リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Measurement Informatics Approaches for NMR Signal Deconvolution and Data-Driven Analysis Toward Molecular Complexity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Measurement Informatics Approaches for NMR Signal Deconvolution and Data-Driven Analysis Toward Molecular Complexity

山田, 隼嗣 名古屋大学

2021.07.13

概要

現代社会の重要課題である水、食料、材料、エネルギーの環境・資源や健康の問題を解決するため、多様な分子で構成された混合物や材料の高次構造などの分子複雑系を対象とした計測技術の発展が求められている。核磁気共鳴(NMR)分光法は、様々な取得パラメーターやパルス系列を使用して、原子分解能で非侵襲的試料の化学構造と分子運動性の有益なデータを提供するため、分子複雑系を特徴付けるための強力な計測技術の1つである。近年の情報技術の発展に伴い、蓄積されたNMRデータを有効活用するための計測インフォマティクスアプローチは、ますます重要になっている。しかし、混合物のNMRスペクトル分析は、ノイズや信号の重複により困難であり、多くの労力を要する。従って、スペクトル分析の前段階にあたるデータ品質管理、ノイズ低減、信号分離などのデータクレンジング、および長年蓄積したデータを活かしたデータ駆動型分析に関する研究が必要である。

 本研究では、まず、広幅NMRスペクトルに対して、ピークを強調および分離する前処理法を援用した信号帰属法を検討した。また、研究室内および他機関で蓄積されたNMRデータの計測パラメーターと信号対雑音比(signal-to-noise ratio: SNR)の関係を調査するノイズ要因解析を遂行した。そこで、異なる運動性(横緩和時間T2が磁場不均一性の影響で短縮した実測値T2*)成分およびノイズを含む溶液NMR信号を対象として短時間フーリエ変換(STFT)および確立的スパース行列因子分解(PSMF)を組合せた信号分離法を開発した。さらに、この理論を基盤として、固体状態で複数のドメイン構造、または成分を持つ多成分材料の固体NMR信号を対象として信号分離法の適用を検討した。続いて、成分や構造の記述子としてNMR信号および物性を予測するため、生成的地形図回帰(Generative Topographic Mapping Regression; GTMR)の適用を検討した。以上の手法に基づき、分子複雑系のNMR分析に有用な計測インフォマティクスアプローチを開発した。

①分子複雑系の低分解能NMR分析のための前処理法および信号帰属法
 分子複雑系のNMR分析では、分子の物理化学特性は多様であるため、様々な試料調製法やパルス系列が使用される。しかし、混合物のNMR信号帰属は、信号重複の問題、参照スペクトルや信号帰属ツールの不足のために困難であり、多くの労力を要する。そこで本研究では、低分子から高分子や脂質までの分子複雑系の低分解能NMR分析における信号帰属を支援するため、広幅スペクトルの前処理、信号帰属およびデータベース(DB)からなるウェブツールとしてInterSpinを開発した。低磁場の卓上NMRや固体NMRから得られる広幅スペクトルの分析を支援する前処理ツールとして、スペクトル積分により感度を改善するSENSIおよび信号を分離するPKSPを開発した。PKSPでは、新規NMR信号分離法として非負スパースコーディング(NNSC)を実装し、NMFなどの従来法と比較して、高速かつ正確な信号分離を可能とした。さらに、SENSIで得られる各ピークの変動係数(CV)とPKSPで得られる分離信号を組み合わせ、魚料理の低磁場NMRやユーグレナの固体NMRにより得られた広幅スペクトルの信号を分離し、CVや標品スペクトルを利用して信号帰属を可能とした。食品、材料、環境、健康などの幅広い研究には、多様な標品スペクトルが必要である。しかし、類似構造を持つ高分子や脂質の固体13CCP-MASやDMSO-d6溶媒での溶液NMRに関しては、DBや信号帰属法は確立していない。そこで、固体および溶液状態(溶媒として、D2O、MeOD-d4、DMSO-d6)の低分子から高分子までの多様な標品スペクトル(1H-13C相関、1H-J分解、13CCP-MAS)を蓄積した新規DB(SpinLIMS)を構築し、多様な試料に対してInterSpinでの信号帰属を可能とした。このDBを基盤として、高分子や脂質の信号を帰属するSpinMacroを開発し、固体13CピークやDMSO-d6溶媒での1H-13C相関ピークの信号帰属を自動化した。さらに、1H-13C相関ピークと1H-J分解ピークの統合により候補分子を絞り込むInterAnalysisを開発し、信号帰属を効率化した。分子複雑系の低分解能NMR分析のための前処理法および信号帰属法は、信号の重複問題を解決し、DBを活用したNMR信号帰属を高度化した。

②STFTおよびPSMFを組合せたNMR信号分離法およびノイズ要因解析法
 データ駆動型分析において、データ品質は結果に影響を与えるため重要である。しかし、NMR分野で、蓄積されたNMRデータの品質管理、ノイズ低減、信号分離などのデータクレンジング法は確立していない。そこで本研究では、NMRデータの計測パラメーターとノイズに焦点を当て、一次元NMRの自由誘導減衰(FID)信号分離およびノイズ要因解析によるデータクレンジング法を開発した。ノイズ低減および信号分離のために、STFTを適用することでFIDを一定時間ごとに分割して各時間でのスペクトルの変化の活用を検討した。STFTによって追加された時間軸上のT2*緩和に伴う信号強度減衰の特徴に基づき、行列因子分解により個々の周波数における信号とノイズを識別できた。行列因子分解法としてPSMFは、他のNMFなどの手法に比べ、信号とノイズを良好に分離できた。STFTおよびPSMFを組み合わせた新規信号分離法は、多変量解析のみを使用する従来のノイズ低減法とは異なり、多くのサンプルまたは計測パラメーターのFIDを必要とせず、ノイズ低減および信号分離を可能とした。本手法により、FID信号のノイズを分離し、スペクトルのSNRを約3倍に改善した。Diffusion-edited NMRスペクトルは、各周波数成分のT2*の違いにより、高分子や脂質と低分子の信号に分離できた。蓄積されたNMRデータを活用するには、データ品質を確認する必要がある。そこで、NMRデータの計測パラメーターとSNRの関係を調査するノイズ要因解析を行った結果、溶媒抑制が不十分な場合、スキャン数がSNRを低下させる主な要因であった。STFTを用いた溶液NMRの信号分離およびノイズ要因解析は、信号の重複問題を解決し、データ駆動型分析を高度化した。

③多成分材料の固体NMRのための信号分離法および信号・物性予測法
 近年、海洋プラスチックの海洋汚染、廃棄物処理、地球温暖化などの地球規模の課題から、低炭素社会への研究が重要視されている。石油資源の代替としての微生物製品と植物バイオマスは、プラスチックや原料などの高分子材料の製造に使用できる。ポリ乳酸(PLA)、ポリ-ε-カプロラクトン(PCL)、セルロースなどのポリマーは、複数のドメイン、またはコンポーネントを有する分子複雑系であり、様々な特性を持つ材料として使用される。微生物および植物バイオマスは、複数のドメインを持つ高分子や脂質を含む複数の成分で構成される生化学的システムとして分析する必要がある。従って、微生物製品、植物バイオマス、プラスチックなどの多成分材料の固体NMR分析アプローチを開発する必要がある。そこで本研究では、固体NMRを対象とした信号分離法を開発した。STFTと非負のテンソルおよび行列因子分解(NTF、NMF)を使用した新規信号分離法を検討した。本手法により、セルロース分解プロセスにおける13CCP-MASスペクトルは、STFTとNTFによってT2*の違いによりセルロース、タンパク質、脂質の信号に分離できた。また、PCLの異方性スペクトルは、STFTとNMFによって結晶とアモルファスの信号に分離できた。計測時に異方性除去のため適用されるデカップリングに対する代替手段として、異方性の計測データに対して計算科学的手法による信号分離を可能とした。また、STFTデータを活用しNMR信号や物性を可視化および予測するための新規手法として、GTMRを検討した。GTMRは、セルロース分解プロセスにおける生成物である酢酸とCO2のNMR信号強度を予測できた。また、プラスチックのNMR信号と各物性の統合データにGTMRを適用することで、所望の物性(ガラス転移点、融点、分解温度)となるNMR信号を予測できた。STFTを用いた固体NMRの信号分離および予測法は、信号の重複問題を解決し、多成分材料の特性評価および材料設計を可能とした。

以上の各手法により、NMR分析において、T2*の異なる成分およびノイズの重複したNMR信号の分離、続く信号帰属および高次構造・物性予測に関するデータ駆動型分析を高度化した。本研究で開発した計測インフォマティクスアプローチは、健康、食品、材料、環境などの様々な分野における分子複雑系のデータ駆動型の研究、開発、生産、品質管理などへの貢献が期待される。

この論文で使われている画像

参考文献

1. Whitesides, G.M.; Ismagilov, R.F. Complexity in chemistry. Science 1999, 284, 89-92.

2. Schmitt-Kopplin, P.; Hemmler, D.; Moritz, F.; Gougeon, R.; Lucio, M.; Meringer, M.; Muller, C.; Harir, M.; Hertkorn, N. Systems chemical analytics: introduction to the challenges of chemical complexity analysis. Faraday Discussions 2019, 218, 9-28.

3. van Beek, T. Low-field benchtop NMR spectroscopy: status and prospects in natural product analysis(dagger). Phytochemical Analysis 2021, 32, 24-37.

4. Takahashi, K.; Tanaka, Y. Materials informatics: a journey towards material design and synthesis. Dalton Transactions 2016, 45, 10497-10499.

5. Kikuchi, J.; Ito, K.; Date, Y. Environmental metabolomics with data science for investigating ecosystem homeostasis. Prog. Nucl. Magn. Reason. Spectrosc. 2018, 104, 56-88.

6. Kikuchi, J.; Yamada, S. NMR window of molecular complexity showing homeostasis in superorganisms. Analyst 2017, 142, 4161-4172.

7. McAlpine, J.; Chen, S.; Kutateladze, A.; MacMillan, J.; Appendino, G.; Barison, A.; Beniddir, M.; Biavatti, M.; Bluml, S.; Boufridi, A., et al. The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Natural Product Reports 2019, 36, 35-107.

8. Barba, A.; Dominguez, S.; Cobas, C.; Martinsen, D.; Romain, C.; Rzepa, H.; Seoane, F. Workflows Allowing Creation of Journal Article Supporting Information and Findable, Accessible, Interoperable, and Reusable (FAIR)-Enabled Publication of Spectroscopic Data. Acs Omega 2019, 4, 3280-3286.

9. Pupier, M.; Nuzillard, J.M.; Wist, J.; Schlörer, N.E.; Kuhn, S.; Erdelyi, M.; Steinbeck, C.; Williams, A.J.; Butts, C.; Claridge, T.D.W., et al. NMReDATA, a standard to report the NMR assignment and parameters of organic compounds. Magn. Reason. Chem. 2018.

10. Wu, K.; Luo, J.; Zeng, Q.; Dong, X.; Chen, J.; Zhan, C.; Chen, Z.; Lin, Y. Improvement in Signal- to-Noise Ratio of Liquid-State NMR Spectroscopy via a Deep Neural Network DN-Unet. Anal. Chem. 2020.

11. Schlagnitweit, J.; Tang, M.; Baias, M.; Richardson, S.; Schantz, S.; Emsley, L. A solid-state NMR method to determine domain sizes in multi-component polymer formulations. J. Magn. Res. 2015, 261, 43-48.

12. Chen, G.; Shen, Z.; Iyer, A.; Ghumman, U.; Tang, S.; Bi, J.; Chen, W.; Li, Y. Machine-Learning- Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges. Polymers 2020, 12.

13. Perez-Riverol, Y.; Bai, M.; Leprevost, F.D.; Squizzato, S.; Park, Y.M.; Haug, K.; Carroll, A.J.; Spalding, D.; Paschall, J.; Wang, M.X., et al. Discovering and linking public omics data sets using the Omics Discovery Index. Nature Biotechnology 2017, 35, 406-409.

14. Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nature Reviews Drug Discovery 2016, 15, 473-484.

15. Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: recent applications and prospects. Npj Computational Materials 2017, 3, 13.

16. Rosato, A.; Tenori, L.; Cascante, M.; De Atauri Carulla, P.R.; Martins Dos Santos, V.A.P.; Saccenti, E. From correlation to causation: analysis of metabolomics data using systems biology approaches. Metabolomics 2018, 14, 37.

17. Rodriguez-Martinez, A.; Posma, J.M.; Ayala, R.; Harvey, N.; Jimenez, B.; Neves, A.L.; Lindon, J.C.; Sonomura, K.; Sato, T.A.; Matsuda, F., et al. J-Resolved (1)H NMR 1D-Projections for Large- Scale Metabolic Phenotyping Studies: Application to Blood Plasma Analysis. Anal. Chem. 2017.

18. Wruck, W.; Kashofer, K.; Rehman, S.; Daskalaki, A.; Berg, D.; Gralka, E.; Jozefczuk, J.; Drews, K.; Pandey, V.; Regenbrecht, C., et al. Multi-omic profiles of human non-alcoholic fatty liver disease tissue highlight heterogenic phenotypes. Sci. Data 2015, 2, 150068.

19. Shiokawa, Y.; Date, Y.; Kikuchi, J. Application of kernel principal component analysis and computational machine learning to exploration of metabolites strongly associated with diet. Sci. Rep. 2018, 8, 8.

20. Sugahara, H.; Odamaki, T.; Fukuda, S.; Kato, T.; Xiao, J.Z.; Abe, F.; Kikuchi, J.; Ohno, H. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Sci. Rep. 2015, 5, 13548.

21. Kato, T.; Fukuda, S.; Fujiwara, A.; Suda, W.; Hattori, M.; Kikuchi, J.; Ohno, H. Multiple omics uncovers host-gut microbial mutualism during prebiotic fructooligosaccharide supplementation. DNA Res. 2014, 21, 469-480.

22. Mekuchi, M.; Sakata, K.; Yamaguchi, T.; Koiso, M.; Kikuchi, J. Trans-omics approaches used to characterise fish nutritional biorhythms in leopard coral grouper (Plectropomus leopardus). Sci. Rep. 2017, 7, 12.

23. Tomita, S.; Saito, K.; Nakamura, T.; Sekiyama, Y.; Kikuchi, J. Rapid discrimination of strain- dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice. Plos One 2017, 12, 18.

24. Komatsu, T.; Kobayashi, T.; Hatanaka, M.; Kikuchi, J. Profiling Planktonic Biomass Using Element-Specific, Multicomponent Nuclear Magnetic Resonance Spectroscopy. Environ. Sci. Technol. 2015.

25. Wei, F.; Ito, K.; Sakata, K.; Date, Y.; Kikuchi, J. Pretreatment and integrated analysis of spectral data reveal seaweed similarities based on chemical diversity. Anal. Chem. 2015, 87, 2819-2826.

26. Ito, K.; Sakata, K.; Date, Y.; Kikuchi, J. Integrated Analysis of Seaweed Components during Seasonal Fluctuation by Data Mining Across Heterogeneous Chemical Measurements with Network Visualization. Anal. Chem. 2014, 86, 1098-1105.

27. Ogura, T.; Date, Y.; Masukujane, M.; Coetzee, T.; Akashi, K.; Kikuchi, J. Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass. Sci. Rep. 2016, 6, 28011.

28. Watanabe, T.; Shino, A.; Akashi, K.; Kikuchi, J. Chemical profiling of Jatropha tissues under different torrefaction conditions: application to biomass waste recovery. PLoS One 2014, 9, e106893.

29. Mori, T.; Tsuboi, Y.; Ishida, N.; Nishikubo, N.; Demura, T.; Kikuchi, J. Multidimensional High- Resolution Magic Angle Spinning and Solution-State NMR Characterization of C-13-labeled Plant Metabolites and Lignocellulose. Sci. Rep. 2015, 5, 12.

30. Bundy, J.G.; Davey, M.P.; Viant, M.R. Environmental metabolomics: a critical review and future perspectives. Metabolomics 2009, 5, 3-21.

31. Wei, F.F.; Sakata, K.; Asakura, T.; Date, Y.; Kikuchi, J. Systemic Homeostasis in Metabolome, Ionome, and Microbiome of Wild Yellowfin Goby in Estuarine Ecosystem. Sci. Rep. 2018, 8, 12.

32. Ogawa, D.M.O.; Moriya, S.; Tsuboi, Y.; Date, Y.; Prieto-da-Silva, A.R.B.; Radis-Baptista, G.; Yamane, T.; Kikuchi, J. Biogeochemical Typing of Paddy Field by a Data-Driven Approach Revealing Sub-Systems within a Complex Environment - A Pipeline to Filtrate, Organize and Frame Massive Dataset from Multi-Omics Analyses. Plos One 2014, 9, 14.

33. Yoshida, S.; Date, Y.; Akama, M.; Kikuchi, J. Comparative metabolomic and ionomic approach for abundant fishes in estuarine environments of Japan. Sci. Rep. 2014, 4.

34. Asakura, T.; Date, Y.; Kikuchi, J. Comparative Analysis of Chemical and Microbial Profiles in Estuarine Sediments Sampled from Kanto and Tohoku Regions in Japan. Anal. Chem. 2014, 86, 5425-5432.

35. Hashi, K.; Ohki, S.; Matsumoto, S.; Nishijima, G.; Goto, A.; Deguchi, K.; Yamada, K.; Noguchi, T.; Sakai, S.; Takahashi, M., et al. Achievement of 1020 MHz NMR. J. Magn. Res. 2015, 256, 30- 33.

36. Halse, M.E. Perspectives for hyperpolarisation in compact NMR. Trac. Trends Anal. Chem. 2016, 83, 76-83.

37. Aslam, N.; Pfender, M.; Neumann, P.; Reuter, R.; Zappe, A.; de Oliveira, F.F.; Denisenko, A.; Sumiya, H.; Onoda, S.; Isoya, J., et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 2017, 357, 5.

38. Tayler, M.C.D.; Theis, T.; Sjolander, T.F.; Blanchard, J.W.; Kentner, A.; Pustelny, S.; Pines, A.; Budker, D. Invited Review Article: Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field. Rev. Sci. Instrum. 2017, 88, 17.

39. Blümich, B. Virtual special issue: Magnetic resonance at low fields. J. Magn. Res. 2017, 274, 145- 147.

40. Blümich, B.; Singh, K. Desktop NMR and Its Applications From Materials Science To Organic Chemistry. Angew. Chem. Int. Ed. Engl. 2018, 57, 6996-7010.

41. Giraudeau, P.; Massou, S.; Robin, Y.; Cahoreau, E.; Portais, J.C.; Akoka, S. Ultrafast quantitative 2D NMR: an efficient tool for the measurement of specific isotopic enrichments in complex biological mixtures. Anal. Chem. 2011, 83, 3112-3119.

42. Wu, H.; Southam, A.D.; Hines, A.; Viant, M.R. High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal. Biochem. 2008, 372, 204-212.

43. Lin, C.Y.; Wu, H.F.; Tjeerdema, R.S.; Viant, M.R. Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics 2007, 3, 55-67.

44. Sekiyama, Y.; Chikayama, E.; Kikuchi, J. Evaluation of a semipolar solvent system as a step toward heteronuclear multidimensional NMR-based metabolomics for 13C-labeled bacteria, plants, and animals. Anal. Chem. 2011, 83, 719-726.

45. Sekiyama, Y.; Chikayama, E.; Kikuchi, J. Profiling polar and semipolar plant metabolites throughout extraction processes using a combined solution-state and high-resolution magic angle spinning NMR approach. Anal. Chem. 2010, 82, 1643-1652.

46. Kim, H.; Ralph, J. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO- d(6)/pyridine-d(5). Org. Biomol. Chem. 2010, 8, 576-591.

47. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N., et al. HMDB 4.0: the human metabolome database for 2018. Nucleic. Acids Res. 2018, 46, D608-D617.

48. Ulrich, E.L.; Akutsu, H.; Doreleijers, J.F.; Harano, Y.; Ioannidis, Y.E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z., et al. BioMagResBank. Nucleic. Acids Res. 2008, 36, D402-408.

49. Ludwig, C.; Easton, J.M.; Lodi, A.; Tiziani, S.; Manzoor, S.E.; Southam, A.D.; Byrne, J.J.; Bishop, L.M.; He, S.; Arvanitis, T.N., et al. Birmingham Metabolite Library: a publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics 2012, 8, 8-18.

50. Cui, Q.; Lewis, I.A.; Hegeman, A.D.; Anderson, M.E.; Li, J.; Schulte, C.F.; Westler, W.M.; Eghbalnia, H.R.; Sussman, M.R.; Markley, J.L. Metabolite identification via the Madison Metabolomics Consortium Database. Nat. Biotechnol. 2008, 26, 162-164.

51. Kuhn, S.; Schlorer, N. Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2-a free in-house NMR database with integrated LIMS for academic service laboratories. Magn. Res. Chem. 2015, 53, 582-589.

52. Bingol, K.; Zhang, F.; Bruschweiler-Li, L.; Brüschweiler, R. TOCCATA: a customized carbon total correlation spectroscopy NMR metabolomics database. Anal. Chem. 2012, 84, 9395-9401.

53. Bingol, K.; Li, D.; Zhang, B.; Bruschweiler, R. Comprehensive Metabolite Identification Strategy Using Multiple Two-Dimensional NMR Spectra of a Complex Mixture Implemented in the COLMARm Web Server. Anal. Chem. 2016, 88, 12411-12418.

54. Kale, N.S.; Haug, K.; Conesa, P.; Jayseelan, K.; Moreno, P.; Rocca-Serra, P.; Nainala, V.C.; Spicer, R.A.; Williams, M.; Li, X., et al. MetaboLights: An Open-Access Database Repository for Metabolomics Data. Curr. Protoc. Bioinformatics 2016, 53, 14.13.11-18.

55. Xia, J.; Wishart, D.S. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr. Protoc. Bioinformatics 2016, 55, 14.10.11-14.10.91.

56. Chikayama, E.; Sekiyama, Y.; Okamoto, M.; Nakanishi, Y.; Tsuboi, Y.; Akiyama, K.; Saito, K.; Shinozaki, K.; Kikuchi, J. Statistical indices for simultaneous large-scale metabolite detections for a single NMR spectrum. Anal. Chem. 2010, 82, 1653-1658.

57. Kikuchi, J.; Tsuboi, Y.; Komatsu, K.; Gomi, M.; Chikayama, E.; Date, Y. SpinCouple: Development of a Web Tool for Analyzing Metabolite Mixtures via Two-Dimensional J-Resolved NMR Database. Anal. Chem. 2016, 88, 659-665.

58. Kikuchi, J.; Ogata, Y.; Shinozaki, K. ECOMICS: ECosytem trans-OMICS tools and methods for complex environmental samples and datasets. J. Ecosys. Ecogr. 2011, S2, 001.

59. Dashti, H.; Westler, W.M.; Tonelli, M.; Wedell, J.R.; Markley, J.L.; Eghbalnia, H.R. Spin System Modeling of Nuclear Magnetic Resonance Spectra for Applications in Metabolomics and Small Molecule Screening. Anal. Chem. 2017, 89, 12201-12208.

60. Dashti, H.; Wedell, J.R.; Westler, W.M.; Tonelli, M.; Aceti, D.; Amarasinghe, G.K.; Markley, J.L.; Eghbalnia, H.R. Applications of Parametrized NMR Spin Systems of Small Molecules. Anal Chem 2018, 90, 10646-10649.

61. Toumi, I.; Caldarelli, S.; Torrésani, B. A review of blind source separation in NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 81, 37-64.

62. Toumi, I.; Torrésani, B.; Caldarelli, S. Effective processing of pulse field gradient NMR of mixtures by blind source separation. Anal. Chem. 2013, 85, 11344-11351.

63. Misawa, T.; Komatsu, T.; Date, Y.; Kikuchi, J. SENSI: signal enhancement by spectral integration for the analysis of metabolic mixtures. Chem. Commun. 2016, 52, 2964-2967.

64. Bouveresse, D.J.R.; Moya-Gonzalez, A.; Ammari, F.; Rutledge, D.N. Two novel methods for the determination of the number of components in independent components analysis models. Chemom. Intell. Lab. Syst. 2012, 112, 24-32.

65. Chikayama, E.; Yamashina, R.; Komatsu, K.; Tsuboi, Y.; Sakata, K.; Kikuchi, J.; Sekiyama, Y. FoodPro: A Web-Based Tool for Evaluating Covariance and Correlation NMR Spectra Associated with Food Processes. Metabolites 2016, 6.

66. Komatsu, T.; Kobayashi, T.; Hatanaka, M.; Kikuchi, J. Profiling Planktonic Biomass Using Element-Specific, Multicomponent Nuclear Magnetic Resonance Spectroscopy. Env. Sci. Technol. 2015, 49, 7056-7062.

67. Takeuchi, K.; Baskaran, K.; Arthanari, H. Structure determination using solution NMR: Is it worth the effort? J. Magn. Reson. 2019, 306, 195-201.

68. Jimenez, B.; Holmes, E.; Heude, C.; Tolson, R.; Harvey, N.; Lodge, S.; Chetwynd, A.; Cannet, C.; Fang, F.; Pearce, J., et al. Quantitative Lipoprotein Subclass and Low Molecular Weight Metabolite Analysis in Human Serum and Plasma by H-1 NMR Spectroscopy in a Multilaboratory Trial. Anal. Chem. 2018, 90, 11962-11971.

69. Singh, K.; Kumar, S.P.; Blumich, B. Monitoring the mechanism and kinetics of a transesterification reaction for the biodiesel production with low field H-1 NMR spectroscopy. Fuel 2019, 243, 192- 201.

70. Wishart, D.S. NMR metabolomics: A look ahead. J. Magn. Reason. 2019, 306, 155-161.

71. Maeda, H.; Yanagisawa, Y. Future prospects for NMR magnets: A perspective. J. Magn. Reason. 2019, 306, 80-85.

72. Kovacs, H.; Moskau, D.; Spraul, M. Cryogenically cooled probes - a leap in NMR technology. Prog. Nucl. Magn. Reason. Spectrosc. 2005, 46, 131-155.

73. Clos, L.J.; Jofre, M.F.; Ellinger, J.J.; Westler, W.M.; Markley, J.L. NMRbot: Python scripts enable high-throughput data collection on current Bruker BioSpin NMR spectrometers. Metabolomics 2013, 9, 558-563.

74. Ardenkjaer-Larsen, J.H.; Fridlund, B.; Gram, A.; Hansson, G.; Hansson, L.; Lerche, M.H.; Servin, R.; Thaning, M.; Golman, K. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. USA 2003, 100, 10158-10163.

75. Kazimierczuk, K.; Orekhov, V. Non-uniform sampling: post-Fourier era of NMR data collection and processing. Magn. Reason. Chem. 2015, 53, 921-926.

76. Pines, A.; Waugh, J.S.; Gibby, M.G. Proton-enhanced nuclear induction spectroscopy. A method for high resolution NMR of dilute spins in solids. J. Chem. Phys. 1972, 56, 1776-1777.

77. Morris, G.A.; Freeman, R. Enhancement of nuclear magnetic resonance signals by polarization transfer. J. Am. Chem. Soc. 1979, 101, 760-762.

78. Blumich, B. Low-field and benchtop NMR. J. Magn. Reason. 2019, 306, 27-35.

79. Meiboom, S.; Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 1958, 29, 688-691.

80. Piotto, M.; Saudek, V.; Sklenár, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 1992, 2, 661-665.

81. Vilen, E.M.; Klinger, M.; Sandstrom, C. Application of diffusion-edited NMR spectroscopy for selective suppression of water signal in the determination of monomer composition in alginates. Magn. Reason. Chem. 2011, 49, 584-591.

82. Chandrakumar, N. 1D Double Quantum Filter NMR Studies. Annu. Rep. NMR Spectrosc. 2009, 67, 265-329.

83. Lopez, J.M.; Cabrera, R.; Maruenda, H. Ultra-Clean Pure Shift 1H-NMR applied to metabolomics profiling. Sci. Rep. 2019, 9.

84. Gouilleux, B.; Rouger, L.; Giraudeau, P. Ultrafast 2D NMR: Methods and Applications. Annu. Rep. NMR Spectrosc. 2018, 93, 75-144.

85. Castanar, L.; Dal Poggetto, G.; Colbourne, A.; Morris, G.; Nilsson, M. The GNAT: A new tool for processing NMR data. Magn. Reason. Chem. 2018, 56, 546-558.

86. Morris, G.; Barjat, H.; Horne, T. Reference deconvolution methods. Prog. Nucl. Magn. Reason. Spectrosc. 1997, 31, 197-257.

87. Taylor, H.; Haiges, R.; Kershaw, A. Increasing Sensitivity in Determining Chemical Shifts in One Dimensional Lorentzian NMR Spectra. J. Phys. Chem. A 2013, 117, 3319-3331.

88. Krishnamurthy, K. CRAFT (complete reduction to amplitude frequency table) - robust and time- efficient Bayesian approach for quantitative mixture analysis by NMR. Magn. Reason. Chem. 2013, 51, 821-829.

89. Ibrahim, M.; Pardi, C.; Brown, T.; McDonald, P. Active elimination of radio frequency interference for improved signal-to-noise ratio for in-situ NMR experiments in strong magnetic field gradients. J. Magn. Reason. 2018, 287, 99-109.

90. Langmead, C.J.; Donald, B.R. Extracting structural information using time-frequency analysis of protein NMR data. In Proceedings of RECOMB 2001: proceedings of the Fifth Annual International Conference on Computational Biology; pp. 164–175.

91. Hirakawa, K.; Koike, K.; Kanawaku, Y.; Moriyama, T.; Sato, N.; Suzuki, T.; Furihata, K.; Ohno, Y. Short-time Fourier Transform of Free Induction Decays for the Analysis of Serum Using Proton Nuclear Magnetic Resonance. J. Oleo Sci. 2019, 68, 369-378.

92. Short, T.; Alzapiedi, L.; Bruschweiler, R.; Snyder, D. A Covariance NMR Toolbox for MATLAB and OCTAVE. J. Magn. Reason. 2011, 209, 75-78.

93. Manu, V.; Gopinath, T.; Wang, S.; Veglia, G. T-2* weighted Deconvolution of NMR Spectra: Application to 2D Homonuclear MAS Solid-State NMR of Membrane Proteins. Sci. Rep. 2019, 9.

94. Yamada, S.; Ito, K.; Kurotani, A.; Yamada, Y.; Chikayama, E.; Kikuchi, J. InterSpin: Integrated Supportive Webtools for Low- and High-Field NMR Analyses Toward Molecular Complexity. Acs Omega 2019, 4, 3361-3369.

95. Kusaka, Y.; Hasegawa, T.; Kaji, H. Noise Reduction in Solid-State NMR Spectra Using Principal Component Analysis. J. Phys. Chem. A 2019, 123, 10333-10338.

96. Stilbs, P. Automated CORE, RECORD, and GRECORD processing of multi-component PGSE NMR diffusometry data. Eur. Biophys. J. Biophys. Lett. 2013, 42, 25-32.

97. Stilbs, P. RECORD processing - A robust pathway to component-resolved HR-PGSE NMR diffusometry. J. Magn. Reason. 2010, 207, 332-336.

98. Stilbs, P.; Paulsen, K.; Griffiths, P. Global least-squares analysis of large, correlated spectral data sets: Application to component-resolved FT-PGSE NMR spectroscopy. J. Phys. Chem. 1996, 100, 8180-8189.

99. Halouska, S.; Powers, R. Negative impact of noise on the principal component analysis of NMR data. J. Magn. Reason. 2006, 178, 88-95.

100. Becker, E.; Ferretti, J.; Gambhir, P. Selection of optimum parameters for pulse Fourier transform nuclear magnetic resonance. Anal. Chem. 1979, 51, 1413-1420.

101. Mo, H.; Harwood, J.; Zhang, S.; Xue, Y.; Santini, R.; Raftery, D. R: A quantitative measure of NMR signal receiving efficiency. J. Magn. Reason. 2009, 200, 239-244.

102. Mo, H.P.; Harwood, J.S.; Raftery, D. A quick diagnostic test for NMR receiver gain compression. Magn. Reason. Chem. 2010, 48, 782-786.

103. Mo, H.; Harwood, J.S.; Raftery, D. Receiver gain function: the actual NMR receiver gain. Magn. Reason. Chem. 2010, 48, 235-238.

104. Mo, H.P.; Harwood, J.; Raftery, D. NMR quantitation: influence of RF inhomogeneity. Magn. Reason. Chem. 2011, 49, 655-658.

105. Liu, H.; Dong, H.; Ge, J.; Bai, B.; Yuan, Z.; Zhao, Z. Research on a secondary tuning algorithm based on SVD & STFT for FID signal. Meas. Sci. Technol. 2016, 27.

106. Zitnik, M.; Zupan, B. NIMFA: A Python Library for Nonnegative Matrix Factorization. J. Mach. Learn. Res. 2012, 13, 849-853.

107. Liu, H.; Dong, H.; Ge, J.; Liu, Z.; Yuan, Z.; Zhu, J.; Zhang, H. A fusion of principal component analysis and singular value decomposition based multivariate denoising algorithm for free induction decay transversal data. Rev. Sci. Instrum. 2019, 90.

108. Keeler, J. Understanding NMR Spectroscopy (2004). Availabe online: https://doi.org/10.17863/CAM.1291 (accessed on 10 February 2021).

109. Dueck, D.; Morris, Q.; Frey, B. Multi-way clustering of microarray data using probabilistic sparse matrix factorization. Bioinformatics 2005, 21, I144-I151.

110. Claridge, T. MNova: NMR Data Processing, Analysis, and Prediction Software. J. Chem. Inf. Model. 2009, 49, 1136-1137.

111. Larive, C.K., Jayawickrama, D., Orfi, L. Quantitative analysis of peptides with NMR spectroscopy. Appl. Spectrosc. 1997, 51(10), 1531-1536.

112. Helmus, J.; Jaroniec, C. Nmrglue: an open source Python package for the analysis of multidimensional NMR data. J. Biomol. NMR 2013, 55, 355-367.

113. Laurberg, H.; Christensen, M.G.; Plumbley, M.D.; Hansen, L.K.; Jensen, S.H. Theorems on positive data: on the uniqueness of NMF. Comput. Intell. Neurosci. 2008, 764206.

114. Kim, H.; Park, H. Sparse non-negative matrix factorizations via alternating non-negativity- constrained least squares for microarray data analysis. Bioinformatics 2007, 23, 1495-1502.

115. Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788-791.

116. Demchak, B.; Hull, T.; Reich, M.; Liefeld, T.; Smoot, M.; Ideker, T.; Mesirov, J.P. Cytoscape: the network visualization tool for GenomeSpace workflows. F1000Res 2014, 3, 151.

117. Misawa, T.; Wei, F.; Kikuchi, J. Application of Two-Dimensional Nuclear Magnetic Resonance for Signal Enhancement by Spectral Integration Using a Large Data Set of Metabolic Mixtures. Anal. Chem. 2016, 88, 6130-6134.

118. Asakura, T.; Sakata, K.; Date, Y.; Kikuchi, J. Regional feature extraction of various fishes based on chemical and microbial variable selection using machine learning. Anal. Methods 2018, 10, 2160-2168.

119. Wei, F.; Fukuchi, M.; Ito, K.; Sakata, K.; Asakura, T.; Date, Y.; Kikuchi, J. Large-Scale Evaluation of Major Soluble Macromolecular Components of Fish Muscle from a Conventional H-1-NMR Spectral Database. Molecules 2020, 25.

120. Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E.A.; Fuss, S.; Mac Dowell, N.; Minx, J.C.; Smith, P.; Williams, C.K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87-97.

121. Zhu, Y.; Romain, C.; Williams, C.K. Sustainable polymers from renewable resources. Nature 2016, 540, 354-362.

122. Inkinen, S.; Hakkarainen, M.; Albertsson, A.; Sodergard, A. From Lactic Acid to Poly(lactic acid) (PLA): Characterization and Analysis of PLA and Its Precursors. Biomacromolecules 2011, 12, 523-532.

123. Schaler, K.; Achilles, A.; Barenwald, R.; Hackel, C.; Saalwachter, K. Dynamics in Crystallites of Poly(epsilon-caprolactone) As Investigated by Solid-State NMR. Macromolecules 2013, 46, 7818- 7825.

124. Foston, M. Advances in solid-state NMR of cellulose. Curr. Opin. Biotechnol. 2014, 27, 176-184.

125. Okushita, K.; Chikayama, E.; Kikuchi, J. Solubilization mechanism and characterization of the structural change of bacterial cellulose in regenerated states through ionic liquid treatment. Biomacromolecules 2012, 13, 1323-1330.

126. Mori, T.; Chikayama, E.; Tsuboi, Y.; Ishida, N.; Shisa, N.; Noritake, Y.; Moriya, S.; Kikuchi, J. Exploring the conformational space of amorphous cellulose using NMR chemical shifts. Carbohydr. Polym. 2012, 90, 1197-1203.

127. Komatsu, T.; Kikuchi, J. Selective Signal Detection in Solid-State NMR Using Rotor- Synchronized Dipolar Dephasing for the Analysis of Hemicellulose in Lignocellulosic Biomass. J. Phys. Chem. Lett. 2013, 4, 2279-2283.

128. Okushita, K.; Komatsu, T.; Chikayama, E.; Kikuchi, J. Statistical approach for solid-state NMR spectra of cellulose derived from a series of variable parameters. Polym. J. 2012, 44, 895-900.

129. Yamazawa, A.; Iikura, T.; Shino, A.; Date, Y.; Kikuchi, J. Solid-, Solution-, and Gas-state NMR Monitoring of C-13-Cellulose Degradation in an Anaerobic Microbial Ecosystem. Molecules 2013, 18, 9021-9033.

130. Komatsu, T.; Kikuchi, J. Comprehensive signal assignment of 13C-labeled lignocellulose using multidimensional solution NMR and 13C chemical shift comparison with solid-state NMR. Anal. Chem. 2013, 85, 8857-8865.

131. Yamazawa, A.; Iikura, T.; Morioka, Y.; Shino, A.; Ogata, Y.; Date, Y.; Kikuchi, J. Cellulose digestion and metabolism induced biocatalytic transitions in anaerobic microbial ecosystems. Metabolites 2013, 4, 36-52.

132. Eden, M. Editorial for the Special Issue on Solid-State NMR Spectroscopy in Materials Chemistry. Molecules 2020, 25.

133. Wang, Z.; Hanrahan, M.; Kobayashi, T.; Perras, F.; Chen, Y.; Engelke, F.; Reiter, C.; Purea, A.; Rossini, A.; Pruski, M. Combining fast magic angle spinning dynamic nuclear polarization with indirect detection to further enhance the sensitivity of solid-state NMR spectroscopy. Solid State Nucl. Magn. Reason. 2020, 109.

134. Pustovalova, Y.; Hoch, J. Sensetivity Gain in Nonuniformly Sampled NMR Experiments. Biophys. J. 2020, 118, 612A-612A.

135. Sugishita, T.; Matsuki, Y.; Fujiwara, T. Absolute H-1 polarization measurement with a spin- correlated component of magnetization by hyperpolarized MAS-DNP solid-state NMR. Solid State Nucl. Magn. Reason. 2019, 99, 20-26.

136. Plainchont, B.; Berruyer, P.; Dumez, J.; Tannin, S.; Giraudeau, P. Dynamic Nuclear Polarization Opens New Perspectives for NMR Spectroscopy in Analytical Chemistry. Anal. Chem. 2018, 90, 3639-3650.

137. Chen, K. A Practical Review of NMR Lineshapes for Spin-1/2 and Quadrupolar Nuclei in Disordered Materials. Int. J. Mol. Sci. 2020, 21.

138. Demco, D.; Johansson, A.; Tegenfeldt, J. Proton spin diffusion for spatial heterogeneity and morphology investigations of polymers. Solid State Nucl. Magn. Reason. 1995, 4, 13-38.

139. Buda, A.; Demco, D.; Bertmer, M.; Blumich, B.; Reining, B.; Keul, H.; Hocker, H. Domain sizes in heterogeneous polymers by spin diffusion using single-quantum and double-quantum dipolar filters. Solid State Nucl. Magn. Reason. 2003, 24, 39-67.

140. Masuda, K.; Kaji, H.; Horii, F. Solid-state C-13 NMR and H-1 CRAMPS investigations of the hydration process and hydrogen bonding for poly(vinyl alcohol) films. Polym. J. 2001, 33, 356- 363.

141. Struppe, J.; Quinn, C.; Lu, M.; Wang, M.; Hou, G.; Lu, X.; Kraus, J.; Andreas, L.; Stanek, J.; Lalli, D., et al. Expanding the horizons for structural analysis of fully protonated protein assemblies by NMR spectroscopy at MAS frequencies above 100 kHz. Solid State Nucl. Magn. Reason. 2017, 87, 117-125.

142. Besghini, D.; Mauri, M.; Simonutti, R. Time Domain NMR in Polymer Science: From the Laboratory to the Industry. Appl. Sci. 2019, 9.

143. Ogura, T.; Date, Y.; Kikuchi, J. Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota. Plos One 2013, 8.

144. Mileo, P.; Yuan, S.; Ayala, S.; Duan, P.; Semino, R.; Cohen, S.; Schmidt-Rohr, K.; Maurin, G. Structure of the Polymer Backbones in polyMOF Materials. J. Am. Chem. Soc. 2020, 142, 10863- 10868.

145. Schaler, K.; Roos, M.; Micke, P.; Golitsyn, Y.; Seidlitz, A.; Thurn-Albrecht, T.; Schneider, H.; Hempel, G.; Saalwachter, K. Basic principles of static proton low-resolution spin diffusion NMR in nanophase-separated materials with mobility contrast. Solid State Nucl. Magn. Reason. 2015, 72, 50-63.

146. Schneider, H.; Saalwachter, K.; Roos, M. Complex Morphology of the Intermediate Phase in Block Copolymers and Semicrystalline Polymers As Revealed by H-1 NMR Spin Diffusion Experiments. Macromolecules 2017, 50, 8598-8610.

147. Weingarth, M.; Tekely, P.; Bruschweiler, R.; Bodenhausen, G. Improving the quality of 2D solid- state NMR spectra of microcrystalline proteins by covariance analysis. Chem. Commun. 2010, 46, 952-954.

148. Bak, M.; Rasmussen, J.; Nielsen, N. SIMPSON: A general simulation program for solid-state NMR spectroscopy. J. Magn. Reason. 2000, 147, 296-330.

149. Veshtort, M.; Griffin, R. SPINEVOLUTION: A powerful tool for the simulation of solid and liquid state NMR experiments. J. Magn. Reason. 2006, 178, 248-282.

150. Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calve, S.; Alonso, B.; Durand, J.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reason. Chem. 2002, 40, 70-76.

151. Grimminck, D.; van Meerten, B.; Verkuijlen, M.; van Eck, E.; Meerts, W.; Kentgens, A. EASY- GOING deconvolution: Automated MQMAS NMR spectrum on a model with analytical crystallite excitation efficiencies. J. Magn. Reason. 2013, 228, 116-124.

152. Smith, A. INFOS: spectrum fitting software for NMR analysis. J. Biomol. NMR 2017, 67, 77-94.

153. Wojdyr, M. Fityk: a general-purpose peak fitting program. J. Appl. Cryst. 2010, 43, 1126-1128.

154. van Meerten, S.; Franssen, W.; Kentgens, A. ssNake: A cross-platform open-source NMR data processing and fitting application. J. Magn. Reason. 2019, 301, 56-66.

155. Yamada, S.; Kurotani, A.; Chikayama, E.; Kikuchi, J. Signal Deconvolution and Noise Factor Analysis Based on a Combination of Time-Frequency Analysis and Probabilistic Sparse Matrix Factorization. Int. J. Mol. Sci. 2020, 21.

156. Kaneko, H. Data Visualization, Regression, Applicability Domains and Inverse Analysis Based on Generative Topographic Mapping. Mol. Inf. 2019, 38.

157. Kossaifi, J.; Panagakis, Y.; Anandkumar, A.; Pantic, M. TensorLy: Tensor Learning in Python. J. Mach. Learn. Res. 2019, 20.

158. Dal Poggetto, G.; Castanar, L.; Adams, R.; Morris, G.; Nilsson, M. Dissect and Divide: Putting NMR Spectra of Mixtures under the Knife. J. Am. Chem. Soc. 2019, 141, 5766-5771.

159. Kasai, T.; Ono, S.; Koshiba, S.; Yamamoto, M.; Tanaka, T.; Ikeda, S.; Kigawa, T. Amino-acid selective isotope labeling enables simultaneous overlapping signal decomposition and information extraction from NMR spectra. J. Biomol. NMR 2020, 74, 125-137.

160. Ito, K.; Obuchi, Y.; Chikayama, E.; Date, Y.; Kikuchi, J. Exploratory machine-learned theoretical chemical shifts can closely predict metabolic mixture signals. Chem. Sci. 2018, 9, 8213-8220.

161. Miyao, T.; Kaneko, H.; Funatsu, K. Inverse QSPR/QSAR Analysis for Chemical Structure Generation (from y to x). J. Chem. Inf. Model. 2016, 56, 286-299.

162. Aursand, M.; Standal, I.; Axelson, D. High-resolution (13)C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules. J. Agric. Food Chem. 2007, 55, 38-47.

163. Zhang, J.; Terayama, K.; Sumita, M.; Yoshizoe, K.; Ito, K.; Kikuchi, J.; Tsuda, K. NMR-TS: de novo molecule identification from NMR spectra. Sci. Technol. Adv. Mater. 2020, 21, 552-561.

164. Aguilera-Saez, L.; Arrabal-Campos, F.; Callejon-Ferre, A.; Medina, M.; Fernandez, I. Use of multivariate NMR analysis in the content prediction of hemicellulose, cellulose and lignin in greenhouse crop residues. Phytochemistry 2019, 158, 110-119.

165. Tang, Q.; Chen, Y.; Yang, H.; Liu, M.; Xiao, H.; Wu, Z.; Chen, H.; Naqvi, S. Prediction of Bio- oil Yield and Hydrogen Contents Based on Machine Learning Method: Effect of Biomass Compositions and Pyrolysis Conditions. Energy Fuels 2020, 34, 11050-11060.

166. Kasmuri, N.; Kamarudin, S.; Abdullah, S.; Hasan, H.; Som, A. Integrated advanced nonlinear neural network-simulink control system for production of bio-methanol from sugar cane bagasse via pyrolysis. Energy 2019, 168, 261-272.

167. Yucel, O.; Aydin, E.; Sadikoglu, H. Comparison of the different artificial neural networks in prediction of biomass gasification products. Int. J. Energy Res. 2019, 43, 5992-6003.

168. Chen, X.; Zhang, H.; Song, Y.; Xiao, R. Prediction of product distribution and bio-oil heating value of biomass fast pyrolysis. Chem. Eng. Process. Process Intensif. 2018, 130, 36-42.

169. Verma, R.P.; Hansch, C. Use of 13C NMR chemical shift as QSAR/QSPR descriptor. Chem. Rev. 2011, 111, 2865-2899.

170. Himanen, L.; Geurts, A.; Foster, A.; Rinke, P. Data-Driven Materials Science: Status, Challenges, and Perspectives (vol 6, 1900808, 2019). Adv. Sci. 2020, 7.

171. Ma, R.; Luo, T. PI1M: A Benchmark Database for Polymer Informatics. J. Chem. Inf. Model. 2020, 60, 4684-4690.

172. Granda, J.M.; Donina, L.; Dragone, V.; Long, D.L.; Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 2018, 559, 377-381.

173. Li, M.; Pu, Y.; Chen, F.; Ragauskas, A.J. Synthesis and Characterization of Lignin-grafted-poly(ε- caprolactone) from Different Biomass Sources. N. Biotechnol. 2021, 60, 189-199.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る