リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Japanese Encephalitis DNA Vaccines with Epitope Modification Reduce the Induction of Cross-Reactive Antibodies against Dengue Virus and Antibody-Dependent Enhancement of Dengue Virus Infection」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Japanese Encephalitis DNA Vaccines with Epitope Modification Reduce the Induction of Cross-Reactive Antibodies against Dengue Virus and Antibody-Dependent Enhancement of Dengue Virus Infection

Kotaki, Tomohiro Nagai, Yurie Yamanaka, Atsushi Konishi, Eiji Kameoka, Masanori 神戸大学

2022.09

概要

Infection with viruses belonging to the genus Flavivirus, such as Japanese encephalitis virus (JEV) and dengue virus (DENV), is a worldwide health problem. Vaccines against JEV and DENV are currently available. However, the dengue vaccine possibly increases the risk of severe dengue due to antibody-dependent enhancement (ADE). Moreover, the Japanese encephalitis (JE) vaccine reportedly induces cross-reactive ADE-prone antibodies against DENV, potentially leading to symptomatic dengue. Therefore, it is necessary to eliminate the risk of ADE through vaccination. In this study, we attempted to develop a JE vaccine that does not induce ADE of DENV infection using an epitope modification strategy. We found that an ADE-prone monoclonal antibody cross-reactive to DENV and JEV recognizes the 106th amino acid residue of the E protein of JEV (E-106). The JE DNA vaccine with a mutation at E-106 (E-106 vaccine) induced comparable neutralizing antibody titers against JEV to those induced by the wild-type JE DNA vaccine. Meanwhile, the E-106 vaccine induced 64-fold less cross-reactive ADE-prone antibodies against DENV. The mutation did not compromise the protective efficacy of the vaccine in the lethal JEV challenge experiment. Altogether, the modification of a single amino acid residue identified in this study helped in the development of an ADE-free JE vaccine.

関連論文

参考文献

1. Campbell, G.L.; Hills, S.L.; Fischer, M.; Jacobson, J.A.; Hoke, C.H.; Hombach, J.M.; Marfin, A.A.; Solomon, T.; Tsai, T.F.; Tsu, V.D.; et al. Estimated global incidence of Japanese encephalitis: A systematic review. Bull World Health Organ 2011, 89, 766–774. [CrossRef]

2. Japanese Encephalitis Vaccines. WHO Position Paper—February 2015. Available online: https://apps.who.int/iris/handle/1066 5/242325 (accessed on 20 June 2022).

3. Satchidanandam, V. Japanese encephalitis vaccines. Curr. Treat. Options Infect. Dis. 2020, 12, 375–386. [CrossRef] [PubMed]

4. Hoke, C.H.; Nisalak, A.; Sangawhipa, N.; Jatanasen, S.; Laorakapongse, T.; Innis, B.L.; Kotchasenee, S.; Gingrich, J.B.; Latendresse, J.; Fukai, K.; et al. Protection against Japanese encephalitis by inactivated vaccines. N. Engl. J. Med. 1988, 319, 608–614. [CrossRef] [PubMed]

5. Heffelfinger, J.D.; Li, X.; Batmunkh, N.; Grabovac, V.; Diorditsa, S.; Liyanage, J.B.; Pattamadilok, S.; Bahl, S.; Vannice, K.S.; Hyde, T.B.; et al. Japanese encephalitis surveillance and immunization—Asia and western Pacific regions, 2016. Morb. Mortal Wkly. Rep. 2017, 66, 579–583. [CrossRef] [PubMed]

6. Hills, S.L.; Walter, E.B.; Atmar, R.L.; Fischer, M.; ACIP Japanese Encephalitis Vaccine Work Group. Japanese encephalitis vaccine: Recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm. Rep. 2019, 68, 1–33. [CrossRef] [PubMed]

7. Arai, S.; Matsunaga, Y.; Takasaki, T.; Tanaka-Taya, K.; Taniguchi, K.; Okabe, N.; Kurane, I. Vaccine Preventable Diseases Surveillance Program of Japan. Japanese encephalitis: Surveillance and elimination effort in Japan from 1982 to 2004. Jpn. J. Infect. Dis. 2008, 61, 333–338. [PubMed]

8. Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [CrossRef]

9. Thomas, S.J.; Endy, T.P. Current issues in dengue vaccination. Curr. Opin. Infect. Dis. 2013, 26, 429–434. [CrossRef]

10. Thomas, S.J.; Yoon, I.K. A review of Dengvaxia®: Development to deployment. Hum. Vaccin. Immunother. 2019, 15, 2295–2314. [CrossRef]

11. Aguiar, M.; Stollenwerk, N.; Halstead, S.B. The impact of the newly licensed dengue vaccine in endemic countries. PLOS Negl. Trop. Dis. 2016, 10, e0005179. [CrossRef]

12. Hadinegoro, S.R.; Arredondo-García, J.L.; Capeding, M.R.; Deseda, C.; Chotpitayasunondh, T.; Dietze, R.; Muhammad Ismail, H.I.; Reynales, H.; Limkittikul, K.; Rivera-Medina, D.M.; et al. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N. Engl. J. Med. 2015, 373, 1195–1206. [CrossRef]

13. Halstead, S.B.; O’Rourke, E.J. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J. Exp. Med. 1977, 146, 201–217. [CrossRef]

14. Halstead, S.B. Neutralization and antibody-dependent enhancement of dengue viruses. Adv. Virus Res. 2003, 60, 421–467.

15. Pierson, T.C.; Diamond, M.S. Flaviviruses. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 747–794.

16. Allison, S.L.; Schalich, J.; Stiasny, K.; Mandl, C.W.; Heinz, F.X. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J. Virol. 2001, 75, 4268–4275. [CrossRef]

17. Crill, W.D.; Chang, G.J. Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. J. Virol. 2004, 78, 13975–13986. [CrossRef]

18. Vogt, M.R.; Dowd, K.A.; Engle, M.; Tesh, R.B.; Johnson, S.; Pierson, T.C.; Diamond, M.S. Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in vivo via Fcgamma receptor and complement- dependent effector mechanisms. J. Virol. 2011, 85, 11567–11580. [CrossRef]

19. Mansfield, K.L.; Horton, D.L.; Johnson, N.; Li, L.; Barrett, A.D.T.; Smith, D.J.; Galbraith, S.E.; Solomon, T.; Fooks, A.R. Flavivirus- induced antibody cross-reactivity. J. Gen. Virol. 2011, 92, 2821–2829. [CrossRef]

20. Calisher, C.H.; Karabatsos, N.; Dalrymple, J.M.; Shope, R.E.; Porterfield, J.S.; Westaway, E.G.; Brandt, W.E. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J. Gen. Virol. 1989, 70, 37–43. [CrossRef]

21. Koraka, P.; Zeller, H.; Niedrig, M.; Osterhaus, A.D.; Groen, J. Reactivity of serum samples from patients with a flavivirus infection measured by immunofluorescence assay and ELISA. Microbes. Infect. 2002, 4, 1209–1215. [CrossRef]

22. Dejnirattisai, W.; Wongwiwat, W.; Supasa, S.; Zhang, X.; Dai, X.; Rouvinski, A.; Jumnainsong, A.; Edwards, C.; Quyen, N.T.H.; Duangchinda, T.; et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol. 2015, 16, 170–177. [CrossRef]

23. Saito, Y.; Moi, M.L.; Takeshita, N.; Lim, C.K.; Shiba, H.; Hosono, K.; Saijo, M.; Kurane, I.; Takasaki, T. Japanese encephalitis vaccine-facilitated dengue virus infection-enhancement antibody in adults. BMC Infect. Dis. 2016, 16, 578. [CrossRef] [PubMed]

24. Anderson, K.B.; Gibbons, R.V.; Thomas, S.J.; Rothman, A.L.; Nisalak, A.; Berkelman, R.L.; Libraty, D.H.; Endy, T.P. Preexisting Japanese encephalitis virus neutralizing antibodies and increased symptomatic dengue illness in a school-based cohort in Thailand. PLoS Negl. Trop. Dis. 2011, 5, e1311. [CrossRef] [PubMed]

25. Sato, R.; Hamada, N.; Kashiwagi, T.; Imamura, Y.; Hara, K.; Nishimura, M.; Kamimura, T.; Takasaki, T.; Watanabe, H.; Koga, T. Dengue hemorrhagic fever in a Japanese traveler with pre-existing Japanese encephalitis virus antibody. Trop. Med. Health 2015, 43, 85–88. [CrossRef] [PubMed]

26. Chiou, S.S.; Fan, Y.C.; Crill, W.D.; Chang, R.Y.; Chang, G.J. Mutation analysis of the cross-reactive epitopes of Japanese encephalitis virus envelope glycoprotein. J. Gen. Virol. 2012, 93, 1185–1192. [CrossRef]

27. Chiou, S.S.; Crill, W.D.; Chen, L.K.; Chang, G.J. Enzyme-linked immunosorbent assays using novel Japanese encephalitis virus antigen improve the accuracy of clinical diagnosis of flavivirus infections. Clin. Vaccine Immunol. 2008, 15, 825–835. [CrossRef]

28. Chabierski, S.; Barzon, L.; Papa, A.; Niedrig, M.; Bramson, J.L.; Richner, J.M.; Palù, G.; Diamond, M.S.; Ulbert, S. Distinguishing West Nile virus infection using a recombinant envelope protein with mutations in the conserved fusion-loop. BMC Infect. Dis. 2014, 14, 246. [CrossRef]

29. Rockstroh, A.; Barzon, L.; Pacenti, M.; Palù, G.; Niedrig, M.; Ulbert, S. Recombinant envelope-proteins with mutations in the conserved fusion loop allow specific serological diagnosis of dengue-infections. PLoS Negl. Trop. Dis. 2015, 9, e0004218. [CrossRef]

30. Crill, W.D.; Hughes, H.R.; Trainor, N.B.; Davis, B.S.; Whitney, M.T.; Chang, G.J. Sculpting humoral immunity through dengue vaccination to enhance protective immunity. Front. Immunol. 2012, 3, 334. [CrossRef]

31. Hughes, H.R.; Crill, W.D.; Chang, G.J. Manipulation of immunodominant dengue virus E protein epitopes reduces potential antibody-dependent enhancement. Virol. J. 2012, 9, 115. [CrossRef]

32. Yamanaka, A.; Konishi, E. Key amino acid substitution for infection-enhancing activity-free designer dengue vaccines. iScience 2019, 13, 125–137. [CrossRef]

33. Richner, J.M.; Himansu, S.; Dowd, K.A.; Butler, S.L.; Salazar, V.; Fox, J.M.; Julander, J.G.; Tang, W.W.; Shresta, S.; Pierson, T.C.; et al. Modified mRNA vaccines protect against Zika virus infection. Cell 2017, 168, 1114–1125.e10. [CrossRef]

34. Yamanaka, A.; Kotaki, T.; Konishi, E. A mouse monoclonal antibody against dengue virus type 1 Mochizuki strain targeting envelope protein domain II and displaying strongly neutralizing but not enhancing activity. J. Virol. 2013, 87, 12828–12837. [CrossRef]

35. Tanabayashi, K.; Mukai, R.; Yamada, A.; Takasaki, T.; Kurane, I.; Yamaoka, M.; Terazawa, A.; Konishi, E. Immunogenicity of a Japanese encephalitis DNA vaccine candidate in cynomolgus monkeys. Vaccine 2003, 21, 2338–2345. [CrossRef]

36. Ishikawa, T.; Konishi, E. Mosquito cells infected with Japanese encephalitis virus release slowly-sedimenting hemagglutinin particles in association with intracellular formation of smooth membrane structures. Microbiol. Immunol. 2006, 50, 211–223. [CrossRef]

37. Kotaki, T.; Kurosu, T.; Grinyo-Escuer, A.; Davidson, E.; Churrotin, S.; Okabayashi, T.; Puiprom, O.; Mulyatno, K.C.; Sucipto, T.H.; Doranz, B.J.; et al. An affinity-matured human monoclonal antibody targeting fusion loop epitope of dengue virus with in vivo therapeutic potency. Sci. Rep. 2021, 11, 12987. [CrossRef]

38. Konishi, E.; Yamaoka, M.; Khin-Sane-Win Kurane, I.; Mason, P.W. Induction of protective immunity against Japanese encephalitis in mice by immunization with a plasmid encoding Japanese encephalitis virus premembrane and envelope genes. J. Virol. 1998, 72, 4925–4930. [CrossRef]

39. Kotaki, T.; Yamanaka, A.; Konishi, E.; Kameoka, M. A potent neutralizing mouse monoclonal antibody specific to dengue virus type 1 Mochizuki strain recognized a novel epitope around the N-67 glycan on the envelope protein: A possible explanation of dengue virus evolution regarding the acquisition of N-67 glycan. Virus Res. 2021, 294, 198278.

40. Sjatha, F.; Takizawa, Y.; Kotaki, T.; Yamanaka, A.; Konishi, E. Comparison of infection- neutralizing and -enhancing antibody balance induced by two distinct genotype strains of dengue virus type 1 or 3 DNA vaccines in mice. Microbes. Infect. 2013, 15, 828–836. [CrossRef]

41. Konishi, E.; Tabuchi, Y.; Yamanaka, A. A simple assay system for infection-enhancing and -neutralizing antibodies to dengue type 2 virus using layers of semi-adherent K562 cells. J. Virol. Methods 2010, 163, 360–367. [CrossRef]

42. Yamanaka, A.; Imad, H.A.; Phumratanaprapin, W.; Phadungsombat, J.; Konishi, E.; Shioda, T. Antibody-dependent enhancement representing in vitro infective progeny virus titer correlates with the viremia level in dengue patients. Sci. Rep. 2021, 11, 12354. [CrossRef]

43. Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Innis, B.L.; Nimmannitya, S.; Suntayakorn, S.; Endy, T.P.; Raengsakulrach, B.; Rothman, A.L.; Ennis, F.A.; et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis. 2000, 181, 2–9. [CrossRef]

44. Finkelman, F.D.; Holmes, J.; Katona, I.M.; Urban, J.F., Jr.; Beckmann, M.P.; Park, L.S.; Schooley, K.A.; Coffman, R.L.; Mosmann, T.R.; Paul, W.E. Lymphokine control of in vivo immunoglobulin isotype selection. Annu. Rev. Immunol. 1990, 8, 303–333. [CrossRef]

45. Stavnezer, J.; Amemiya, C.T. Evolution of isotype switching. Semin Immunol. 2004, 16, 257–275. [CrossRef]

46. Yun, S.I.; Lee, Y.M. Japanese encephalitis: The virus and vaccines. Hum. Vaccin. Immunother. 2014, 10, 263–279. [CrossRef]

47. Dejnirattisai, W.; Jumnainsong, A.; Onsirisakul, N.; Fitton, P.; Vasanawathana, S.; Limpitikul, W.; Puttikhunt, C.; Edwards, C.; Duangchinda, T.; Supasa, S.; et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science 2010, 328, 745–748, Erratum in Science 2010, 329, 142. [CrossRef]

48. Li, G.; Jin, H.; Nie, X.; Zhao, Y.; Feng, N.; Cao, Z.; Tan, S.; Zhang, B.; Gai, W.; Yan, F.; et al. Development of a reverse genetics system for Japanese encephalitis virus strain SA14-14-2. Virus Genes 2019, 55, 550–556. [CrossRef]

49. Tang, C.T.; Li, P.C.; Liu, I.J.; Liao, M.Y.; Chiu, C.Y.; Chao, D.Y.; Wu, H.C. An epitope- substituted DNA vaccine improves safety and immunogenicity against dengue virus type 2. PLoS Negl. Trop. Dis. 2015, 9, e0003903. [CrossRef]

50. Wahala, W.M.P.B.; Kraus, A.A.; Haymore, L.B.; Accavitti-Loper, M.A.; de Silva, A.M. Dengue virus neutralization by human immune sera: Role of envelope protein domain III-reactive antibody. Virology 2009, 392, 103–113. [CrossRef] [PubMed]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る