リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「<総説>樹木地上部における炭素蓄積量の年変動推定」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

<総説>樹木地上部における炭素蓄積量の年変動推定

田邊, 智子 京都大学

2023.11.21

概要

樹木は、光合成により取り込んだ炭素を材料にして新しい葉や木部を生産する。生産に使われた炭素は枯死して分解されるまで樹体内に蓄積されるため、地球の炭素循環を考えるうえで長期的に炭素を留めておく要素の一つとして重要である。さらに樹木生産量は年により増減することが分かっている。そこで、生産量の年変動に影響する要因を明らかにすることは、全球的な炭素循環と気候との関係を予測する際の基礎的な情報として欠かせない。伐倒を伴わずに生産量の年変動を類推する手段として、高さ1.3mの幹の年輪幅を指標とした評価が広く行われてきた。しかしいくつかの先行研究から、樹木の年生産は樹形が相似形を保つように起こるわけではないことが分かり始めている。つまり、ある一つの高さの年輪幅を指標とした従来の手法では、樹木生産量の年変動を正しく評価できていない可能性がある。本稿は樹木地上部の生産量を対象に、年変動を評価するための手法に着目する。これまで用いられてきた指標について整理したうえで、それらの課題と今後の展望について解説する。

参考文献

1)

Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data Discuss. 2022, 1–159, 2022.

2)

Gower, S. T. et al. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol. Appl. 11,

1395–1411, 2001.

3)

Osawa, A., Abaimov, A. P. & Zyryanova, O. A. Reconstructing structural development of even-aged larch stands in

Siberia. Can. J. For. Res. 30, 580–588, 2000.

4)

Sovanchandara, H., Murakami, D., Fujii, S., Aizawa, S. & Osawa, A. Correction of stand variable estimates obtained

by the stand reconstruction technique: can stump information improve the predictions? Sib. Lesn. Zurnal/Siberian J.

For. Sci. 25–45, 2018.

5)

Niazai, A. et al. Application of a u-w method for the detection of boreal forest response to environmental changes in

Canada. J. For. Res. 26, 1–11, 2021.

6)

Cook, E. R. & Kairiukstis, L. A. Methods of dendrochronology: applications in the environmental sciences. Methods

of dendrochronology: applications in the environmental sciences, Springer Science & Business Media, 1990.

7)

Kaennel, M. & Schweingruber, F. H. Multilingual glossary of dendrochronology, Paul Haupt Publishers, Berne,

Switzerland, 1995.

8)

Mäkinen, H. & Colin, F. Predicting branch angle and branch diameter of Scots pine from usual tree measurements and

stand structural information. Can. J. For. Res. 28, 1686–1696, 1998.

9)

Vennetier, M. et al. Climate change impact on tree architectural development and leaf area. Clim. Chang. realities,

impacts over ice cap, sea Lev. risks. Rijeka, Croat. InTech 103–126, 2013.

10) Pensa, M. & Jalkanen, R. Variation in needle longevity of Pinus sylvestris L. is related to needle-fascicle production

rate. Tree Physiol. 25, 1265–1271, 2005.

11) Lindholm, M., Ogurtsov, M., Aalto, T., Jalkanen, R. & Salminen, H. A summer temperature proxy from height

increment of Scots pine since 1561 at the northern timberline in Fennoscandia. Holocene 19, 1131–1138, 2009.

12) Guan, B. T., Wright, W. E., Chung, C.-H. & Chang, S.-T. ENSO and PDO strongly influence Taiwan spruce height

32

growth. For. Ecol. Manage. 267, 50–57, 2012.

13) Takahashi, K. Shoot growth chronology of alpine dwarf pine (Pinus pumila) in relation to shoot size and climatic

conditions: A reassessment. Polar Biosci. 123–132, 2006.

14) Sano, Y., Matano, T. & Ujihara, A. Growth of Pinus pumila and climate fluctuation in Japan. Nature 266, 159–161,

1977.

15) Tanabe, T., Epron, D. & Dannoura, M. A new approach to identify the climatic drivers of leaf production reconstructed

from the past yearly variation in annual shoot lengths in an evergreen conifer (Picea mariana). Trees 1–12, 2021.

16) Poorter, L., Bongers, L. & Bongers, F. Architecture of 54 moist-forest tree species: Traits, trade-offs, and functional

groups. Ecology 87, 1289–1301, 2006.

17) Bontemps, J.-D., Hervé, J.-C. & Dhôte, J.-F. Dominant radial and height growth reveal comparable historical

variations for common beech in north-eastern France. For. Ecol. Manage. 259, 1455–1463, 2010.

18) Iida, Y. et al. Wood density explains architectural differentiation across 145 co-occurring tropical tree species. Funct.

Ecol. 26, 274–282, 2012.

19) Assmann, E. The principles of forest yield study: studies in the organic production, structure, increment and yield of

forest stands. Oxford, 1970.

20) Mäkinen, H., Nöjd, P. & Isomäki, A. Radial, height and volume increment variation in Picea abies (L.) Karst. stands

with varying thinning intensities. Scand. J. For. Res. 17, 304–316, 2002.

21) Yasuda, Y., Utsumi, Y., Tashiro, N., Koga, S. & Fukuda, K. Cessation of annual apical growth and partial death of

cambium in stem of Abies sachalinensis under intensive shading. J. Plant Res. 131, 261–269, 2018.

22) Bouriaud, O., Bréda, N., Dupouey, J.-L. & Granier, A. Is ring width a reliable proxy for stem-biomass increment? A

case study in European beech. Can. J. For. Res. 35, 2920–2933, 2005.

23) Mäkinen, H. The suitability of height and radial increment variation in Pinus sylvestris (L.) for expressing

environmental signals. For. Ecol. Manage. 112, 191–197, 1998.

24) Rubio-Cuadrado, Á., Bravo-Oviedo, A., Mutke, S. & Del Río, M. Climate effects on growth differ according to height

and diameter along the stem in Pinus pinaster Ait. iForest-Biogeosciences For. 11, 237, 2018.

25) Takahashi, K. & Aoki, K. Effects of climatic conditions on annual shoot length and tree-ring width of alpine dwarf

pine Pinus pumila in central Japan. J. Plant Res. 128, 553–562, 2015.

26) Mäkinen, H. Effect of stand density on the branch development of silver birch (Betula pendula Roth) in central

Finland. Trees 16, 346–353, 2002.

27) Mäkinen, H., Jyske, T. & Nöjd, P. Dynamics of diameter and height increment of Norway spruce and Scots pine in

southern Finland. Ann. For. Sci. 75, 28, 2018.

28) Pensa, M., Sepp, M. & Jalkanen, R. Connections between climatic variables and the growth and needle dynamics of

Scots pine (Pinus sylvestris L.) in Estonia and Lapland. Int. J. Biometeorol. 50, 205–214, 2006.

29) Levanič, T. et al. The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps.

Trees 23, 169, 2009.

30) Fritts, H. C. Tree rings and climate. Academic Press, 1976.

31) Cook, E. R. & Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change.

The Holocene 7, 361–370, 1997.

32) Gower, S. T., Kucharik, C. J. & Norman, J. M. Direct and indirect estimation of leaf area index, f APAR, and net primary

production of terrestrial ecosystems. Remote Sens. Environ. 70, 29–51, 1999.

33) Ge, R. et al. Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A

perspective from long‐term data assimilation. Glob. Chang. Biol. 25, 938–953, 2019.

34) Clark, D. A. et al. Measuring net primary production in forests: concepts and field methods. Ecol. Appl. 11, 356–370,

2001.

35) Weiss, M., Baret, F., Smith, G. J., Jonckheere, I. & Coppin, P. Review of methods for in situ leaf area index (LAI)

determination Part II. Estimation of LAI, errors and sampling. Agric. For. Meteorol. 121, 37–53, 2004.

36) Zheng, G. & Moskal, L. M. Retrieving leaf area index (LAI) using remote sensing: theories, methods and sensors.

33

Sensors 9, 2719–2745, 2009.

37) Neumann, H. H., Den Hartog, G. & Shaw, R. H. Leaf area measurements based on hemispheric photographs and leaflitter collection in a deciduous forest during autumn leaf-fall. Agric. For. Meteorol. 45, 325–345, 1989.

38) Kucharik, C. J., Norman, J. M. & Gower, S. T. Measurements of branch area and adjusting leaf area index indirect

measurements. Agric. For. Meteorol. 91, 69–88, 1998.

39) Leblanc, S. G. & Fournier, R. A. Hemispherical photography simulations with an architectural model to assess retrieval

of leaf area index. Agric. For. Meteorol. 194, 64–76, 2014.

40) Gower, S. T. & Norman, J. M. Rapid estimation of leaf area index in conifer and broad-leaf plantations. Ecology 72,

1896–1900, 1991.

41) Gonsamo, A., Walter, J.-M. N. & Pellikka, P. Sampling gap fraction and size for estimating leaf area and clumping

indices from hemispherical photographs. Can. J. For. Res. 40, 1588–1603, 2010.

42) Kurkela, T. & Jalkanen, R. Revealing past needle retention in Pinus spp. Scand. J. For. Res. 5, 481–485, 1990.

43) Jalkanen, R., Aalto, T. & Kurkela, T. Development of needle retention in Scots pine (Pinus sylvestris) in 1957–1991 in

northern and southern Finland. Trees 10, 125–133, 1995.

44) Sander, C. & Eckstein, D. Reconstruction of the foliation of Picea abies by means of needle traces. Scand. J. For. Res.

9, 311–315, 1994.

45) Sander, C. & Eckstein, D. Foliation of spruce in the Giant Mts. and its coherence with growth and climate over the last

100 years. Ann. For. Sci. 58, 155–164, 2001.

著者プロフィール

田邊 智子(Tomoko Tanabe)

<略歴> 2016 年信州大学農学部森林科学科卒業/2022 年京都大学地球環境学

舎資源循環学廊博士後期課程修了(地球環境学博士)/同年同大学農学研究科

ポスドク/同年森林総合研究所関西支所ポスドク/2023 年京都大学生存圏研

究所ミッション専攻研究員、現在に至る。<研究テーマと抱負> 木部の伸長

量と肥大量に着目した樹木生産量と気候の関係解明 <趣味> のんびりお茶

や珈琲をいれること。

34

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る