類似化合物として、植物の抵抗性を増強させることを目的として開発が行 われた薬剤である。植物の抵抗性を活性化する機能を持ち、ウイルス、糸状菌、細 菌など様々な病原体に対して防除効果を示す。しかし、ASM による細菌病抑制機構 は明らかにされていなかった。そこで、本研究では、ASM によるアブラナ科植物黒 斑細菌病の抑制機構の解明を目的として研究を遂行した。

そのために、まず、第二章では、長野県で単離された強病原力株 Pcal KB211 の感染機構の解明に取り組み、Pcal は病原力因子の一つであるコロナチンという毒素を生産することにより、気孔の再開口を誘導して、植物内への侵入を可能にしていることを明らかにした。さらに、植物内へ侵入後には、サリチル酸を介した防御応答を抑制することにより、Pcal は植物内での増殖を可能にしていることを明らかにした。

続いて、第三章では、ASM によるキャベツ黒斑細菌病の抑制機構の解明に取り組み、ASM は気孔防御を活性化することで Pcal の植物内への侵入を阻害し、キャベツ黒斑細菌病の抑制に寄与していることを明らかにした。この結果は、ASM の細菌病防除における新規な作用機構の発見となった。

第四章では、ASM によるダイコン黒斑細菌病の抑制機構の解明に取り組み、ダイコンにおいても、ASM による気孔防御の活性化および気孔閉鎖の誘導が全身的に引き起こされることを明らかにした。また、ASM による気孔閉鎖はペルオキシダーゼ経路を介した活性酸素種生産により引き起こされることを示した。加えて、ASM による気孔閉鎖は、第二章で明らかになった Pcal の病原力因子であるコロナチンにより打破される可能性は低いことを示した。

本研究により、明らかにされていなかった ASM による細菌病の抑制機構の一つが、気孔防御の活性化による細菌の植物内への侵入阻害であることを明らかにした。こ の結果は、ASM の新規な作用機構の発見に繋がった。さらに、気孔の開閉をめぐる 植物と病原細菌の攻防が感染の成否をめぐる重要な局面となっていることが示唆さ れた。植物病原細菌の多くは気孔を侵入場所としており、さらに、いくつかの植物 病原糸状菌も気孔を侵入場所としているため、気孔防御の活性化は、様々な病害に 対して防除効果を発揮することが予測される。植物抵抗性誘導剤の新規な指標とし て「気孔閉鎖」を発見したことは、今後の有効で持続可能な防除法に大いに繋がる 知見となった。

この論文で使われている画像

参考文献

Alkooranee, J. T., Yin, Y., Aledan, T. R., Jiang, Y., Lu, G., Wu, J., and Li, M. 2015. Systemic resistance to powdery mildew in Brassica napus (AACC) and Raphanus alboglabra (RRCC) by Trichoderma harzianum TH12. PLoS One 10:e0142177

Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., and Handelsman, J. 2010. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8:251–259

Araki, Y., and Kurahashi, Y. 1999. Enhancement of phytoalexin synthesis during rice blast infection of leaves by pre-treatment with carpropamid. J. Pestic. Sci. 24:369–374

Arnaud, D., and Hwang, I. 2015. A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Mol. Plant. 8:566–581

Beattie, G. A. 2011. Water relations in the interaction of foliar bacterial pathogens with plants. Annu. Rev. Phytopathol. 49:533–555

Bender, C. L., Alarcón-Chaidez, F., and Gross, D. C. 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63:266–292

Brooks, D. M., Bender, C. L., and Kunkel, B. N. 2005. The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol. Plant Pathol. 6:629–639

Brooks, D. M., Hernández-Guzmán, G., Kloek, A. P., Alarcón-Chaidez, F., Sreedharan, A., Rangaswamy, V., Peñaloza-Vázquez, A., Bender, C. L., and Kunkel, B. N. 2004. Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000. Mol. Plant. Microbe. Interact. 17:162–174

Bull, C. T., Manceau, C., Lydon, J., Kong, H., Vinatzer, B. A., and Fischer-Le Saux, M. 2010. Pseudomonas cannabina pv. cannabina pv. nov., and Pseudomonas cannabina pv. alisalensis (Cintas Koike and Bull, 2000) comb. nov., are members of the emended species Pseudomonas cannabina (ex Šutič & Dowson 1959) Gardan, Shafik, Belouin, Brosch, Grimont & Grimont 1999. Syst. Appl. Microbiol. 33:105–115

Chen, Y. C., Holmes, E. C., Rajniak, J., Kim, J. G., Tang, S., Fischer, C. R., Mudgett, M. B., and Sattely, E. S. 2018. N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 115:E4920– E4929

Cheng, W., Munkvold, K. R., Gao, H., Mathieu, J., Schwizer, S., Wang, S., Yan, Y.-B., Wang, J., Martin, G. B., and Chai, J. 2011. Structural analysis of Pseudomonas syringae AvrPtoB bound to host BAK1 reveals two similar kinase-interacting domains in a type III Effector. Cell Host Microbe. 10:616–626

Cintas, N. A., Koike, S. T., and Bull, C. T. 2002. A new pathovar, Pseudomonas syringae pv. alisalensis pv. nov., proposed for the causal agent of bacterial blight of broccoli and broccoli raab. Plant Dis. 86:992–998

Cools, H. J., and Ishii, H. 2002. Pre-treatment of cucumber plants with acibenzolar-S-methyl systemically primes a phenylalanine ammonia lyase gene (PAL1) for enhanced expression upon attack with a pathogenic fungus. Physiol. Mol. Plant Pathol. 61:273– 280

Cui, J., Bahrami, A. K., Pringle, E. G., Hernandez-Guzman, G., Bender, C. L., Pierce, N. E., and Ausubel, F. M. 2005. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc. Natl. Acad. Sci. U. S. A. 102:1791–1796

Deepak, S. A., Ishii, H., and Park, P. 2006. Acibenzolar-S-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack. Physiol. Mol. Plant Pathol. 69:52–61

Dickinson, S. 1969. Studies in the physiology of obligate parasitism. J. Phytopathol. 66:38– 49

Elizabeth, S. V., and Bender, C. L. 2007. The phytotoxin coronatine from Pseudomonas syringae pv. tomato DC3000 functions as a virulence factor and influences defence pathways in edible brassicas. Mol. Plant Pathol. 8:83–92

Eschen-Lippold, L., Jiang, X., Elmore, J. M., Mackey, D., Shan, L., Coaker, G., Scheel, D., and Lee, J. 2016. Bacterial AvrRpt2-like cysteine proteases block activation of the Arabidopsis mitogen-activated protein kinases, MPK4 and MPK11. Plant Physiol. 171:2223–2238

Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F., and Grimont, P. A. 1999. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int. J. Syst. Bacteriol. 49:469–478

Gimenez-Ibanez, S., Hann, D. R., Ntoukakis, V., Petutschnig, E., Lipka, V., and Rathjen, J. P. 2009. AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr. Biol. 19:423–429

Göhre, V., Spallek, T., Häweker, H., Mersmann, S., Mentzel, T., Boller, T., de Torres, M., Mansfield, J. W., and Robatzek, S. 2008. Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr. Biol. 18:1824– 1832

Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., Oostendorp, M., Staub, T., Ward, E., Kessmann, H., and Ryals, J. 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643

Grant, S. R., Fisher, E. J., Chang, J. H., Mole, B. M., and Dangl, J. L. 2006. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu. Rev. Microbiol. 60:425–449

Gudesblat, G. E., Torres, P. S., and Vojnov, A. A. 2009. Stomata and pathogens: Warfare at the gates. Plant Signal. Behav. 4:1114–1116

Hahlbrock, K., and Scheel, D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:347–369

Hartmann, M., Zeier, T., Bernsdorff, F., Reichel-Deland, V., Kim, D., Hohmann, M., Scholten, N., Schuck, S., Bräutigam, A., Hölzel, T., Ganter, C., and Zeier, J. 2018. Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 173:456-469.e16

Hurley, B., Lee, D., Mott, A., Wilton, M., Liu, J., Liu, Y. C., Angers, S., Coaker, G., Guttman, D. S., and Desveaux, D. 2014. The Pseudomonas syringae type III effector HopF2 suppresses Arabidopsis stomatal immunity. PLoS One 9:e114921

Ichihara, A., Shiraishi, K., Sato, H., Sakamura, S., Nishiyama, K., Sakai, R., Furusaki, A., and Matsumoto, T. 1977. The structure of coronatine. J. Am. Chem. Soc. 99:636–637

Ishiga, T., Ishiga, Y., Betsuyaku, S., and Nomura, N. 2018. AlgU contributes to the virulence of Pseudomonas syringae pv. tomato DC3000 by regulating production of the phytotoxin coronatine. J. Gen. Plant Pathol. 84:189–201

Ishiga, Y., and Ichinose, Y. 2016. Pseudomonas syringae pv. tomato OxyR is required for virulence in tomato and Arabidopsis. Mol. Plant Microbe. Interact. 29:119–131

Ishiga, Y., Ishiga, T., Wangdi, T., Mysore, K. S., and Uppalapati, S. R. 2012. NTRC and chloroplast-generated reactive oxygen species regulate Pseudomonas syringae pv. tomato disease development in tomato and Arabidopsis. Mol. Plant Microbe. Interact. 25:294–306

Ishii, H., Kato, T., Yamanaka, M., Cools, H., and Sugiyama, T. 2002. Induction activity of systemic disease resistance and metabolism of acibenzolar-S-methyl in cucumber (abstract in Japanese). 27th Ann. Meet. Pesticide Sci. Soc. Jpn. 79

Ishiyama, Y., Yamagishi, N., Ogiso, H., Fujinaga, M., and Takikawa, Y. 2013. Bacterial brown spot on Avena storigosa Schereb. caused by Pseudomonas syringae pv. alisalensis. J. Gen. Plant Pathol. 79:155–157

Iwai, T., Seo, S., Mitsuhara, I., and Ohashi, Y. 2007. Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants. Plant Cell Physiol. 48:915–924

Iwata, M., Suzuki, Y., and Watanabe, T. 1980. Effect of probenazole on the activities of enzymes related to the resistant reaction in rice plant. Ann. Phytopath. Soc. Japan 46:297–306

Jiang, S., Yao, J., Ma, K. W., Zhou, H., Song, J., He, S. Y., and Ma, W. 2013. Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors. PLoS Pathog. 9:e1003715

Jones, J. D. G., and Dangl, J. L. 2006. The plant immune system. Nature 444:323–329

Joshi-Saha, A., Valon, C., and Leung, J. 2011. A brand new START: abscisic acid perception and transduction in the guard cell. Sci. Signal 4:re4

Kanda, Y. 2013. Investigation of the freely available easy-to-use software ‘EZR’for medical statistics. Bone Marrow Transplant 48:452–458

Keane, P. J., Kerr, A., and PB New. 1970. Crown gall of stone fruit II. Identification and nomenclature of agrobacterium isolates. Aust. J. Biol. Sci. 23:585–596

Khokon, M. A. R., Okuma, E., and Hossain, M. A. 2011. Involvement of extracellular oxidative burst in salicylic acid‐induced stomatal closure in Arabidopsis. Plant cell Environ. 34:434–443

King, E. O., Ward, M. K., and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44:301–307

Kloek, A. P., Verbsky, M. L., Sharma, S. B., Schoelz, J. E., Vogel, J., Klessig, D. F., and Kunkel, B. N. 2001. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J. 26:509–522

Kouzai, Y., Noutoshi, Y., Inoue, K., Shimizu, M., Onda, Y., and Mochida, K. 2018. Benzothiadiazole, a plant defense inducer, negatively regulates sheath blight resistance in Brachypodium distachyon. Sci. Rep. 8:1–7

Kubota, M., and Abiko, K. 2000. Induced resistance in hypocotyl of cucumber by infection with Colletotrichum lagenarium in leaves. J. Gen. Plant Pathol. 66:128–131

Kunz, W., Schurter, R., and Maetzke, T. 1997. The chemistry of benzothiadiazole plant activators. Pestic. Sci. 50:275–282

Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10:71–82

Le Roux, C., Huet, G., Jauneau, A., Camborde, L., Trémousaygue, D., Kraut, A., Zhou, B., Levaillant, M., Adachi, H., Yoshioka, H., Raffaele, S., Berthomé, R., Couté, Y., Parker, J. E., and Deslandes, L. 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161:1074–1088

Lee, S., Ishiga, Y., Clermont, K., and Mysore, K. S. 2013. Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by nonhost bacterial pathogens. PeerJ. 1:e34

Li, L., Kim, P., Yu, L., Cai, G., Chen, S., Alfano, J. R., and Zhou, J.-M. 2016. Activation- dependent destruction of a co-receptor by a Pseudomonas syringae effector dampens plant immunity. Cell Host Microbe. 20:504–514

Lindemann, J., Arny, D. C., and Upper, C. D. 1984. Use of apparent infection threshold population of Pseudomonas syringae to predict incidence and severity of brown spot of bean. Phytopathology 74:1334–1339

Lindow, S. E., and Brandl, M. T. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69:1875–1883

Malamy, J., and Klessig, D. F. 1992. Salicylic acid and plant disease resistance. Plant J. 2:643–654

McDonald, K. L., and Cahill, D. M. 1999. Evidence for a transmissible factor that causes rapid stomatal closure in soybean at sites adjacent to and remote from hypersensitive cell death induced by Phytophthora sojae. Physiol. Mol. Plant Pathol. 55:197–203

McKown, K. H., and Bergmann, D. C. 2020. Stomatal development in the grasses: lessons from models and crops (and crop models). New Phytol. 227:1636–1648

Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S. Y. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

Mino, Y., Matsushita, Y., and Sakai, R. 1987. Effect of coronatine on stomatal opening in leaves of broadbean and Italian ryegrass. Ann. Phytopath. Soc. Japan 53:53–55

Mori, I. C., Pinontoan, R., Kawano, T., and Muto, S. 2001. Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol. 42:1383–1388

Mudgett, M. B. 2005. New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu. Rev. Plant Biol. 56:509–531

Mur, L. A. J., Kenton, P., and Lloyd, A. J. 2008. The hypersensitive response; the centenary is upon us but how much do we know? J. Exp. Bot. 59:501–520

Nakashita, H., Yoshioka, K., Yasuda, M., Nitta, T., Arai, Y., Yoshida, S., and Yamaguchi, I. 2002. Probenazole induces systemic acquired resistance in tobacco through salicylic acid accumulation. Physiol. Mol. Plant Pathol. 61:197–203

Návarová, H., Bernsdorff, F., Döring, A. C., and Zeier, J. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–5141

Nobori, T., Wang, Y., Wu, J., Stolze, S. C., Tsuda, Y., Finkemeier, I., Nakagami, H., and Tsuda, K. 2020. Multidimensional gene regulatory landscape of a bacterial pathogen in plants. Nat. Plants 6:883–896

Noutoshi, Y., Okazaki, M., Kida, T., Nishina, Y., Morishita, Y., Ogawa, T., Suzuki, H., Shibata, D., Jikumaru, Y., Hanada, A., Kamiya, Y., and Shirasu, K. 2012. Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis. Plant Cell 24:3795–3804

Oostendorp, M., Kunz, W., Dietrich, B., and Staub, T. 2001. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 107:19–28

Palmer, D. A., and Bender, C. L. 1993. Effects of environmental and nutritional factors on production of the polyketide phytotoxin coronatine by Pseudomonas syringae pv. glycinea. Appl. Environ. Microbiol. 59:1619–1626

Parry, R. J., Mhaskar, S. V., Lin, M. T., Walker, A. E., and Mafoti, R. 1994. Investigations of the biosynthesis of the phytotoxin coronatine. Can. J. Chem. 72:86–99

Peñaloza-Vázquez Alejandro, and Bender Carol L. 1998. Characterization of CorR, a transcriptional activator which is required for biosynthesis of the phytotoxin coronatine. J. Bacteriol. 180:6252–6259

Roy, D., Panchal, S., Rosa, B. A., and Melotto, M. 2013. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344. Phytopathology 103:326–332

Saito, H., Yamashita, Y., Sakata, N., Ishiga, T., Shiraishi, N., Usuki, G., Nguyen, V. T., Yamamura, E., and Ishiga, Y. 2021. Covering soybean leaves with cellulose nanofiber changes leaf surface hydrophobicity and confers resistance against Phakopsora pachyrhizi. Front. Plant Sci. 12:726565

Sakai, R., Nishiyama, K., Ichihara, A., Shiraishi, K., and Sakamura, S. 1979. Studies on the mechanism of physiological activity of coronatine. Effect of coronatine on cell wall extensibility and expansion of potato tuber tissue. Ann. Phytopath. Soc. Japan 45:645– 653

Sakata, N., Aoyagi, T., Ishiga, T., and Ishiga, Y. 2021a. Acibenzolar-S-methyl efficacy against bacterial brown stripe caused by Acidovorax avenae subsp. avenae in creeping bentgrass. J. Gen. Plant Pathol. 87:387–393

Sakata, N., Ishiga, T., and Ishiga, Y. 2021b. Pseudmonas cannabina pv. alisalensis TrpA is required for virulence in multiple host plants. Front. Microbiol. 12:659734

Sakata, N., Ishiga, T., Saito, H., Nguyen, V. T., and Ishiga, Y. 2019. Transposon mutagenesis reveals Pseudomonas cannabina pv. alisalensis optimizes its virulence factors for pathogenicity on different hosts. PeerJ. 7:e7698

Sambrook, J., Fritsch, E., and Maniatis, T. 1989. Molecular cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A.

Sarris, P. F., Trantas, E. A., Baltrus, D. A., Bull, C. T., Wechter, W. P., Yan, S., Ververidis, F., Almeida, N. F., Jones, C. D., Dangl, J. L., Panopoulos, N. J., Vinatzer, B. A., and Goumas, D. E. 2013. Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both monocots and dicots. PLoS One 8:e59366

Sawinski, K., Mersmann, S., Robatzek, S., and Böhmer, M. 2013. Guarding the green: pathways to stomatal immunity. Mol. Plant Microbe. Interact. 26:626–632

Schäfer, A., Tauch, A., Jäger, W., and Kalinowski, J. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

Sekizawa, Y., Haga, M, Hirabayashi, E., Takeuchi, N., and Takino, Y. 1987. Dynamic behavior of superoxide generation in rice leaf tissue infected with blast fungus and its regulation by some substances. Agric. Biol. Chem. 51:763–770

Shimizu, R., Taguchi, F., Marutani, M., Mukaihara, T., Inagaki, Y., Toyoda, K., Shiraishi, T., and Ichinose, Y. 2003. The ΔfliD mutant of Pseudomonas syringae pv. tabaci, which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non-host tomato cells. Mol. Genet. Genomics 269:21–30

Shimura, M., Mase, S., Iwata, M., Suzuki, A., Watanabe, T., Sekizawa, Y., Sasaki, T., Furihata, K., Seto, H., and Otake, N. 1983. Anti-conidial germination factors induced in the presence of probenazole in infected host leaves. III. Structural elucidation of substances A and C. Agric. Biol. Chem. 47:1983–1989

Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Metraux, J. P., and Raskin, I. 1995.

Salicylic acid in rice (biosynthesis, conjugation, and possible role). Plant Physiol. 108:633–639

Sreedharan, A., Penaloza-Vazquez, A., Kunkel, B. N., and Bender, C. L. 2006. CorR regulates multiple components of virulence in Pseudomonas syringae pv. tomato DC3000. Mol. Plant Microbe. Interact. 19:768–779

Sugano, S., Jiang, C.-J., Miyazawa, S.-I., Masumoto, C., Yazawa, K., Hayashi, N., Shimono, M., Nakayama, A., Miyao, M., and Takatsuji, H. 2010. Role of OsNPR1 in rice defense program as revealed by genome-wide expression analysis. Plant Mol. Biol. 74:549–562

Takahashi, F., Ochiai, M., Ikeda, K., and Takikawa, Y. 2013a. Streptomycin and copper resistance in Pseudomonas cannabina pv. alisalensis (abstract in Japanese). Jpn. J. Phytopathol. 35.

Takahashi, F., Ogiso, H., Fujinaga, M., Ishiyama, Y., Inoue, Y., Shirakawa, T., and Takikawa, Y. 2013b. First report of bacterial blight of crucifers caused by Pseudomonas cannabina pv. alisalensis in Japan. J. Gen. Plant Pathol. 79:260–269

Takahashi, F., and Shinozaki, K. 2019. Long-distance signaling in plant stress response. Curr. Opin. Plant Biol. 47:106–111

Takikawa, Y., and Takahashi, F. 2014. Bacterial leaf spot and blight of crucifer plants (Brassicaceae) caused by Pseudomonas syringae pv. maculicola and P. cannabina pv. alisalensis. J. Gen. Plant Pathol. 80:466–474

Thomas, C. M., and Nielsen, K. M. 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3:711–721

Toum, L., Torres, P. S., Gallego, S. M., Benavídes, M. P., Vojnov, A. A., and Gudesblat, G. E. 2016. Coronatine inhibits stomatal closure through guard cell-specific inhibition of NADPH oxidase-dependent ROS production. Front. Plant Sci. 7:1851

Tripathi, D., Jiang, Y. L., and Kumar, D. 2010. SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants. FEBS Lett. 584:3458–3463

Ullrich, M., and Bender, C. L. 1994. The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases. J. Bacteriol. 24:7574–7586

Uppalapati, S. R., Ishiga, Y., Wangdi, T., Kunkel, B. N., Anand, A., Mysore, K. S., and Bender, C. L. 2007. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol. Plant Microbe. Interact. 20:955–965

Wang, D., Amornsiripanitch, N., and Dong, X. 2006. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog. 2:e123

Wang, K., Kang, L., Anand, A., Lazarovits, G., and Mysore, K. S. 2007. Monitoring in planta bacterial infection at both cellular and whole-plant levels using the green fluorescent protein variant GFPuv. New Phytol. 174:212–223

Wang, Y., Li, J., Hou, S., Wang, X., Li, Y., Ren, D., Chen, S., Tang, X., and Zhou, J.-M. 2010. A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen- activated protein kinase kinases. Plant Cell 22:2033–2044

Winn, M., Rowlinson, M., Wang, F., Bering, L., Francis, D., Levy, C., and Micklefield, J. 2021. Discovery, characterization and engineering of ligases for amide synthesis. Nature 593:391–398

Wu, S., Lu, D., Kabbage, M., Wei, H.-L., Swingle, B., Records, A. R., Dickman, M., He, P., and Shan, L. 2011. Bacterial effector HopF2 suppresses arabidopsis innate immunity at the plasma membrane. Mol. Plant Microbe. Interact. 24:585–593

Xiang, T., Zong, N., Zhang, J., Chen, J., Chen, M., and Zhou, J. M. 2011. BAK1 is not a target of the Pseudomonas syringae effector AvrPto. Mol. Plant Microbe. Interact. 24:100–107

Xiao, Y., Heu, S., Yi, J., Lu, Y., and Hutcheson, S. W. 1994. Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J. Bacteriol. 176:1025–1036

Xin, X. F., Nomura, K., Aung, K., Velásquez, A. C., Yao, J., Boutrot, F., Chang, J. H., Zipfel, C., and He, S. Y. 2016. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539:524–529

Yang, L., Teixeira, P. J. P. L., Biswas, S., Finkel, O. M., He, Y., Salas-Gonzalez, I., English, M. E., Epple, P., Mieczkowski, P., and Dangl, J. L. 2017. Pseudomonas syringae type III effector HopBB1 promotes host transcriptional repressor degradation to regulate phytohormone responses and virulence. Cell Host Microbe. 21:156–168

Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., Asami, T., Maruyama-Nakashita, A., Kudo, T., Shinozaki, K., Yoshida, S., and Nakashita, H. 2008. Antagonistic interaction between systemic acquired resistance and the abscisic acid– mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692

Yoshioka, K., Nakashita, H., Klessig, D. F., and Yamaguchi, I. 2001. Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J. 25:149– 157

Zeier, J. 2013. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ. 36:2085–2103

Zhang, D., Tian, C., Yin, K., Wang, W., and Qiu, J. L. 2019. Postinvasive bacterial resistance conferred by open stomata in rice. Mol. Plant. Microbe. Interact. 32:255–266

Zhang, Z., Wu, Y., Gao, M., Zhang, J., Kong, Q., Liu, Y., Ba, H., Zhou, J., and Zhang, Y. 2012. Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe. 11:253–263

Zheng, X. Y., Spivey, N. W., Zeng, W., Liu, P.-P., Fu, Z. Q., Klessig, D. F., He, S. Y., and Dong, X. 2012. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe. 11:587–596

Zhou, J., and Chai, J. 2008. Plant pathogenic bacterial type III effectors subdue host responses. Curr. Opin. Microbiol. 11:179–185

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る