リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「スギの年輪構造および炭素蓄積量への気候の影響に関する年輪生態学的研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

スギの年輪構造および炭素蓄積量への気候の影響に関する年輪生態学的研究

平野,  優 信州大学

2021.11.01

概要

樹木の樹幹部は多くの炭素を貯蔵しており,長期的な炭素貯蔵源や木質資源として重要な役割を担っている。しかし,今後予想される気候変動によって樹幹部の成長は大きな影響を受ける可能性がある。特に,我が国の主要樹種であるスギ(Cryptomeria japonica)への影響を解明することは大気中の二酸化炭素濃度の抑制および木材生産の観点において重要である。

 本研究では,気候要素の変動が光合成や呼吸などの変動を介してスギの肥大成長および林分のバイオマス増加量に与える影響を評価することを目的とし,気候要素,肥大成長,炭素収支の3つについて相互の関係を明らかにした。

 第1章では,年輪生態学的手法を用いた常緑針葉樹の年輪要素と気候の関係に関する既往の研究の成果と問題点を整理した上で,本研究において取り組む課題を明確にした。

 第2章では,岐阜大学高山試験地常緑針葉樹林に生育するスギ造林木を対象とし,形成層活動の季節変動を明らかにした。次に,供試木33個体からコア試料を採取し,軟X線デンシトメトリーによって年輪幅,年輪内平均密度,早材幅,晩材幅,早材密度,晩材密度を測定し,年輪幅と年輪内平均密度の積から年輪重量成長量を算出した。それぞれの年輪要素について生育地を代表する時系列であるクロノロジーを構築し,年輪要素間の変動の関係を明らかにした。クロノロジーと気候要素の日平均値の移動平均値との関係を単相関分析によって明らかにした。形成層の季節変動の観察の結果,4月下旬~5月上旬に形成層細胞の分裂開始,8月下旬~9月中旬に形成層活動の停止が認められた。早晩材の移行は個体や年によって異なり,6月下旬~7月下旬の間に生じていた。年輪要素間の関係において,早材幅は年輪幅および年輪重量成長量と有意な正の相関を示した。気候応答解析において,早材幅は当年3~4月の気温と有意な正の相関を示した。これらの結果から,早材幅は年輪幅と年輪重量成長量の変動を規定する重要な要素であることが示された。形成層活動開始前の春の前半の気温上昇が早材幅を増加させ,その結果として年輪幅と年輪重量成長量が増加することが示唆された。

 第3章では,早材幅および晩材幅と年輪幅から推測した林分の幹バイオマス量の関係を明らかにした。早材幅および幹バイオマス増加量と気候要素の関係解析を行った。次にCO2フラックス観測値をもとに検証・最適化された生態系モデルを用いて算出した総一次生産量(GPP),生態系呼吸量(RE),純生態系生産量(NEP)と早材幅および幹バイオマス増加量との関係解析を行った。さらにGPP,RE,NEPと気候要素との関係を明らかにした。早材幅と幹バイオマス増加量の間では有意な正の相関が認められた。前年の春~夏,当年の冬~春の気温と早材幅の間に有意な正の相関が認められた。同様の期間のGPP,REと早材幅の間にも有意な正の相関が認められた。気温とGPP,REの間について,冬~春にそれぞれ有意な正の相関が認められた。これらの関係から,前年の成長期の気温が葉の生産量を変動させ翌年の光合成量に影響を与える可能性があり,さらに当年の成長期前の気温が光合成量に影響を与え貯蔵光合成産物が変動することにより,早材幅が変動することが示唆された。これらの要因により早材幅が変動した結果,幹バイオマス量も変動することが示唆された。

 第4章では,本研究の総括を行った。

 本研究において,年輪を早材と晩材に分別し,年輪重量成長量および林分における幹バイオマス増加量の変動が主に早材幅により規定されていることを明らかにした。また,早材幅および炭素収支の両方に影響を及ぼす気候要素を明らかにした事で,前年の春の気温が葉の生産量に影響し翌年の光合成量に影響を与えることで早材幅が変動する可能性,前年の夏の気温が翌年への貯蔵産物量に影響し翌年の早材幅が変動する可能性,および当年の冬から春の気温が光合成量に影響を与えた結果,貯蔵された光合成産物量が増加し早材幅が変動する可能性を示した。従来の年輪生態学的研究や炭素収支の研究に加えて,新たに肥大成長と炭素収支の関係解析を行ったことにより,気候要素,炭素収支,肥大成長の3つの変動を関連づけることができた。それにより,今までに明らかになっていなかった気候要素と年輪幅との相関関係の理解について,気候要素が光合成や呼吸を介して肥大成長,さらに幹バイオマス量に与える影響を示すことができた。

参考文献

Alexander, M.R., Rollinson, C. R., Babst, F.:Relative influences of multiple sources of uncertainty on cumulative and incremental tree-ring-derived aboveground biomass estimates. Trees 32, 265–276 (2018).

Arzac, A., Babushkina, A. E., Fonti, P., Slobodchikowa, V., Sviderskaya, V. I., Vaganov, E. A.:Evidences of wider latewood in Pinus sylvestris from a frost- steppe of southern Siberia. Dendrochronologia 49, 1-8 (2018).

Babst, F., Bouriaud, O., Papale, D., Gielen, B., Janssens, I. A., Nikinmaa, E., Ibrom, A., Wu, J., Bernhofer, C., Köstner, B., Grünwald, T., Seufert, G., Ciais, P., Frank, D.:Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytol. 201, 1289-1303 (2014).

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, U. K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S.:FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82 (11), 2415-2434 (2001).

Baldocchi, D. D.:Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future. Glob. Change Biol. 9, 479-492 (2003).

Beck, W., Sanders, G. M. T., Pofahl, U.:CLIMTREG:Detecting temporal changes in climate-growth reactions - A computer program using intra-annual daily and yearly moving time intervals of variable width. Dendrochronologia 31,232-241 (2013).

Begum, S., Nakaba, S., Yamagishi, Y., Yamane, K., Islam, M. A., Oribe, Y., Ko, J. H., Funada, R. : A rapid in temperature induces latewood formation in artificially reactivated cambium of conifer stem. Ann. Botany 110, 875-885 (2012).

Belokopytova, L. V., Babushkina, E. A., Zhirnova, D. F., Panyushkina, I. P., Vaganov, E. A.:Climatic response of conifer radial growth in forest-steppes of south Siberia: Comparison of three approaches. Contemp. Probl. Ecol. 11 (4), 366-376 (2018).

Bonan, G B.:A Land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. National Center for Atmospheric Research, Boulder, CO. NCAR Technical note. (1996).

Bunn, A.G.:A dendrochronology program library in R (dplR). Dendrochronologia 26, 115-124 (2008).

Cabra-Alemán, C., Pompa-García, M., Acosta-Herández, A. C.,Zúñiga-Vásquez, J., Camarero, J. J. : Earlywood and latewood of Picea chihuahuana show contrasting sensitivity to seasonal climate. Forests 8(5), 173, DOY: 10.3390/f8050173 (2017).

Carrer, M., Castagneri, D., Prendin, A. L., Petit, G., von Arx, G.:Retrospective analysis of wood anatomical traits reveals a recent extension in tree cambial activity in two high-elevation conifers. Front. Plant Sci. 8, 737, DOY: 10.3389/fpls.2017.00737 (2017).

Chapin, F. S., Matson, P. A., Vitousek, P. M.:植物の炭素収支. “生態系生態学第2版”, 加藤知道 監訳, 森北出版, 東京, 2018, pp.184-213.

Churakova (Sidorova), O. V., Eugster, W., Zielis, S., Cherubini, P., Etzold, S., Saurer, M., Siegwolf, R., Buchmann, N. : Increasing relevance of spring temperatures for Norway spruce trees in Davos, Switzerland, after the 1950s. Trees 28, 183-191 (2014).

千葉幸弘:森林における炭素貯蔵効果,日本LCA 学会 7 (1), 17-22 (2011). Cook, E. R.:A time series analysis approach to tree ring standardization. Ph.D. dissertation, University of Arizona, Tucson, AZ, 1985.

Cook, E. R., Cole, J.:On predicting the response of forests in eastern north America to future climatic change. Clim. Change 19, 271-282 (1991).

Cook, E. R., Johnson, A. H.:Climate change and forest decline: a review of the red spruce case. Water Air Soil Pollut. 48, 127-140 (1989).

Cook, E. R., Kairiukstis, L. A.:Methods of Dendrochronology. Kluwer academic publishers, Dordrecht, Netherland, 1990, pp 97-153.

Cook, E. R., Peters, K.:The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45-53 (1981).

D’Arrigo, R. D., Schuster, W. S. F., Lawrence, D. M., Cook, E. R., Wiljanen, M., Thetford R. D.:Climate-growth relationships of eastern hemlock and chestnut oak from Black Rock Forest in the highlands of southeastern New York. Tree- Ring Res. 57 (2), 183-190 (2001).

Denne, M. P., Dodd, R. S.:The environmental control of xylem differentiation. “Xylem cell development”, Barnett, J. R. ed., Castle House Publication Ltd., Tunbridge Wells, Kent,1981, pp.236-255.

Deslauriers, A., Morin, M., Begin, Y.:Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can. J. For. Res. 33, 190–200 (2003).

Douglass, A.E. : Notes on the technique of tree-ring analysis, IV: Practical instruments. Tree-Ring Bull. 10(1-2), 2-8 (1943).

Dye, A., Plotkin, A. B., Bishop, D., Pederson, N., Poulter, B., Hessl, A. : Comparing tree-ring and permanent plot estimates of aboveground net primary production in three eastern U.S. forests. Ecosphere 7 (9), DOI :10.1002/ecs2.1454 (2016).

Fritts, H.C.:Computer programs for tree-ring research. Tree-Ring Bull. 25(3-4), 2-7 (1963).

Fritts, H. C., Smith, D. G., Cardis, J. W., Budelsky, C. A.:Tree-ring characteristics along a vegetation gradient in Northern Arizona. Ecology 46 (4), 393-401 (1965).

Fritts, H. C.:Dendroclimatology and Dendroecology, Quat. Res. 1, 419-449 (1971).

Fritts, H. C.:Dendrochronology and Dendroclimatology. “Tree rings and climate”, The Blackburn Press, Caldwell, New Jersey, 1976, pp. 1-52.

藤原 健:軟 X 線デンシトメトリによるスギ樹幹の年間重量成長量の推定.木材学会誌 53 (2), 99-103 (2007).

Fukatsu, E., Nakada, R.:The timing of latewood formation determines the genetic variation of wood density in Larix kaempferi. Trees 32, 1233-1245 (2018).

深沢和三:樹木の年輪が持つ情報(解析技術と林業への応用),深沢和三編,北海道大学農学部, 札幌, 1990, pp. 26-30.

船田 良:樹木の伸長成長と肥大成長,“木質の構造” ,日本木材学会編,文永堂出版,東京, 2011, pp.109-154.

George, S. S. : An overview of tree-ring width records across the Northern Hemisphere. Quat. Sci. Rev. 95, 132-150 (2014).

Graumlich, L. J., Brubaker, L. B., Grier, C. C.:Long-term trends in forest net primary productivity: Cascade mountains, Washington. Ecology 70 (2), 405-410 (1989).

Hansen, J., Beck, E. : Seasonal changes in the utilization and turnover of assimilation products in 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees 8, 172-182 (1994).

Hansen, J., Vogg, G., Beck, E.:Assimilation, allocation and utilization of carbon by 3-year-old Scots pine (Pinus sylvestris L.) trees during winter and early spring. Trees 11, 83–90 (1996).

Henderson, J. P., Grissino-Mayer, H. D.:Climate-tree growth relationships of longleaf pine (Pinus palustris Mill.) in the Southeastern Coastal Plain, USA. Dendrochronologia 27, 31-43 (2009).

Hoch, G., Richter, A., Körner, C.:Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 26, 1067-1081 (2003).

Holmes, R. L. : Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69-78 (1983).

Holmes, R. L., Adams, R. K., Fritts, H. C.:Tree-ring chronologies of western north America: California, eastern Oregon and northern Great Basin with procedures used in the chronology development work including users manuals for computer programs COFECHA and ARSTAN., Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, 1986.

Holmes, R. L.:Dendrochronology program library version, Laboratory of Tree- ring research, University of Arizona, Tucson, 1994. https://www.ltrr.arizona.edu/software.html 2018年12月7日参照.

Hosoda, K., Iehara, T.:Aboveground biomass equations for individual trees of Cryptomeria japonica, Chamaecyparis obtusa and Larix kaempferi in Japan. J. For. Res. 15, 299-306 (2010).

Hughes, M. K., Olchev, A., Bunn, A. G., Berner, L. T., Losleben, M., Novenko, E.:Different climate responses of spruce and pine growth in Northern European Russia. Dendrochronologia 56, 125601 (2019). https://doi.org/10.1016/j.dendro.2019.05.005

今川一志,石田茂雄:樹木の木部形成に関する研究Ⅰ.カラマツにおけるその季節的経過.北海道大学農学部演習林研究報告. 27(2), 373-396 (1970).

IPCC (2014) AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability, https://www.ipcc.ch/report/ar5/wg2/

石川達芳,畔柳 鎮:スギ肥培木の材質に関する研究(第2報)スギ肥培木の年輪構造.岡山大学農学部学術報告 21(1), 17-25 (1963).

Jäggi, M., Saurer, M., Fuhrer, J., Siegwolf, R.:The relationship between the stable carbon isotope composition of needle bulk material, starch, and tree rings in Picea abies. Oecologia 131, 325–332 (2002).

Kaennel, M., Schweingruber, F. H.:dendroecology. “Multilingual Glossary of Dendrochronology”, Paul Haupt Publishers Berne, Stuttgart, Vienna, 1995, pp. 95.

Kagawa, A., Sugimoto, A., Maximov, C. T. : 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ. 29, 1571-1584 (2006).

加藤輝隆,加須屋実,鏡森定信,河野昭一,狐塚 寛:スギ年輪幅に及ぼす大気汚染の影響評価(Ⅰ). 大気汚染学会誌 23(6),311-319 (1988).

Kirilenko, A., Sedjo, R. A.:Climate change impacts on forestry. PNAS 104 (50), 19697-19702 (2007).

Koide, D., Ito, A.:Temporal changes in the relationship between tree-ring growth and net primary production in northern Japan: a novel approach to the estimation of seasonal photosynthete allocation to the stem. Ecol. Res. 33, 1275-1287 (2018).

Kojo, Y.:A dendrochronology study of Cryptomeria japonica in Japan, Tree-Ring Bull. 47, 1-21 (1987).

Kobayashi, H., Inoue, S., Gyokusen, K.:Spatial and temporal variations in the photosynthesis-nitrogen relationship in a Japanese cedar (Cryptomeria japonica D. Don) canopy. Photosynthetica 48(2), 249-256 (2010).

小林紀之 編著:森林吸収源,カーボン・オフセットへの取り組み,林業改良普及協会,東京,2010,pp. 15-72.

久保隆文:針葉樹の年輪構造とその形成に関する基礎的研究.東京農工大学演習林報告 21, 1-70 (1985).

久保隆文:木材の巨視的・肉眼的構造,“木質の構造”, 日本木材学会編,文永堂出版,東京, 2011, pp. 19-28.

Kumar, J., Hoffman, F. M., Hargrove, W. W., Collier, N.:Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements. Earth Syst. Sci. Data Discuss., DOY : https://doi.org/10.5194/essd-2016-36 (2016).

黒田慶子,清野嘉之:ヒノキ樹幹肥大成長の傷付け法による測定 バンド式デンドロメータとの比較. 日本林学会誌 78(2), 183-189 (1996).

Lee M.-S., Lee J.-S., Koizumi H.:Temporal variation in CO2 efflux from soil and snow surfaces in a Japanese cedar (Cryptomeria japonica) plantation, central

Japan. Ecol. Res. 23, 777-785(2008).

松井哲哉,田中信行,八木橋勉,小南裕志,津山幾太郎,高橋潔:温暖化にともなうブナ林の適域の変化予測と影響評価,地球環境 14 (2), 165-174(2009). 松本陽介,重永英年,三浦 覚,長倉淳子,垰田 宏:温暖化に対するスギ人工林の脆弱性マップ,地球環境 11(1),43-48 (2006).

Meko, D. M., Baisan, C. H.:Pilot study of latewood-width of conifers as an indicator of variability of summer rainfall in the North American monsoon region. Int. J. Climatol. 21, 697-708 (2001).

Michelot, A., Simard, S., Rathgeber, C., Dufrêne, E., Damesin, C.:Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non- structural carbohydrate dynamics. Tree Physiol. 32, 1033–1043 (2012).

Miina, J.:Dependence of tree-ring, earlywood and latewood indices of Scots pine and Norway spruce on climatic factors in eastern Finland. Ecological Modeling 132, 259-273 (2000).

光田 靖,細田和男,家原敏郎:人工林長期継続調査データを利用した林分成長モデルのパラメータ推定.統計数理 61(2), 307-322(2013).

桃井尊央,大林宏也,栃木紀郎,小林 純,塩倉高義:東京都奥多摩地域に生育する樹木の気候応答に関する樹木年輪年代学的解析(第2報)7樹種の樹木年輪情報と気候情報との関係. 木材学会誌 60 (1), 1-8 (2014).

Nagai, S., Saitoh, T. M., Kobayashi, H., Ishihara, M., Suzuki, R., Motohka, T., Nasahara K. N., Muraoka, H.:In situ examination of the relationship between various vegetation indices and canopy phenology in an evergreen coniferous forest, Japan. Int. J. Remote Sens. 33 (19), 6202–6214 (2012).

西岡秀三:地球温暖化の日本への影響 要約.“地球温暖化と日本.自然・人への影響予測”,原沢英夫・西岡秀三編,古今書院,東京,2003,pp. 1-5.

Nishizono,T.,Zushi,K.,Hiroshima,T.,Toyama,K.,Kitahara,F.,Terada, F., Takagi, M., Saito, S.:Latitudinal variation in radial growth phenology of Cryptomeria japonica D. Don trees in Japan. Forestry 91, 206-216 (2018).

Oberhuber, W., Stumböck, M., Kofler, W.:Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees 13, 19-27 (1998).

Oberhuber, W.:Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiol. 24, 291–301 (2004).

Oberhuber, W., Swidrak, I., Pirkebner, D., Gruber, A.:Temporal dynamics of nonstructural carbohydrates and xylem growth in Pinus sylvestris exposed to drought. Can. J. For. Res. 41, 1590–1597 (2011).

大熊幹章:CO2 問題から考える木材の生産と利用.“地球環境保全と木材利用”,全国林業改良普及双書,東京,2003,pp. 47-90.

太田貞明:スギ・ヒノキ樹幹内における未成熟材の力学特性に関する基礎的研究.九州大学農学部演習林報告 45, 1-80 (1972).

Ohtsuka, T., Saigusa, N., Koizumi, H. : On linking multiyear biometric measurements of tree growth with eddy covariance-based net ecosystem production. Glob. Change Biol. 15, 1015-1024 (2009).

大塚俊之:森林生態系の純一次生産量の測定手法.低温科学 67, 119-127 (2009).大塚俊之:山岳地域における森林生態系の炭素フラックスの時間変動とその要因.地学雑誌 122 (4), 615-627 (2013).

Ohyama,M.,Yonenobu,H.,Choi,J. N.,Park W.K.,Hanzawa M.,Suzuki M.:Reconstruction of northeast Asia spring temperature 1784-1990,Clim. Past. 9, 261-266 (2013).

Oribe, Y., Kubo, T.:Effect of heat on cambial reactivation during winter dormancy in evergreen and deciduous conifers. Tree Physiol. 17, 81-87 (1997).

Pederson, N., Cook, E. R., Jacoby, G. C., Peteet, D. M., Griffin, K. L.:The influence of winter temperature on the annual radial growth of six northern range margin tree species. Dendrochronologia 22, 7-29 (2004).

Peterson, D. W., Peterson, D. L., Ettl, G. J:Growth responses of subalpine fir to climatic variability the Pacific Northwest. Can. J. For. Res. 32, 1503-1517 (2002).

R Development Core Team R : a language and environment for statistical computing. Version 3.3.3, R Foundation for Statistical Computing, https://www.r-project.org/Vienna Australia.2018年12月7日参照.

Richardson, A. D., Williams, M., Hollinger, D.Y., Moore, D. J. P., Dail, D. B., Davidson, E. A., Scott, N. A., Evans, R. S., Hughes, H., Lee, J. T., Rodrigues, C., Savage, K.:Estimating parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint constraints. Oecologia 164, 25–40 (2010).

Richardson, A. D., Carbone, M. S., Keenan, T. F., Czimczik, C. I., Hollinger, D. Y., Murakami, P., Schaberg, P. G., Xu, X.:Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol. 197, 850–861(2013).

林野庁:第1部第1章 森林の整備・安全.“令和2年度 森林・林業白書”,林野庁,2021,pp.65-116.

林野庁 HP:スギ・ヒノキに関するデータ, http://www.rinya.maff.go.jp/j/sin_riyou/kafun/data.html 2019年8月16日参照.

Rocha, A. V., Goulden, M. L., Dunn, A. L., Wofsy, S. C.:On linking interannual tree ring variability with observations of whole-forest CO2 flux. Glob. Change Biol. 12, 1378-1389 (2006).

Rossi, S., Anfodillo, T., Menardi, R.:Trephor: A new tool for sampling microcores from tree stems. IAWA Journal 27 (1), 89–97 (2006).

Rossi, S., Deslauriers, A., Anfodillo, T., Carraro, V. : Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1-12 (2007).

Rossi, S., Morin, H., Deslauriers, A., Plourde, P.:Predicting xylem phenology in black spruce under climate warming. Glob. Change Biol. 17, 614-625(2011).

Rossi, S., Anfodillo, T., Čufar, K., Cuny, H. E, Deslauriers, A., Fonti, P., Frank, D., Gričar, J., Gruber, A., King, G. K., Krause, C., Morin, H., Oberhuber, W., Prislan, P., Rathgeber, C. B. K.:A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere. Ann. Bot. 112, 1911-1920 (2013).

Rossi, S., Anfodillo, T., Čufar, K., Cuny, H., Deslauriers, A., Fonti, P., Frank, D., Gričar, J., Gruber, A., Huang, J.-G., Jyske, T., Kašpar, J., King, G., Krause, C., Liang, E., Mäkinen, H., Morin, H., Nöjd, P., Oberhuber, W., Prislan, P., Pathgeber, B. K. R., Saracino, A., Swidrak, I., Treml, V.:Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Change Biol. 22, 3804-3813 (2016).

Saitoh, T. M., Tamagawa, I., Muraoka, H., Lee, N. Y. M., Yashiro, Y., Koizumi, H.:Carbon dioxide exchange in a cool-temperate evergreen coniferous forest over complex topography in Japan during two years with contrasting climates. J. Plant Res. 123, 473–483(2010).

Saitoh, T. M., Nagai, S., Noda, H. M., Muraoka, H., Nasahara, K. N. : Examination of the extinction coefficient in the Beer – Lambert law for an accurate estimation of the forest canopy leaf area index. Forest Sci. Technol. 8, 67–76 (2012).

Saitoh, T. M., Nagai, S., Yoshino, J., Kondo, H., Tamagawa, I., Muraoka, H.: Effects of canopy phenology on deciduous overstory and evergreen understory carbon budgets in a cool-temperate forest ecosystem under ongoing climate change. Ecol. Res. 30, 267–277(2015).

Sanogo, K., Gebrekirstosb, A., Bayala, J., Villamor, G. B., Kalinganire, A., Dodiomon, S.:Potential of dendrochronology in assessing carbon sequestration rates of Vitellaria paradoxa in southern Mali, West Africa. Dendrochronologia 40, 26-35 (2016).

澤内寧子・野堀嘉裕・野田正人:ヒノキアスナロの重量成長と気候情報の関係.J. Jpn. For. Soc. 89 (4), 292-296 (2007).

Schaberg, P. G., Shane, J. B., Donnelly, J. R., Strimbeck, G. R.: Photosynthetic capacity of red spruce during winter. Tree Physiol. 18, 271-276 (1998).

Seo, J. W., Eckstein, D., Schmitt, U.:The pinning method: From pinning to data preparation. Dendrochronologia 25, 79–86 (2007).

Shi, J., Cook, E. R., Lu, H., Li, J., Wright, W. E., Li, S.:Tree-ring based winter temperature reconstruction for the lower reaches of the Yangtze River in southeast China. Clim. Res. 41, 169-175 (2010).

庄建治朗,高橋 浩,中村俊夫:琵琶湖南岸地域のヒノキ年輪データによる気候変動再現の試み.名古屋大加速器質量分析計業績報告書 12, 193-204 (2001). 鈴木力英,加藤知道:陸域生態学研究における現地観測.“地球環境変動の生態学”, 日本生態学会編,共立出版,2014,pp. 20-40.

武市伸幸:中国・四国地方における気候要素と年輪幅の相関関係.東北地理 35, 192-197(1983).

Tanaka, K., Yoneda, R., Ninomiya, I.:Seasonal changes in photosynthesis and starch content in Japanese fir (Abies firma Sieb. et Zucc.) saplings under different levels of irradiance. Trees 32, 429-439 (2018).

田中信行,中園悦子,津山幾太郎,松井哲哉:温暖化の日本産針葉樹10種の潜在生育域への影響予測.地球環境 14 (2), 153-164(2009).

Tanja, S., Berninger, F., Vesala, T., Markkanen, T., Hari, P., Mäkelä, A., Ilvesniemi, H., Hänninen, H., Nikinmaa, E., Huttula, T., Laurila, T., Aurela, M., Grelle, A., Lindroth, A., Arneth, A., Shibistova, O., Lloyd, J.:Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Glob. Change Biol. 9, 1410-1426 (2003).

Teets, A., Fraver, S., Hollinger, D. Y., Weiskittel, A. R., Seymour, R. S., Richardson, A. D.:Linking annual tree growth with eddy-flux measures of net ecosystem productivity across twenty years of observation in a mixed conifer forest. Agr. Forest Meteopol. 249, 479-487 (2018).

Tei, S., Sugimoto, A., Kotani, A., Ohta, T., Morozumi, T., Saito, S., Hashiguchi, S., Maximov, T.:Strong and stable relationships between tree-ring parameters and forest-level carbon fluxes in a Siberian larch forest. Polar Sci. 21, 146-157 (2019).

飛田博順,北尾光俊,齊藤 哲,壁谷大介,川崎達郎,矢崎健一,小松雅史,梶本卓也:スギ樹冠葉の光合成パラメータの樹幹内・季節間変動. 関東森林研究 65(1), 103-106 (2014).

Toriyama, J., Hashimoto, S., Osono, Y., Yamashita, N., Tsurita, T., Shimizu, T., Saitoh, T. M., Sawano, S., Lehtonen, A., Ishizuka, S. : Estimating spatial variation in the effects of climate change on the net primary production of Japanese cedar plantations based on modeled carbon dynamics. PLoS ONE 16 (2), e0247165, DOI:https://doi.org/10.1371/journal.pone.0247165 (2021).

Ueyama, M., Kai, A., Ichii, K., Hamotani, K., Kosugi, Y., Monji, N.:The sensitivity of carbon sequestration to harvesting and climate conditions in a temperate cypress forest: Observations and modeling. Ecol. Model. 222, 3216-3225 (2011).

Welp, L. R., Randerson, J. T., Liu, H. P.:The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agr. Forest Meteorol. 147, 172-185 (2007).

Wieser, G.:Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiol. 17, 473-477 (1997).

Wigley, T. M. L., Briffa, K. R., Jones, P. D.:On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteor. 23 (2), 201-213 (1984).

山下香菜,岡田直紀,加茂皓一:ワイヤデンドロメータによる樹木肥大成長の測定.バンドデンドロメータおよび刺針法との比較.木材学会誌 52 (1), 8-18 (2006).

山下 悟,岡部貴美子,佐藤 保:森林生態系における生物多様性と炭素蓄積.森林総合研究所研究報告 12,1-21 (2013).

山本将功, 中島敦司, 奥田吾記, 奥田尚孝, 櫛田達矢:年間を通じた温暖化条件下で育成したスギの生長と生物季節現象. 環境工学研究論文集 41, 645-650 (2004).

Yashiro, Y., Lee, N. M., Ohtsuka, T., Shizu, Y., Saitoh, T. M., Koizumi, H.: Biometric-based estimation of net ecosystem production in a mature Japanese cedar (Cryptomeria japonica) plantation beneath a flux tower. J. Plant Res. 123, 463-472 (2010).

安江 恒,船田 良,野田真人,深沢和三:北海道大学天塩地方演習林に生育するアカエゾマツの年輪気候学的解析,北大学農学部演習林研究報告 51(2), 243-266 (1994).

Yasue, K., Funada, R., Fukazawa, K., Ohtani, J.:Tree-ring width and maximum density of Picea glehnii as indicators of climatic changes in northern Hokkaido, Japan. Can. J. For. Res. 27, 1962-1970 (1997).

Yasue, K., Funada, R., Kobayashi, O., Ohtani, J. : The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors. Trees 14, 223-229 (2000).

Yonenobu, H., Eckstein, D.: Reconstruction of early spring temperature for central Japan from the tree-ring widths of Hinoki cypress and its verification by other proxy records. Geophys. Res. Lett. 33 (10), L10701, DOI : 10.1029/2006GL026170 (2006).

Yoshimura, K., Hayashi, S., Itoh, T., Shimaji, K.:Studies on the improvement of the pinning method for marking xylem growth I. : Minute examination of pin marks in Taeda Pine and other species. Wood research : bulletin of the Wood Research Institute Kyoto University 67, 1-16 (1981).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る