リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Programmable mammalian translational modulators by CRISPR-associated proteins」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Programmable mammalian translational modulators by CRISPR-associated proteins

Kawasaki, Shunsuke Ono, Hiroki Hirosawa, Moe Kuwabara, Takeru Sumi, Shunsuke Lee, Suji Woltjen, Knut Saito, Hirohide 京都大学 DOI:10.1038/s41467-023-37540-7

2023

概要

Translational modulation based on RNA-binding proteins can be used to construct artificial gene circuits, but RNA-binding proteins capable of regulating translation efficiently and orthogonally remain scarce. Here we report CARTRIDGE (Cas-Responsive Translational Regulation Integratable into Diverse Gene control) to repurpose Cas proteins as translational modulators in mammalian cells. We demonstrate that a set of Cas proteins efficiently and orthogonally repress or activate the translation of designed mRNAs that contain a Cas-binding RNA motif in the 5’-UTR. By linking multiple Cas-mediated translational modulators, we designed and built artificial circuits like logic gates, cascades, and half-subtractor circuits. Moreover, we show that various CRISPR-related technologies like anti-CRISPR and split-Cas9 platforms could be similarly repurposed to control translation. Coupling Cas-mediated translational and transcriptional regulation enhanced the complexity of synthetic circuits built by only introducing a few additional elements. Collectively, CARTRIDGE has enormous potential as a versatile molecular toolkit for mammalian synthetic biology.

この論文で使われている画像

参考文献

1.

Flow cytometry data analysis

Flow cytometry data sets were analyzed using FlowJo version 10.5.3

(BD Biosciences) and Excel (Microsoft). Gates were generated using

mock samples. Data from debris were eliminated when preparing

forward- versus side-scatter dot plots (FSC-A versus SSC-A). Then,

events on the chart edges in the dot plots of the EGFP intensity versus

the iRFP670 intensity were removed. In the histogram where iRFP670intensity is displayed on the X-axis, the iRFP670-positive (referencepositive) gate was defined (Supplementary Fig. 1C). In the following

analysis, the median of reporter/reference of each cell was calculated

from the reference positive population using FlowJo.

Relative reporter expression was defined using the following

formulas:

Normalized intensity ðNIÞ = 1000 ×

median of the ratioðreporter intensity=reference intensityÞ of each cell

2.

3.

4.

5.

6.

7.

ð8Þ

8.

Relative intensity ðRIÞ = ðNI of trigger + Þ=ðNI of triggerÞ

ð9Þ

Relative reporter expression = ðRIÞ=ðRI of }No gRNA} sampleÞ

ð10Þ

9.

10.

11.

In Supplementary Fig. 2, all RI values were normalized by the value

of the [Trigger -] [No gRNA] sample.

In Fig. 7D, fold activation was defined as RI value normalized by

the value of the [-,-,-] sample.

The fold change in Supplementary Fig. 17C was defined as RI in ON

switch and the reciprocal of RI in OFF switch.

In Fig. 6D, the net fold-change was calculated by dividing the NI in

ON state ([1,1]) by the averaged value of NI in OFF states ([0,0], [0,1],

and [1,0]). Vector proximity angle is the angle between two

4-dimensional vectors. One is a truth table vector that has ideal output

(= 0 or 1) for each state ([0,0], [1,0], [0,1], and [1,1]). The other is a

vector that carries the observed output levels (=NI) of each state ([0,0],

[1,0], [0,1], and [1,1]). Thus, θ ranges from 0˚ (best) to 90˚ (worst).

Nature Communications | (2023)14:2243

12.

13.

14.

15.

16.

Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging

principles of gene expression control. Nat. Rev. Genet. 21,

630–644 (2020).

Healy, C. P. & Deans, T. L. Genetic circuits to engineer tissues with

alternative functions. J. Biol. Eng. 13, 1–7 (2019).

Summary, R., Kitada, T., DiAndreth, B., Teague, B. & Weiss, R. Programming gene and engineered-cell therapies with synthetic biology. Science 359, eaad1067 (2018).

Greber, D. & Fussenegger, M. An engineered mammalian bandpass network. Nucleic Acids Res. 38, e174 (2010).

Ausländer, S., Ausländer, D., Müller, M., Wieland, M. & Fussenegger,

M. Programmable single-cell mammalian biocomputers. Nature

487, 123–127 (2012).

Kim, H., Bojar, D. & Fussenegger, M. A CRISPR/Cas9-based central

processing unit to program complex logic computation in human

cells. Proc. Natl Acad. Sci. USA 116, 7214–7219 (2019).

Xie, M. & Fussenegger, M. Mammalian designer cells: Engineering

principles and biomedical applications. Biotechnol. J. 10,

1005–1018 (2015).

Tigges, M., Marquez-Lago, T. T., Stelling, J. & Fussenegger, M. A

tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009).

Kramer, B. P. & Fussenegger, M. Hysteresis in a synthetic mammalian gene network. Proc. Natl Acad. Sci. USA 102, 9517–9522 (2005).

Sheth, R. U. & Wang, H. H. DNA-based memory devices for

recording cellular events. Nat. Rev. Genet. 19, 718–732 (2018).

Donahue, P. S. et al. The COMET toolkit for composing customizable genetic programs in mammalian cells. Nat. Commun. 11,

779 (2020).

Li, Y. et al. Modular construction of mammalian gene circuits using

TALE transcriptional repressors. Nat. Chem. Biol. 11, 207–213 (2015).

Weinberg, B. H. et al. Large-scale design of robust genetic circuits

with multiple inputs and outputs for mammalian cells. Nat. Biotechnol. 35, 453–462 (2017).

Suzuki, S. et al. Meganuclease-based artificial transcription factors.

ACS Synth. Biol. 9, 2679–2691 (2020).

Fink, T. et al. Design of fast proteolysis-based signaling and logic

circuits in mammalian cells. Nat. Chem. Biol. 15, 115–122 (2019).

Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable

protein circuits in living cells. Science 361, 1252–1258 (2018).

15

Article

17. Saito, H. et al. Synthetic translational regulation by an L7Ae-kinkturn RNP switch. Nat. Chem. Biol. 6, 71–78 (2010).

18. Matsuura, S. et al. Synthetic RNA-based logic computation in

mammalian cells. Nat. Commun. 9, 4847 (2018).

19. Wroblewska, L. et al. Mammalian synthetic circuits with RNA binding

proteins for RNA-only delivery. Nat. Biotechnol. 33, 839–841 (2015).

20. Kawasaki, S., Fujita, Y., Nagaike, T., Tomita, K. & Saito, H. Synthetic

mRNA devices that detect endogenous proteins and distinguish

mammalian cells. Nucleic Acids Res. 45, e117 (2017).

21. Ono, H., Kawasaki, S. & Saito, H. Orthogonal protein-responsive

mRNA switches for mammalian synthetic biology. ACS Synth. Biol.

9, 169–174 (2020).

22. Cella, F., Wroblewska, L., Weiss, R. & Siciliano, V. Engineering

protein-protein devices for multilayered regulation of mRNA

translation using orthogonal proteases in mammalian cells. Nat.

Commun. 9, 4392 (2018).

23. Jinek, M. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

24. Pyzocha, N. K. & Chen, S. Diverse class 2 CRISPR-Cas effector

proteins for genome engineering applications. ACS Chem. Biol. 13,

347–356 (2018).

25. Endo, K. & Saito, H. Engineering protein-responsive mRNA switch in

mammalian cells. Methods Mol. Biol. 1111, 183–196 (2014).

26. Endo, K., Hayashi, K., Inoue, T. & Saito, H. A versatile cis-acting

inverter module for synthetic translational switches. Nat. Commun.

4, 2393 (2013).

27. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas

systems. Science 339, 819–823 (2013).

28. Mali, P. et al. RNA-guided human genome engineering via Cas9.

Science 339, 823–826 (2013).

29. Wang, H., la Russa, M. & Qi, L. S. CRISPR/Cas9 in genome editing

and beyond. Annu Rev. Biochem. 85, 227–264 (2016).

30. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPRCas9–based transcription factors. Nat. Methods 10, 973–976 (2013).

31. Rauch, B. J. et al. Inhibition of CRISPR-Cas9 with bacteriophage

proteins. Cell 168, 150–158.e10 (2017).

32. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas

systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol.

18, 67–83 (2020).

33. Shmakov, S. et al. Diversity and evolution of class 2 CRISPR-Cas

systems. Nat. Rev. Microbiol. 15, 169–182 (2017).

34. East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2

enable guide-RNA processing and RNA detection. Nature 538,

270–273 (2016).

35. Fonfara, I., Richter, H., BratoviÄ, M., le Rhun, A. & Charpentier, E. The

CRISPR-associated DNA-cleaving enzyme Cpf1 also processes

precursor CRISPR RNA. Nature 532, 517–521 (2016).

36. Borchardt, E. K. et al. Controlling mRNA stability and translation

with the CRISPR endoribonuclease Csy4. RNA 21, 1921–1930 (2015).

37. Campa, C. C., Weisbach, N. R., Santinha, A. J., Incarnato, D. & Platt,

R. J. Multiplexed genome engineering by Cas12a and CRISPR arrays

encoded on single transcripts. Nat. Methods 16, 887–893 (2019).

38. Zetsche, B. et al. Multiplex gene editing by CRISPR-Cpf1 using a

single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).

39. Kozak, M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361, 13–37 (2005).

40. Wagner, T. E. et al. Small-molecule-based regulation of RNAdelivered circuits in mammalian cells. Nat. Chem. Biol. 14,

1043–1050 (2018).

41. Nakanishi, H. & Saito, H. Caliciviral protein-based artificial translational activator for mammalian gene circuits with RNA-only delivery. Nat. Commun. 11, 2–3 (2020).

42. Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for

inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).

Nature Communications | (2023)14:2243

https://doi.org/10.1038/s41467-023-37540-7

43. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable

CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33,

755–760 (2015).

44. Ma, D., Peng, S. & Xie, Z. Integration and exchange of split dCas9

domains for transcriptional controls in mammalian cells. Nat.

Commun. 7, 1–7 (2016).

45. Liu, X. Q. & Hu, Z. A DnaB intein in Rhodothermus marinas: indication of recent intein homing across remotely related organisms.

Proc. Natl Acad. Sci. USA 94, 7851–7856 (1997).

46. Lohmueller, J. J., Armel, T. Z. & Silver, P. A. A tunable zinc fingerbased framework for Boolean logic computation in mammalian

cells. Nucleic Acids Res. 40, 5180–5187 (2012).

47. Rivera, V. M., Berk, L. & Clackson, T. Dimerizer-mediated regulation

of gene expression in vivo. Cold Spring Harb. Protoc. 2012,

821–824 (2012).

48. Marino, N. D., Pinilla-Redondo, R., Csörgő, B. & Bondy-Denomy, J.

Anti-CRISPR protein applications: natural brakes for CRISPR-Cas

technologies. Nat. Methods 17, 471–479 (2020).

49. Shivram, H., Cress, B. F., Knott, G. J. & Doudna, J. A. Controlling and

enhancing CRISPR systems. Nat. Chem. Biol. 17, 10–19 (2021).

50. Zhu, Y. et al. Diverse mechanisms of CRISPR-Cas9 inhibition by type

IIC Anti-CRISPR proteins. Mol. Cell 74, 296–309.e7 (2019).

51. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional

programming. Nat. Methods 12, 326–328 (2015).

52. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

53. Liu, K., Yang, J., Ding, S. & Gao, Y. Daisy chain topology based

mammalian synthetic circuits for RNA-only delivery. ACS Synth.

Biol. 9, 269–282 (2020).

54. Gao, Y. & Zhao, Y. Self-processing of ribozyme-flanked RNAs into

guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. 56, 343–349 (2014).

55. Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P. & Lu, T. K. Multiplexed and programmable regulation of gene networks with an

integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 54,

698–710 (2014).

56. Wilusz, J. E. et al. A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev. 26, 2392–2407

(2012).

57. Chen, Z. et al. De novo design of protein logic gates. Science 368,

78–84 (2020).

58. Oakes, B. L. et al. CRISPR-Cas9 circular permutants as programmable scaffolds for genome modification. Cell 176,

254–267.e16 (2019).

59. Zhong, G., Wang, H., Li, Y., Tran, M. H. & Farzan, M. Cpf1 proteins

excise CRISPR RNAs from mRNA transcripts in mammalian cells.

Nat. Chem. Biol. 13, 839–841 (2017).

60. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a

class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

61. DiAndreth, B., Wauford, N., Hu, E., Palacios, S. & Weiss, R. PERSIST

platform provides programmable RNA regulation using CRISPR

endoRNases. Nat. Commun. 13, 2582 (2022).

62. Horie, F., Endo, K. & Ito, K. Artificial protein-responsive riboswitches

upregulate non-AUG translation initiation in yeast. ACS Synth. Biol.

9, 1623–1631 (2020).

63. Frei, T. et al. Characterization and mitigation of gene expression

burden in mammalian cells. Nat. Commun. 11, 1–14 (2020).

64. Hirano, H. et al. Structure and engineering of Francisella novicida

Cas9. Cell 164, 950–961 (2016).

65. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus

Cas9. Nature 520, 186–191 (2015).

66. Maji, B. et al. A high-throughput platform to identify small-molecule

inhibitors of CRISPR-Cas9. Cell 177, 1067–1079.e19 (2019).

67. Pausch, P. et al. CRISPR-CasΦ from huge phages is a hypercompact

genome editor. Science 369, 333–337 (2020).

16

Article

68. Xu, C. et al. Programmable RNA editing with compact

CRISPR–Cas13 systems from uncultivated microbes. Nat. Methods

18, 499–506 (2021).

69. Daume, M., Uhl, M., Backofen, R. & Randau, L. RIP-seq suggests

translational regulation by L7Ae in Archaea. mBio 8, 1–14 (2017).

70. Oceguera-Yanez, F. et al. Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their

differentiated derivatives. Methods 101, 43–55 (2016).

Acknowledgements

We thank Dr. Peter Karagiannis, Dr. Kelvin K. Hui (Kyoto University), and

Dr. Zoher Gueroui (École Normale Supérieure) for critical reading of the

manuscript; Yusuke Shiba, Ryo Hirayama, and Shintaro Oe (Kyoto University) for helping with the experiments; and Miho Nishimura, Yuko

Kono, Hiromi Takemoto, and Shodai Komatsu (Kyoto University) for their

administrative support. We also thank Dr. Hideyuki Nakanishi (Tokyo

Medical and Dental University) for the intein information, Dr. Yoshihiko

Fujita (Kyoto University) for establishing the imaging quantification

method, Dr. Akitsu Hotta (Kyoto University) for providing the AsCas12a

ORF, and Shigetoshi Kameda (Kyoto University) for providing some IVT

templates. This work was supported by JSPS KAKENHI Grant Number JP

19K16110 (to S.K.), 19J21199 (to H.O.), 20K15777 (to M.H.), 15H05722, and

20H05626 (to H.S.), and the iPS Cell Research Fund.

https://doi.org/10.1038/s41467-023-37540-7

record listed on the patents. H.S. own shares of aceRNA Technologies

Ltd., and has outside director of aceRNA Technologies Ltd. The other

authors declare no competing interests.

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-023-37540-7.

Correspondence and requests for materials should be addressed to

Shunsuke Kawasaki or Hirohide Saito.

Peer review information Nature Communications thanks Nozomu

Yachie, Chong Zhang and the other, anonymous, reviewer(s) for their

contribution to the peer review of this work. Peer reviewer reports are

available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Competing interests

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

Kyoto University has filed a patent application regarding the CARTRIDGE

method (JP2020044905). S.K., H.O., M.H., and H.S. are the inventors of

© The Author(s) 2023

Author contributions

S.K. and H.S. managed the project. S.K. conceived the idea. M.H. found

the translational repression ability of SpCas9. S.K., H.O., M.H., and H.S.

designed the project. S.K., H.O., M.H., and T.K. performed the experiments and analyzed the data. S.S. performed bioinformatic analysis,

including calculation of MFE and the orthogonality verification. S.L. and

K.W. established the Dox-inducible dCas9 cell line. H.O. mainly prepared the figures under the supervision of S.K.. S.K., H.O., M.H., and H.S.

wrote the manuscript. S.K., H.O., and M.H. contributed equally to

this work.

Nature Communications | (2023)14:2243

17

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る