リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「骨格筋内在性間葉系前駆細胞の分化制御機構に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

骨格筋内在性間葉系前駆細胞の分化制御機構に関する研究

竹内, 志帆 東京大学 DOI:10.15083/0002002317

2021.10.13

概要

炎症性筋原性疾患であるデュシェンヌ型筋ジストロフィー症(Duchenne muscular dystrophy;DMD)では、骨格筋内に脂肪組織や過剰な線維組織の蓄積(線維化)がみられ、これらは筋再生能や筋機能の低下を招く。その起源は線維芽細胞や脂肪細胞への両分化能をもつ間葉系前駆細胞(mesenchymal progenitor cell;MPC)とされており、MPCはTGFβにより線維芽細胞へと分化し、さらに活性化して筋線維芽細胞となることで、コラーゲンを主成分とする過剰な細胞外基質成分を産生する。病態末期にはMPCに由来する脂肪細胞が出現し骨格筋内脂肪組織を形成する。一方、未分化なMPCは筋再生を促す。このように、MPCの分化はDMDの病態形成に大きく影響を与えるため、生体内における線維芽細胞、脂肪細胞それぞれへの分化制御機構の解明は重要である。本研究では骨格筋内在性のMPCの分化制御機構の解明を目的とした。

第一章 MPCの分化機構の可逆性の検討
 当研究室でラット骨格筋より樹立された脂肪前駆細胞クローン2G11細胞の脂肪分化能は、増殖期のbFGFにより亢進する(FGFシグナルのプライミング効果)。2G11細胞はMPCと同様に筋分化を促すことから、MPCクローンである可能性が考えられる。2G11細胞の線維芽細胞分化能の有無について検討したところ、TGFβにより線維芽細胞マーカー遺伝子(Col1a1、Ctgf、Acta2)発現量、α-SMAタンパク質量はともに増加した。この時、筋線維芽細胞の特徴であるストレスファイバーが形成されていたことから、2G11細胞は活性型の筋線維芽細胞にまで分化でき、MPCとしての性質をもつことがわかった。
 2G11細胞の脂肪分化能はFGFシグナルの入力がなくなると低下する。bFGF除去によって脂肪分化能が低下した2G11細胞に再度bFGFを添加して培養後、脂肪分化を誘導すると、bFGFを持続的に添加して培養した細胞と同等の脂肪分化能を示した。このことから、2G11細胞の脂肪分化能は可逆的に変化することが判明した。
 次に、FGFシグナルにより亢進した2G11細胞の脂肪分化能に対するTGFβシグナルの影響を調べた。bFGFに続けてTGFβを添加したところ2G11細胞の脂肪分化能は低下した。同様の処理をした細胞では線維芽細胞マーカーの発現が増加していたことから、脂肪分化能の低下は線維芽細胞分化の誘導によるものであることがわかった。この時ストレスファイバーはみられなかったため、筋線維芽細胞までは分化していないと考えられた。同様の結果は、先にTGFβを添加し、続けてbFGFを添加した場合でも観察された。これらのことから、FGFシグナルを受けた2G11細胞は、TGFβシグナルの入力により脂肪分化能を失い、同時に線維芽細胞分化を開始することがわかった。
 最後に、2G11細胞から筋線維芽細胞への分化が可逆的であるかどうかについて検証した。2G11細胞にTGFβを添加し、筋線維芽細胞への分化が完了した後に細胞密度を変えて継代した。bFGFを作用させたところ、より低密度で継代した細胞でα-SMA発現が低下し、脂肪分化能が回復する傾向がみられた。
 以上により、骨格筋内MPCの線維芽細胞、脂肪細胞への分化はTGFβシグナルやFGFシグナルのクロストークにより制御され、ひとたび線維芽細胞を経て筋線維芽細胞にまで分化した細胞であっても、未分化状態を経て脂肪分化能を再獲得できるという新たな機構が示された。

第二章 MPCの骨格筋における動態とMPC細胞膜表面分子の機能の解析
 当研究室で作製した2G11細胞の細胞膜表面分子を認識するモノクローナル抗体(5C12抗体)が認識する抗原分子をLC-MS/MS解析により調べたところ、コンドロイチン硫酸プロテオグリカン4(chondroitin sulfate proteoglycan 4;CSPG4)と同定された。以降は5C12抗体を抗ラットCSPG4抗体として用いることとした。
 CSPG4陽性細胞の特性を調べるため、骨格筋からCSPG4陽性細胞をFACSにより単離し、各種細胞マーカーの発現を調べたところ、間葉系細胞、筋系譜細胞、血球系細胞などの細胞マーカーの発現がみられた。一方、骨格筋初代培養細胞から樹立したCSPG4陽性細胞クローンのうち約7割は線維芽細胞、脂肪細胞両者への分化能を示した。これらのことから、骨格筋内在性のCSPG4陽性細胞の一部は筋系譜細胞マーカーや血球系細胞マーカーを発現するものの、その大部分はMPCであることがわかった。
 CSPG4の免疫染色を行ったところ、正常骨格筋ではCSPG4陽性細胞は筋基底膜外側の間質に存在しており、CSPG4陽性細胞の大部分がMPCであるという結果と合致していた。ジストロフィンタンパク質を欠損したDMDモデルラット(DMDラット)骨格筋では、間質のCSPG4陽性細胞数が正常骨格筋に比べて増加するとともに、中心核をもつ再生筋線維周囲にCSPG4が集積していた。そこで、筋損傷とそれに続く筋再生を誘導したラット骨格筋間質におけるCSPG4陽性細胞およびCSPG4集積再生筋線維を定量したところ、CSPG4陽性細胞は損傷3−5日目をピークとする一過的な増加を示した一方、CSPG4集積再生筋線維は筋損傷から5−7日目に一時的に観察された。損傷3−5日目は再生筋線維が形成される時期であり、MPCの筋分化促進作用を鑑みれば、CSPG4陽性細胞の増減はMPCのそれを反映していると考えられた。一方、再生筋線維周囲にCSPG4が一時的に集積していたことから、筋再生へのCSPG4の関与が示唆された。
 最後に、CSPG4がMPCの増殖や分化に関わる可能性について検討した。siRNAによってCSPG4の発現を抑制した2G11細胞ではbFGF依存性の増殖が低下した。そこでCSPG4がFGFシグナルを仲介もしくは修飾する可能性を考え、FGFシグナルのプライミング効果への関与について調べた。その結果、CSPG4発現抑制によりプライミング効果が減弱した。一方、CSPG4発現抑制によりTGFβ誘導性の線維芽細胞マーカー発現は依然としてみられたが、α-SMAの発現やストレスファイバー形成が低下していたことから、線維芽細胞から筋線維芽細胞への分化が阻害されたと考えられた。これらの結果をさらに検証するため、CRISPR/Cas法を用いて2G11細胞にCSPG4の欠損を導入した。得られた2種類のCSPG4欠損2G11細胞クローンの両方でFGFシグナルのプライミング効果が減弱した一方で、TGFβ誘導性のα-SMA発現は増加していた。
 以上により、筋再生時のCSPG4陽性細胞の動態はMPCのそれを反映することがわかった。また、CSPG4はMPCにおけるFGFシグナルを仲介もしくは修飾するだけでなく、筋再生にも関与する可能性が示された。一方、線維芽細胞分化におけるCSPG4の役割についてはsiRNAによる発現抑制実験とCRISPR/Cas法による発現欠損実験で結果に相違がみられた。この点については次章でさらに追究した。

第三章 DMDラットにおけるCSPG4の機能の検証
 In vivoにおけるCSPG4の機能について検証するため、CRISPR/Cas法を用いてCSPG4欠損ラットを作製した。CSPG4遺伝子に変異をもち、CSPG4タンパク質を欠損する3系統(+2bp、-7bp(A)、-7bp(B))が得られた。そのうち得られた産仔の遺伝子型比率が理論値に近かった-7bp(B)系統をDMDラットと掛合せ、以降の解析に用いた。14週齢以降でCSPG4欠損による体重低下がみられた。筋力については、CSPG4欠損による明確な違いはみられなかった。
 DMDラットで筋損傷と再生、線維化および脂肪組織の出現がみられる20−24週齢において、骨格筋の重量測定および組織学的解析を行った。その際、速筋である前脛骨筋と遅筋であるヒラメ筋についてそれぞれ調べた。いずれにおいても筋損傷や再生および脂肪組織蓄積についてCSPG4欠損の影響はみられなかった。一方、前脛骨筋では重量と線維化について違いがみられなかったのに対し、ヒラメ筋ではCSPG4欠損により重量の低下と線維化の亢進がみられた。この時、1型コラーゲン遺伝子(Col1a1)発現量に違いはない一方、1型コラーゲンタンパク質量はCSPG4欠損により低下していた。このことはCSPG4欠損DMDラットヒラメ筋では1型コラーゲンタンパク質の総量が減少する一方で、線維化に寄与する1型コラーゲンタンパク質はむしろ増加していることを示しており、CSPG4欠損2G11細胞でみられたTGFβ依存性のα-SMA発現の増加に関わることが示唆された。
 以上により、MPC由来の筋線維芽細胞により生じる線維化の機序にCSPG4が関与し、その作用は周囲に存在する筋線維タイプにより影響を受ける可能性が示された。

本研究のまとめ
 本研究では、従来、線維芽細胞、脂肪細胞への分化という一方向で捉えられてきたMPCの分化機構の一部が可逆的であることを新たに示した。また、MPCの分化制御に深く関与する新たな因子CSPG4を同定し、その機能の一端を明らかにした。本研究で得られた知見はDMDをはじめとする炎症性筋原性疾患の病態形成機構の理解に大きく貢献し、その治療法の確立にも寄与するものと思われる。

参考文献

Allen, R.E., and Boxhorn, L.K. (1989). Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J. Cell. Physiol. 138, 311–315.

Anderson, J.E., Liu, L., and Kardami, E. (1991). Distinctive patterns of basic fibroblast growth factor (bFGF) distribution in degenerating and regenerating areas of dystrophic (mdx) striated muscles. Dev. Biol. 147, 96–109.

Arsic, N., Zacchigna, S., Zentilin, L., Ramirez-Correa, G., Pattarini, L., Salvi, A., Sinagra, G., and Giacca, M. (2004). Vascular endothelial growth factor stimulates skeletal muscle regeneration in Vivo. Mol. Ther. 10, 844–854.

Aumailley, M., Krieg, T., Razaka, G., and Mullert, P.K. (1982). Influence of cell density on collagen biosynthesis in fibroblast cultures. 206.

Banks, G.B., and Chamberlain, J.S. (2008). The Value of Mammalian Models for Duchenne Muscular Dystrophy in Developing Therapeutic Strategies (Elesvier Inc.).

Barritt, D.S., Pearn, M.T., Zisch, A.H., Lee, S.S., Javier, R.T., Pasquale, E.B., and Stallcup, W.B. (2000). The multi-PDZ domain protein MUPP1 is a cytoplasmic ligand for the membrane-spanning proteoglycan NG2. J. Cell. Biochem. 79, 213–224.

Bentzinger, C.F., Wang, Y.X., and Rudnicki, M.A. (2012). Building Muscle: Molecular Regulation of Myogenesis. Cold Spring Harb. Perspect. Biol. 4, a008342– a008342.

Bernasconi, P., Torchiana, E., Confalonieri, P., Brugnoni, R., Barresi, R., Mora, M., Cornelio, F., Morandi, L., and Mantegazza, R. (1995). Expression of transforming growth factor-beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine. J. Clin. Invest. 96, 1137–1144.

Biname, F., Sakry, D., Dimou, L., Jolivel, V., and Trotter, J. (2013). NG2 Regulates Directional Migration of Oligodendrocyte Precursor Cells via Rho GTPases and Polarity Complex Proteins. J. Neurosci. 33, 10858–10874.

Birbrair, A., Zhang, T., Wang, Z.-M., Messi, M.L., Enikolopov, G.N., Mintz, A., and Delbono, O. (2013a). Role of Pericytes in Skeletal Muscle Regeneration and Fat Accumulation. Stem Cells Dev. 22, 2298–2314.

Birbrair, A., Zhang, T., Wang, Z.-M., Messi, M.L., Mintz, A., and Delbono, O. (2013b). Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am. J. Physiol. Physiol. 305, C1098–C1113.

Bruno, G., Cencetti, F., Pertici, I., Japtok, L., Bernacchioni, C., Donati, C., and Bruni, P. (2015). CTGF/CCN2 exerts profibrotic action in myoblasts via the up- regulation of sphingosine kinase-1/S1P3 signaling axis: Implications in the action mechanism of TGFβ. Biochim. Biophys. Acta 1851, 194–202.

Burg, M.A., Tillet, E., Timpl, R., and Stallcup, W.B. (1996). Binding of the NG2 proteoglycan to type VI collagen and other extracellular matrix molecules. J. Biol. Chem. 271, 26110–26116.

Canty, E.G., and Kadler, K.E. (2005). Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341–1353.

Cao, Z., Umek, R.M., and McKnight, S.L. (1991). Regulated expression of three C / EBP lsoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 5, 1538–1552

Cattaruzza, S., Ozerdem, U., Denzel, M., Ranscht, B., Bulian, P., Cavallaro, U., Zanocco, D., Colombatti, A., Stallcup, W.B., and Perris, R. (2013). Multivalent proteoglycan modulation of FGF mitogenic responses in perivascular cells. Angiogenesis 16, 309–327.

Chang, Y., She, Z.-G., Sakimura, K., Roberts, A., Kucharova, K., Rowitch, D.H., and Stallcup, W.B. (2012). Ablation of NG2 proteoglycan leads to deficits in brown fat function and to adult onset obesity. PLoS One 7, e30637.

Chargé, S.B.P., and Rudnicki, M. a (2004). Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84, 209–238.

Chatterjee, N., Stegmüller, J., Schätzle, P., Karram, K., Koroll, M., Werner, H.B., Nave, K.A., and Trotter, J. (2008). Interaction of syntenin-1 and the NG2 proteoglycan in migratory oligodendrocyte precursor cells. J. Biol. Chem. 283, 8310– 8317.

Chen, P.Y., Qin, L., Li, G., Tellides, G., and Simons, M. (2016). Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation. Sci. Rep. 6, 1–11.

Cholok, D., Lee, E., Lisiecki, J., Agarwal, S., Loder, S., Ranganathan, K., Qureshi, A.T., Davis, T.A., and Levi, B. (2017). Traumatic muscle fibrosis: From pathway to prevention. J. Trauma Acute Care Surg. 82, 174–184.

Cooper, R.N., Tajbakhsh, S., Mouly, V., Cossu, G., Buckingham, M., and Butler- Browne, G.S. (1999). In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J. Cell Sci. 112 (Pt 1, 2895–2901.

Cornelison, D.D., and Wold, B.J. (1997). Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev. Biol. 191, 270–283.

Cushing, M.C., Mariner, P.D., Liao, J.-T., Sims, E.A., and Anseth, K.S. (2008). Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. FASEB J. 22, 1769–1777.

Dehmel, T., Goebel, H.H., Hartung, H.P., Lehmann, H., Wiendl, H., and Kieseier, B.C. (2008). The metalloproteinase-disintegrin ADAM10 is exclusively expressed by type I muscle fibers. Muscle and Nerve 38, 1049–1051.

Desai, V.D., Hsia, H.C., and Schwarzbauer, J.E. (2014). Reversible modulation of myofibroblast differentiation in adipose-derived mesenchymal stem cells. PLoS One 9, e86865.

DiMario, J., Buffinger, N., Yamada, S., and Strohman, R.C. (1989). Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science 244, 688–690.

DO, M.-K.Q., Suzuki, T., Gerelt, B., Sato, Y., Mizunoya, W., Nakamura, M., Ikeuchi, Y., Anderson, J.E., and Tatsumi, R. (2012). Time-coordinated prevalence of extracellular HGF, FGF2 and TGF-β3 in crush-injured skeletal muscle. Anim. Sci. J. 83, 712–717.

Edlund, S., Landström, M., Heldin, C.-H., and Aspenström, P. (2002). Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol. Biol. Cell 13, 902–914.

Estrada, B., Gisselbrecht, S.S., and Michelson, A.M. (2007). The transmembrane protein Perdido interacts with Grip and integrins to mediate myotube projection and attachment in the Drosophila embryo. Development 134, 4469–4478.

Eyre, D.R., Paz, M.A., and Gallop, P.M. (1984). Cross-linking in collagen and elastin. Annu. Rev. Biochem. 53, 717–748.

Fang, X., Burg, M. a, Barritt, D., Dahlin-Huppe, K., Nishiyama, a, and Stallcup, W.B. (1999). Cytoskeletal reorganization induced by engagement of the NG2 proteoglycan leads to cell spreading and migration. Mol. Biol. Cell 10, 3373–3387.

Ferraro, F., Celso, C. Lo, and Scadden, D. (2010). Adult stem cels and their niches. Adv. Exp. Med. Biol. 695, 155–168.

Fujii, W., Kawasaki, K., Sugiura, K., and Naito, K. (2013). Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Res. 41, e187.

Fukushima, K., Nakamura, A., Ueda, H., Yuasa, K., Yoshida, K., Takeda, S., and Ikeda, S.I. (2007). Activation and localization of matrix metalloproteinase-2 and -9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ). BMC Musculoskelet. Disord. 8, 1–11.

Gaeta, M., Messina, S., Mileto, A., Vita, G.L., Ascenti, G., Vinci, S., Bottari, A., Vita, G., Settineri, N., Bruschetta, D., Racchiusa, S., and Minutoli, F. (2012). Muscle fat-fraction and mapping in Duchenne muscular dystrophy: Evaluation of disease distribution and correlation with clinical assessments preliminary experience. Skeletal Radiol. 41, 955–961.

Garrison, G., Huang, S.K., Okunishi, K., Scott, J.P., Penke, L.R.K., Scruggs, A.M., and Peters-Golden, M. (2013). Reversal of myofibroblast differentiation by prostaglandin E2. Am. J. Respir. Cell Mol. Biol. 48, 550–558.

Georges, P.C., Hui, J.J., Gombos, Z., McCormick, M.E., Wang, A.Y., Uemura, M., Mick, R., Janmey, P.A., Furth, E.E., and Wells, R.G. (2007). Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1147-1154.

Goretzki, L., Burg, M.A., Grako, K.A., and Stallcup, W.B. (1999). High-affinity Binding of Basic Fibroblast Growth Factor and Platelet-derived Growth Factor-AA to the Core Protein of the NG2 Proteoglycan. J. Biol. Chem. 274, 16831–16837.

Grako, K.A., and Stallcup, W.B. (1995). Participation of the NG2 proteoglycan in rat aortic smooth muscle cell responses to platelet-derived growth factor. Exp. Cell Res. 221, 231–240.

Grako, K.A., Ochiya, T., Barritt, D., Nishiyama, A., and Stallcup, W.B. (1999). PDGF α-receptor is unresponsive to PDGF-AA in aortic smooth muscle cells from the NG2 knockout mouse. J. Cell Sci. 112, 905–915.

Gros, J., Manceau, M., Thomé, V., and Marcelle, C. (2005). A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435, 954–958.

Gutpell, K.M., and Hoffman, L.M. (2015). VEGF induces stress fiber formation in fibroblasts isolated from dystrophic muscle. J. Cell Commun. Signal. 353–360.

Hasty, P., Bradley, A., Morris, J.H., Edmondson, D.G., Venuti, J.M., Olson, E.N., and Klein, W.H. (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364, 501–506.

Heredia, J.E., Mukundan, L., Chen, F.M., Mueller, A. a, Deo, R.C., Locksley, R.M., Rando, T.A, and Chawla, A. (2013). Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376–388.

Honda, E., Park, A., Yoshida, K., Tabuchi, M., and Munakata, H. (2013). Myofibroblasts : Biochemical and Proteomic Approaches to Fibrosis. Tohoku J Exp Med 67–73.

Hwangbo, C., Tae, N., Lee, S., Kim, O., Park, O.K., Kim, J., Kwon, S.-H.H., and Lee, J.-H.H. (2015). Syntenin regulates TGF-β1-induced Smad activation and the epithelial-to-mesenchymal transition by inhibiting caveolin-mediated TGF- β type i receptor internalization. Oncogene 35, 389–401.

Iida, J., Pei, D., Kang, T., Simpson, M.A., Herlyn, M., Furcht, L.T., and McCarthy, J.B. (2001). Melanoma Chondroitin Sulfate Proteoglycan Regulates Matrix Metalloproteinase-dependent Human Melanoma Invasion into Type I Collagen. J. Biol. Chem. 276, 18786–18794.

Iida, J., Wilhelmson, K.L., Ng, J., Lee, P., Morrison, C., Tam, E., Overall, C.M., and McCarthy, J.B. (2007). Cell surface chondroitin sulfate glycosaminoglycan in melanoma: role in the activation of pro-MMP-2 (pro-gelatinase A). Biochem. J. 403, 553–563.

Järvinen, T.A.H., Józsa, L., Kannus, P., Järvinen, T.L.N., and Järvinen, M. (2002). Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. J. Muscle Res. Cell Motil. 23, 245–254.

Jerkovic, R., Argentini, C., Serrano-Sanchez, A., Cordonnier, C., and Schiaffino, S. (1997). Early myosin switching induced by nerve activity in regenerating slow skeletal muscle. Cell Struct. Funct. 22, 147–153.

Jirmanová, I., and Thesleff, S. (1972). Ultrastructural study of experimental muscle degeneration and regeneration in the adult rat. Z. Zellforsch. Mikrosk. Anat. 131, 77–97.

Joe, A.W.B., Yi, L., Natarajan, A., Le Grand, F., So, L., Wang, J., Rudnicki, M.A., and Rossi, F.M.V. (2010). Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163.

Jones, L.L., Sajed, D., and Tuszynski, M.H. (2003). Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J. Neurosci. 23, 9276–9288.

Joo, N.E., Miao, D., Bermúdez, M., Stallcup, W.B., and Kapila, Y.L. (2014). Shedding of NG2 by MMP-13 Attenuates Anoikis. DNA Cell Biol. 33, 1–9.

Kassar-Duchossoy, L., Giacone, E., Gayraud-morel, B., Jory, A., Gomès, D., and Tajbakhsh, S. (2005). Pax3 / Pax7 mark a novel population of primitive myogenic cells during development. 1426–1431.

Kelly de Abreu, D., Lessa, T., Bertassoli, B., Zomer, H., Fratini, P., Elisabete Alves de Lima Will, S., Rici, R., Agostinho da Silva, R., Neto, A., Miglino, M., and Ambrosio, C, (2012). Picrosirius Staining for Dystrophic Animal Models of Diaphragm Morphology. In Current Microscopy Contributions to Advances in Science and Technology, A. Méndez-Vilas, ed. (Formatex Research Center), pp. 28–32.

Kherif, S., Lafuma, C., Dehaupas, M., Lachkar, S., Fournier, J.G., Verdière- Sahuqué, M., Fardeau, M., and Alameddine, H.S. (1999). Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: A study in experimentally injured and mdx muscles. Dev. Biol. 205, 158–170.

Kinali, M., Arechavala-Gomeza, V., Cirak, S., Glover, A., Guglieri, M., Feng, L., Hollingsworth, K.G., Hunt, D., Jungbluth, H., Roper, H.P., Quinlivan, R.M., Gosalakkal, J.A., Jayawant, S., Nadeau, A., Hughes-Carre, L., Manzur, A.Y., Mercuri, E., Morgan, J.E., Straub, V., Bushby, K., Sewry, C., Rutherford, M., and Muntoni, F. (2011). Muscle histology vs MRI in Duchenne muscular dystrophy. Neurology 76, 346–353.

Koenig, M., Monaco, A.P., and Kunkel, L.M. (1988). The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219–228.

Kovanen, V. (2002). Intramuscular extracellular matrix: Complex environment of muscle cells. Exerc. Sport Sci. Rev. 30, 20–25.

Lakshmi, S.P., Reddy, A.T., and Reddy, R.C. (2017). Transforming Growth Factor β Suppresses Peroxisome Proliferator–Activated Receptor γ Expression via Both SMAD Binding and Novel TGF-β Inhibitory Elements. Biochem. J. 474, 1531–1546.

Larsen, P.H., Wells, J.E., Stallcup, W.B., Opdenakker, G., and Yong, V.W. (2003). Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J. Neurosci. 23, 11127–11135.

Lei, H., Leong, D., Smith, L.R., and Barton, E.R. (2013). Matrix metalloproteinase 13 is a new contributor to skeletal muscle regeneration and critical for myoblast migration. Am. J. Physiol. Cell Physiol. 305, C529–C538.

Lemos, D.R., Babaeijandaghi, F., Low, M., Chang, C.K., Lee, S.T., Fiore, D., Zhang, R.H., Natarajan, A., Nedospasov, S.A., and Rossi, F.M.V. (2015). Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat. Med. 21, 786–794.

Lieber, R.L., and Ward, S.R. (2013). Cellular Mechanisms of Tissue Fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. AJP Cell Physiol. 305, C241–C252.

Liu, F., Mih, J.D., Shea, B.S., Kho, A.T., Sharif, A.S., Tager, A.M., and Tschumperlin, D.J. (2010). Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706.

Lluri, G., Langlois, G.D., McClellan, B., Soloway, P.D., and Jaworski, D.M. (2006). Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates neuromuscular junction development via a beta1 integrin-mediated mechanism. J. Neurobiol. 66, 1365–1377.

Lynch, M.D., and Watt, F.M. (2018). Fibroblast heterogeneity: implications for human disease. J. Clin. Invest. 128, 26–35.

Makagiansar, I.T., Williams, S., Mustelin, T., and Stallcup, W.B. (2007). Differential phosphorylation of NG2 proteoglycan by ERK and PKCalpha helps balance cell proliferation and migration. J. Cell Biol. 178, 155–165.

Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. (2013). RNA-guided human genome engineering via Cas9. Science 339, 823–826.

Maltseva, O., Folger, P., Zekaria, D., Petridou, S., and Masur, S.K. (2001). Fibroblast growth factor reversal of the corneal myofibroblast phenotype. Investig. Ophthalmol. Vis. Sci. 42, 2490–2495.

Mann, C.J., Perdiguero, E., Kharraz, Y., Aguilar, S., Pessina, P., Serrano, A.L., and Muñoz-Cánoves, P. (2011). Aberrant repair and fibrosis development in skeletal muscle. Skelet. Muscle 1, 21.

Marinkovic, M., Sacco, F., Spada, F., Petrilli, L.L., Fuoco, C., Micarelli, E., Pavlidou, T., Castagnoli, L., Mann, M., Gargioli, C., and Cesareni, G. (2017). Skeletal muscle fibro-adipogenic progenitors of dystrophic mice are insensitive to NOTCH-dependent regulation of adipogenesis. BioRxiv 223370.

Masur, S.K., Dewal, H.S., Dinh, T.T., Erenburg, I., and Petridou, S. (1996). Myofibroblasts differentiate from fibroblasts when plated at low density. Proc. Natl. Acad. Sci. U. S. A. 93, 4219–4223.

Mathew, S.J., Hansen, J.M., Merrell, A.J., Murphy, M.M., Lawson, J.A., Hutcheson, D.A., Hansen, M.S., Angus-Hill, M., and Kardon, G. (2011). Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development 138, 371–384.

Mauro, A. (1961). Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495.

Morgenstern, D.A., Asher, R.A., Naidu, M., Carlstedt, T., Levine, J.M., and Fawcett, J.W. (2003). Expression and glycanation of the NG2 proteoglycan in developing, adult, and damaged peripheral nerve. Mol. Cell. Neurosci. 24, 787–802.

Muir, E.M., Adcock, K.H., Morgenstern, D.A., Clayton, R., Von Stillfried, N., Rhodes, K., Ellis, C., Fawcett, J.W., and Rogers, J.H. (2002). Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes. Mol. Brain Res. 100, 103–117.

Murakami, Y., Yada, E., Nakano, S., Miyagoe-Suzuki, Y., Hosoyama, T., Matsuwaki, T., Yamanouchi, K., and Nishihara, M. (2011). Establishment of bipotent progenitor cell clone from rat skeletal muscle. Anim. Sci. J. 82, 764–772.

Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esuml, E., Li, S., Nonaka, I., and Nabeshima, Y.I. (1993). Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364, 532–535.

Nakamura, K., Fujii, W., Tsuboi, M., Tanihata, J., Teramoto, N., Takeuchi, S., Naito, K., Yamanouchi, K., and Nishihara, M. (2014). Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci. Rep. 4, 5635.

Nakano, S., Nakamura, K., Teramoto, N., Yamanouchi, K., and Nishihara, M. (2016). Basic fibroblast growth factor is pro-adipogenic in rat skeletal muscle progenitor clone, 2G11 cells. Anim. Sci. J. 87, 99–108.

Needleman, B.W., Choi, J., Burrows-Mezu, A., and Fontana, J.A. (1990). Secretion and binding of transforming growth factor β by scleroderma and normal dermal fibroblasts. Arthritis Rheum. 33, 650–656.

Nishihara, T., Remacle, A.G., Angert, M., Shubayev, I., Shiryaev, S.A., Liu, H., Dolkas, J., Chernov, A. V, Strongin, A.Y., and Shubayev, V.I. (2015). Matrix metalloproteinase-14 both sheds cell surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages and governs the response to peripheral nerve injury. J. Biol. Chem. 290, 3693–3707.

Nishiyama, A., Dahlin, K.J., Prince, J.T., Johnstone, S.R., and Stallcup, W.B. (1991). The primary structure of NG2, a novel membrane-spanning proteoglycan. J. Cell Biol. 114, 359–371.

Nishiyama, A., Lin, X.H., Giese, N., Heldin, C.H., and Stallcup, W.B. (1996). Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. J. Neurosci. Res. 43, 315–330.

Nishiyama, A., Lin, X., and Stallcup, W. (1995). Generation of truncated forms of the NG2 proteoglycan by cell surface proteolysis. Mol. Biol. Cell 6, 1819–1832.

Noizet, M., Lagoutte, E., Gratigny, M., Bouschbacher, M., Lazareth, I., Roest Crollius, H., Darzacq, X., and Dugast-Darzacq, C. (2016). Master regulators in primary skin fibroblast fate reprogramming in a human ex vivo model of chronic wounds. Wound Repair Regen. 24, 247–262.

Nummenmaa, E., Hämäläinen, M., Moilanen, T., Vuolteenaho, K., and Moilanen, E. (2015). Effects of FGF-2 and FGF receptor antagonists on MMP enzymes, aggrecan, and type II collagen in primary human OA chondrocytes. Scand. J. Rheumatol. 44, 321–330.

Ott, M., Bober, E.V.A., Lyons, G., and Arnold, H. (2000). Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. 1107, 1097–1107.

Ozerdem, U., and Stallcup, W.B. (2004). Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis 7, 269–276.

Perez-Moreno, J.J., Bischoff, M., Martin-Bermudo, M.D., and Estrada, B. (2014). The conserved transmembrane proteoglycan Perdido/Kon-tiki is essential for myofibrillogenesis and sarcomeric structure in Drosophila. J. Cell Sci. 127, 3162– 3173.

Pessina, P., Cabrera, D., Morales, M., Riquelme, C.A., Gutiérrez, J., Serrano, A.L., Brandan, E., and Muñoz-Cánoves, P. (2014). Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne Muscular Dystrophy. Skelet. Muscle 4, 7.

Petridou, S., Maltseva, O., Spanakis, S., and Masur, S.K. (2000). TGF-β Receptor Expression and Smad2 Localization Are Cell Density Dependent in Fibroblasts. Invest. Ophthalmol. Vis. Sci. 41, 89–95.

Petrini, S., Tessa, A., Carrozzo, R., Verardo, M., Pierini, R., Rizza, T., and Bertini, E. (2003). Human melanoma/NG2 chondroitin sulfate proteoglycan is expressed in the sarcolemma of postnatal human skeletal myofibers: Abnormal expression in merosin-negative and Duchenne muscular dystrophies. Mol. Cell. Neurosci. 23, 219– 231.

Price, M.A., Colvin Wanshura, L.E., Yang, J., Carlson, J., Xiang, B., Li, G., Ferrone, S., Dudek, A.Z., Turley, E.A., and McCarthy, J.B. (2011). CSPG4, a potential therapeutic target, facilitates malignant progression of melanoma. Pigment Cell Melanoma Res. 24, 1148–1157.

Plikus, M.V., Guerrero-Juarez, C.F., Ito, M., Li, Y.R., Dedhia, P.H., Zheng, Y., Shao, M., Gay, D.L., Ramos, R., Hsi, T.-C., Oh, J.W., Wang, X., Ramirez, A., Konopelski, S.E., Elzein, A., Wang, A., Supapannachart, R.J., Lee, H.-L., Lim, C.H., Nace, A., Guo, A., Treffeisen, E., Andl, T., Ramirez, R.N., Murad, R., Offermanns, S., Metzger, D., Chambon, P., Widgerow, A.D., Tuan, T.-L., Mortazavi, A., Gupta, R.K., Hamilton, B.A., Millar, S.E., Seale, P., Pear, W.S., Lazar, M.A., and Cotsarelis, G. (2017). Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752.

Ramos, C., Montaño, M., Becerril, C., Cisneros-Lira, J., Barrera, L., Ruíz, V., Pardo, A., and Selman, M. (2006). Acidic fibroblast growth factor decreases alpha-smooth muscle actin expression and induces apoptosis in human normal lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L871-9.

Richardson, T.P., Trinkaus-Randall, V., and Nugent, M.A. (1999). Regulation of basic fibroblast growth factor binding and activity by cell density and heparan sulfate. J. Biol. Chem. 274, 13534–13540.

Sakry, D., Neitz, A., Singh, J., Frischknecht, R., Marongiu, D., Binamé, F., Perera, S.S., Endres, K., Lutz, B., Radyushkin, K., Trotter, J., and Mittmann, T. (2014). Oligodendrocyte Precursor Cells Modulate the Neuronal Network by Activity- Dependent Ectodomain Cleavage of Glial NG2. PLoS Biol. 12.

Schultz, E., Gibson, M.C., and Champion, T. (1978). Satellite cells are mitotically quiescent in mature mouse muscle: An EM and radioautographic study. J. Exp. Zool. 206, 451–456.

Sorrell, J.M., and Caplan, A.I. (2009). Chapter 4 Fibroblasts-A Diverse Population at the Center of It All. Int. Rev. Cell Mol. Biol. 276, 161–214.

Stallcup, W. (2002). The NG2 proteoglycan: past insights and future prospects. J. Neurocytol. 31, 423–435.

Takegahara, Y., Yamanouchi, K., Nakamura, K., Nakano, S., and Nishihara, M. (2014). Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner. Exp. Cell Res. 324, 105–114.

Talele, N.P., Fradette, J., Davies, J.E., Kapus, A., and Hinz, B. (2015). Expression of α-Smooth Muscle Actin Determines the Fate of Mesenchymal Stromal Cells. Stem Cell Reports 4, 1016–1030.

Tan, A.M., Colletti, M., Rorai, A.T., Skene, J.H.P., and Levine, J.M. (2006). Antibodies against the NG2 proteoglycan promote the regeneration of sensory axons within the dorsal columns of the spinal cord. J. Neurosci. 26, 4729–4739.

Taraboletti, G., D’Ascenzo, S., Borsotti, P., Giavazzi, R., Pavan, A., and Dolo, V. (2002). Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am. J. Pathol. 160, 673–680.

Tatsumi, R., Anderson, J.E., Nevoret, C.J., Halevy, O., and Allen, R.E. (1998). HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev. Biol. 194, 114–128.

Tillet, E., Ruggiero, F., Nishiyama, A., and Stallcup, W.B. (1997). The membrane- spanning proteoglycan NG2 binds to collagens V and VI through the central nonglobular domain of its core protein. J. Biol. Chem. 272, 10769–10776.

Tontonoz, P., Hu, E., Graves, R.A., Budavari, A.I., and Spiegelman, B.M. (1994). mPPARγ2: Tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224– 1234.

Tontonoz, P., and Spiegelman, B.M. (2008). Fat and Beyond: The Diverse Biology of PPARγ. Annu. Rev. Biochem. 77, 289–312.

Torriani, M., Townsend, E., Thomas, B.J., Bredella, M.A., Ghomi, R.H., and Tseng, B.S. (2012). Lower leg muscle involvement in Duchenne muscular dystrophy: An MR imaging and spectroscopy study. Skeletal Radiol. 41, 437–445.

Ubil, E., Duan, J., Pillai, I.C.L., Rosa-Garrido, M., Wu, Y., Bargiacchi, F., Lu, Y., Stanbouly, S., Huang, J., Rojas, M., Vondriska, T.M., Stefani, E., and Deb, A. (2014). Mesenchymal–endothelial transition contributes to cardiac neovascularization. Nature 514, 585–590.

Uezumi, A., Fukada, S., Yamamoto, N., Ikemoto-Uezumi, M., Nakatani, M., Morita, M., Yamaguchi, A., Yamada, H., Nishino, I., Hamada, Y., Tsuchida, K. (2014). Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle. Cell Death Dis. 5, e1186.

Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S., and Tsuchida, K. (2010). Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12, 143–152.

Uezumi, A., Ito, T., Morikawa, D., Shimizu, N., Yoneda, T., Segawa, M., Yamaguchi, M., Ogawa, R., Matev, M.M., Miyagoe-Suzuki, Y., Takeda, S., Tsujikawa, K., Tsuchida, K., Yamamoto, H., and Fukada, S. (2011). Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J. Cell Sci. 124, 3654–3664.

Venuti, J.M., Morris, J.H., Vivian, J.L., Olson, E.N., and Klein, W.H. (1995). Myogenin Is Required for Late but Not Early Aspects of Myogenesis during Mouse Development. 128.

Voloshenyuk, T.G., Landesman, E.S., Khoutorova, E., Hart, A.D., and Gardner, J.D. (2011). Induction of cardiac fibroblast lysyl oxidase by TGF-β1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine 55, 90–97.

Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/cas-mediated genome engineering. Cell 153, 910–918.

Wang, W.M., Lee, S., Steiglitz, B.M., Scott, I.C., Lebares, C.C., Allen, M.L., Brenner, M.C., Takahara, K., and Greenspan, D.S. (2003). Transforming growth factor-β induces secretion of activated ADAMTS-2: A procollagen III N-proteinase. J. Biol. Chem. 278, 19549–19557.

Wu, Z., Rosen, E.D., Brun, R., Hauser, S., Adelmant, G., Troy, A.E., McKeon, C., Darlington, G.J., and Spiegelman, B.M. (1999). Cross-regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3, 151–158.

Wynn, T.A. (2008). Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210.

Yablonka-Reuveni, Z., and Rivera, A.J. (1997). Proliferative Dynamics and the Role of FGF2 During Myogenesis of Rat Satellite Cells on Isolated Fibers. Basic Appl. Myol. 7, 189–202.

Yamanouchi, K., Nakamura, K., Takegahara, Y., Nakano, S., and Nishihara, M. (2013). Ex vivo bupivacaine treatment results in increased adipogenesis of skeletal muscle cells in the rat. Anim. Sci. J. 84, 757–763.

Yin, H., Price, F., and Rudnicki, M.A. (2013). Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67.

You, W.K., Yotsumoto, F., Sakimura, K., Adams, R.H., and Stallcup, W.B. (2014). NG2 proteoglycan promotes tumor vascularization via integrin-dependent effects on pericyte function. Angiogenesis 17, 61–76.

Zhang, K., Rekhter, M.D., Gordon, D., and Phan, S.H. (1994). Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am. J. Pathol. 145, 114–125.

Zhang, Y.E. (2009). Non-Smad pathways in TGF-β signaling. Cell Res. 19, 128– 139.

Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. 2747–2761.

Zhou, L., Porter, J.D., Cheng, G., Gong, B., Hatala, D.A., Merriam, A.P., Zhou, X., Rafael, J.A., and Kaminski, H.J. (2006). Temporal and spatial mRNA expression patterns of TGF-β1, 2, 3 and TβRI, II, III in skeletal muscles of mdx mice. Neuromuscul. Disord. 16, 32–38.

Zimowska, M., Brzoska, E., Swierczynska, M., Streminska, W., and Moraczewski, J. (2008). Distinct patterns of MMP-9 and MMP-2 activity in slow and fast twitch skeletal muscle regeneration in vivo. Int. J. Dev. Biol. 52, 307–314.

杉田秀夫、小澤鍈二郎、整中征哉(1995)新筋肉病学、南江堂矢田英理香2006博士論文「骨格筋内脂肪蓄積機構に関する研究」

中野真一2013博士論文「骨格筋多能性幹細胞の分化制御機構の解明および特異的表面抗原の探索」

杉原英俊2016卒業論文「ジストロフィン遺伝子変異ラットの病態悪化に細胞老化が関与する可能性」

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る