リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「SINEUP long non-coding RNA acts via PTBP1 and HNRNPK to promote translational initiation assemblies」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

SINEUP long non-coding RNA acts via PTBP1 and HNRNPK to promote translational initiation assemblies

土岐 直子 横浜市立大学

2020.12.31

概要

SINEUPs are long non-coding RNAs (lncRNAs) that contain a SINE element, and which up-regulate the translation of target mRNA. They have been studied in a wide range of applications, as both biological and therapeutic tools, although the underpinning molecular mechanism is unclear. Here, we focused on the sub-cellular distribution of target mRNAs and SINEUP RNAs, performing co-transfection of expression vectors for these transcripts into human embryonic kidney cells (HEK293T/17), to investigate the network of translational regulation. The results showed that co-localization of target mRNAs and SINEUP RNAs in the cytoplasm was a key phenomenon. We identified PTBP1 and HNRNPK as essential RNA binding proteins. These proteins contributed to SINEUP RNA sub-cellular distribution and to assembly of translational initiation complexes, leading to enhanced target mRNA translation. These findings will promote a better understanding of the mechanisms employed by regulatory RNAs implicated in efficient protein translation.

この論文で使われている画像

参考文献

1. Carninci,P., Kasukawa,T., Katayama,S., Gough,J., Frith,M.C., Maeda,N., Oyama,R., Ravasi,T., Lenhard,B., Wells,C. et al. (2005) The transcriptional landscape of the mammalian genome. Science, 309, 1559–1563.

2. The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74.

3. Katayama,S., Tomaru,Y., Kasukawa,T., Waki,K., Nakanishi,M., Nakamura,M., Nishida,H., Yap,C.C., Suzuki,M., Kawai,J. et al. (2005) Antisense transcription in the mammalian transcriptome. Science, 309, 1564–1566.

4. Kapranov,P., Cheng,J., Dike,S., Nix,D.A., Duttagupta,R., Willingham,A.T., Stadler,P.F., Hertel,J., Hackermuller,J., Hofacker,I.L. et al. (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316, 1484–1488.

5. de Hoon,M., Shin,J.W. and Carninci,P. (2015) Paradigm shifts in genomics through the FANTOM projects. Mamm. Genome, 26, 391–402.

6. Hu,W., Alvarez-Dominguez,J.R. and Lodish,H.F. (2012) Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep., 13, 971–983.

7. Rinn,J.L. and Chang,H.Y. (2012) Genome regulation by long noncoding RNAs. Annu. Rev. Biochem., 81, 145–166.

8. Quinn,J.J. and Chang,H.Y. (2016) Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet., 17, 47–62.

9. Carrieri,C., Cimatti,L., Biagioli,M., Beugnet,A., Zucchelli,S., Fedele,S., Pesce,E., Ferrer,I., Collavin,L., Santoro,C. et al. (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature, 491, 454–457.

10. Zucchelli,S., Fasolo,F., Russo,R., Cimatti,L., Patrucco,L., Takahashi,H., Jones,M.H., Santoro,C., Sblattero,D., Cotella,D. et al. (2015) SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells. Front. Cell. Neurosci., 9, 174.

11. Patrucco,L., Chiesa,A., Soluri,M.F., Fasolo,F., Takahashi,H., Carninci,P., Zucchelli,S., Santoro,C., Gustincich,S., Sblattero,D. et al. (2015) Engineering mammalian cell factories with SINEUP noncoding RNAs to improve translation of secreted proteins. Gene, 569, 287–193.

12. Indrieri,A., Grimaldi,C., Zucchelli,S., Tammaro,R., Gustincich,S. and Franco,B. (2016) Synthetic long non-coding RNAs [SINEUPs] rescue defective gene expression in vivo. Sci. Rep., 6, 27315.

13. Olivo-Marin,JC (2002) Extraction of spots in biological images using multiscale products. Pattern Recognit., 35, 1989–1996.

14. Lagache,T., Sauvonnet,N., Danglot,L. and Olivo-Marin,J.C. (2015) Statistical analysis of molecule colocalization in bioimaging. Cytometry A, 87, 568–579.

15. Chu,C., Zhang,Q.C., da Rocha,S.T., Flynn,R.A., Bharadwaj,M., Calabrese,J.M., Magnuson,T., Heard,E. and Chang,H.Y. (2015) Systematic discovery of Xist RNA binding proteins. Cell, 161, 404–416.

16. Faye,M.D., Graber,T.E. and Holcik,M. (2014) Assessment of selective mRNA translation in mammalian cells by polysome profiling. J. Vis. Exp., 92, e52295.

17. de la Parra,C., Ernlund,A., Alard,A., Ruggles,K., Ueberheide,B. and Schneider,R.J. (2018) A widespread alternate form of cap-dependent mRNA translation initiation. Nat. Commun., 9, 3068.

18. Van Nostrand,E.L., Nguyen,T.B., Gelboin-Burkhart,C., Wang,R., Blue,S.M., Pratt,G.A., Louie,A.L. and Yeo,G.W. (2017) Erratum to: Robust, cost-effective profiling of RNA binding protein targets with single-end enhanced crosslinking and immunoprecipitation (seCLIP). Methods Mol. Biol., 1648, E1.

19. Marcel,M. (2011) Cutadapt removes adapter sequences from High-Throughput sequencing reads. EMBnet Journal, 17, 10–12.

20. Gordon,A. and Hannon,G.J. (2010) Fastx-toolkit. FASTQ/A short-reads pre-processing tools.

21. Dobin,A., Davis,C.A., Schlesinger,F., Drenkow,J., Zaleski,C., Jha,S., Batut,P., Chaisson,M. and Gingeras,T.R. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21.

22. Barnett,D.W., Garrison,E.K., Quinlan,A.R., Stromberg,M.P. and ¨ Marth,G.T. (2011) BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics, 27, 1691–1692.

23. Lubelsky,Y. and Ulitsky,I. (2018) Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature, 555, 107–111.

24. Anders,S., Pyl,P.T. and Huber,W. (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166–169.

25. Love,M.I., Huber,W. and Anders,S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550.

26. Alexa,A and Rahnenfuhrer,J. (2019) topGO: enrichment analysis for gene ontology. R package version 2.37.0.

27. Michael,W.M., Eder,P.S. and Dreyfuss,G. (1997) The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J., 16, 3587–3598.

28. Feliers,D., Lee,M.J., Ghosh-Choudhury,G., Bomsztyk,K. and Kasinath,B.S. (2007) Heterogeneous nuclear ribonucleoprotein K contributes to angiotensin II stimulation of vascular endothelial growth factor mRNA translation. Am. J. Physiol. Renal. Physiol., 293, F607–F615.

29. Naarmann,I.S., Harnisch,C., Flach,N., Kremmer,E., Kuhn,H., Ostareck,D.H. and Ostareck-Lederer,A. (2008) mRNA silencing in human erythroid cell maturation: heterogeneous nuclear ribonucleoprotein K controls the expression of its regulator c-Src. J. Biol. Chem., 283, 18461–18472.

30. Singh,R., Valcarcel,J. and Green,M.R. (1995) Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science, 268, 1173–1176.

31. Sawicka,K., Bushell,M., Spriggs,K.A. and Willis,A.E. (2008) Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem. Soc. Trans., 36, 641–647.

32. Romanelli,M.G., Diani,E. and Lievens,P.M. (2013) New insights into functional roles of the polypyrimidine tract-binding protein. Int. J. Mol. Sci., 14, 22906–22932.

33. Avni,D., Biberman,Y. and Meyuhas,O. (1997) The 5 terminal oligopyrimidine tract confers translational control on TOP mRNAs in a cell type- and sequence context-dependent manner. Nucleic Acids Res., 25, 995–1001.

34. Meyuhas,O. (2000) Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem., 267, 6321–6330.

35. Gismondi,A., Caldarola,S., Lisi,G., Juli,G., Chellini,L., Iadevaia,V., Proud,C.G. and Loreni,F. (2014) Ribosomal stress activates eEF2K-eEF2 pathway causing translation elongation inhibition and recruitment of terminal oligopyrimidine (TOP) mRNAs on polysomes. Nucleic Acids Res., 42, 12668–12680.

36. Gentilella,A., Moron-Duran,F.D., Fuentes,P., Zweig-Rocha,G., Riano-Canalias,F., Pelletier,J., Ruiz,M., Turon,G., Castano,J., Tauler,A. et al. (2017) Autogenous control of 5 TOP mRNA stability by 40S ribosomes. Mol. Cell, 67, 55–70.

37. Caceres,C.J., Contreras,N., Angulo,J., Vera-Otarola,J., Pino-Ajenjo,C., Llorian,M., Ameur,M., Lisboa,F., Pino,K., Lowy,F. et al. (2016) Polypyrimidine tract-binding protein binds to the 5 untranslated region of the mouse mammary tumor virus mRNA and stimulates cap-independent translation initiation. FEBS J., 283, 1880–1901.

38. Stoneley,M. and Willis,A.E. (2004) Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene, 23, 3200–3207.

39. Johnson,A.G., Grosely,R., Petrov,A.N. and Puglisi,J.D. (2017) Dynamics of IRES-mediated translation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 372, 20160177.

40. Han,A., Stoilov,P., Linares,A.J., Zhou,Y., Fu,X.-D. and Black,D.L. (2014) De novo prediction of PTBP1 binding and splicing targets reveals unexpected features of its RNA recognition and function. PLoS Comput. Biol., 10, e1003442.

41. Kim,J.H., Hahm,B., Kim,Y.K., Choi,M. and Jang,S.K. (2000) Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm. J. Mol. Biol., 298, 395–405.

42. Lin,N., Chang,K.Y., Li,Z., Gates,K., Rana,Z.A., Dang,J., Zhang,D., Han,T., Yang,C.S., Cunningham,T.J. et al. (2014) An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol. Cell, 53, 1005–1019.

43. Sun,Z., Zhu,M., Lv,P., Cheng,L., Wang,Q., Tian,P., Yan,Z. and Wen,B. (2018) The long noncoding RNA Lncenc1 maintains naive states of mouse ESCs by promoting the glycolysis pathway. Stem Cell Rep., 11, 741–755.

44. Dreyfuss,G., Swanson,M.S. and Pinol-Roma,S. (1988) Heterogeneous nuclear ribonucleoprotein particles and the pathway of mRNA formation. Trends Biochem. Sci., 13, 86–91.

45. Van Treeck,B. and Parker,R. (2018) Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies. Cell, 174, 791–802.

46. Sun,Q., Hao,Q. and Prasanth,K.V. (2018) Nuclear long noncoding RNAs: Key regulators of gene expression. Trends Genet., 34, 142–157.

47. West,J.A., Davis,C.P., Sunwoo,H., Simon,M.D., Sadreyev,R.I., Wang,P.I., Tolstorukov,M.Y. and Kingston,R.E. (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell, 55, 791–802.

48. Hutchinson,J.N., Ensminger,A.W., Clemson,C.M., Lynch,C.R., Lawrence,J.B. and Chess,A. (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, 8, 39.

49. Lamond,A.I. and Spector,D.L. (2003) Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol., 4, 605–612.

50. Yamazaki,T., Souquere,S., Chujo,T., Kobelke,S., Chong,Y.S., Fox,A.H., Bond,C.S., Nakagawa,S., Pierron,G. and Hirose,T. (2018) Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell, 70, 1038–1053.

51. Knott,G.J., Bond,C.S. and Fox,A.H. (2016) The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res., 44, 3989–4004.

52. Bond,C.S. and Fox,A.H. (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J. Cell Biol., 186, 637–644.

53. Sasaki,Y.T.F., Ideue,T., Sano,M., Mituyama,T. and Hirose,T. (2009) MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc. Natl. Acad. Sci. U.S.A., 106, 2525–2530.

54. Castella,S., Bernard,R., Corno,M., Fradin,A. and Larcher,J.-C. (2015) Ilf3 and NF90 functions in RNA biology. WIREs RNA, 6, 243–256.

55. Wu,T.-H., Shi,L., Adrian,J., Shi,M., Nair,R.V., Snyder,M.P. and Kao,P.N. (2018) NF90/ILF3 is a transcription factor that promotes proliferation over differentiation by hierarchical regulation in K562 erythroleukemia cells. PLoS One, 13, e0193126.

56. Fasolo,F., Patrucco,L., Volpe,M., Bon,C., Peano,C., Mignone,F., Carninci,P., Persichetti,F., Santoro,C., Zucchelli,S. et al. (2019) The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs. FASEB J., 33, 13572–13589.

57. Matsumoto,K., Wassarman,K.M. and Wolffe,A.P. (1998) Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. EMBO J., 17, 2107–2121.

58. Shyu,A.B. and Wilkinson,M.F. (2000) The double lives of shuttling mRNA binding proteins. Cell, 102, 135–138.

59. Giorgi,C. and Moore,M.J. (2007) The nuclear nurture and cytoplasmic nature of localized mRNPs. Semin. Cell Dev. Biol., 18, 186–193.

60. Edgar,R., Domrachev,M. and Lash,A.E. (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res., 30, 207–210.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る