リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cellular senescence triggers intracellular acidification and lysosomal pH alkalinized via ATP6AP2 attenuation in breast cancer cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cellular senescence triggers intracellular acidification and lysosomal pH alkalinized via ATP6AP2 attenuation in breast cancer cells

Li, Wei Kawaguchi, Kosuke Tanaka, Sunao He, Chenfeng Maeshima, Yurina Suzuki, Eiji Toi, Masakazu 京都大学 DOI:10.1038/s42003-023-05433-6

2023.11.22

概要

Several chemotherapeutic drugs induce senescence in cancer cells; however, the mechanisms underlying intracellular pH dysregulation in senescent cells remain unclear. Adenosine triphosphatase H+ transporting accessory protein 2 (ATP6AP2) plays a critical role in maintaining pH homeostasis in cellular compartments. Herein, we report the regulatory role of ATP6AP2 in senescent breast cancer cells treated with doxorubicin (Doxo) and abemaciclib (Abe). A decline in ATP6AP2 triggers aberrant pH levels that impair lysosomal function and cause immune profile changes in senescent breast cancer cells. Doxo and Abe elicited a stable senescent phenotype and altered the expression of senescence-related genes. Additionally, senescent cells show altered inflammatory and immune transcriptional profiles due to reprogramming of the senescence-associated secretory phenotype. These findings elucidate ATP6AP2-mediated cellular pH regulation and suggest a potential link in immune profile alteration during therapy-induced senescence in breast cancer cells, providing insights into the mechanisms involved in the senescence response to anticancer therapy.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Data availability

The RNA-Seq data generated in this study were deposited in the Gene Expression

Omnibus (GEO) database under the accession code GSE222984. Supplementary

Data 1–4 comprise the list of DEGs derived from RNA-seq data corresponding to the

29.

Torre, L. A., Islami, F., Siegel, R. L., Ward, E. M. & Jemal, A. Global cancer in

women: burden and trends. Cancer Epidemiol. Biomarkers Prev. 26, 444–457 (2017).

Yee, D. et al. Association of event-free and distant recurrence-free survival

with individual-level pathologic complete response in neoadjuvant treatment

of stages 2 and 3 breast cancer: three-year follow-up analysis for the I-SPY2

adaptively randomized clinical trial. JAMA Oncol. 6, 1355–1362 (2020).

Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer

drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and

aging. Cell 130, 223–233 (2007).

Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179,

813–827 (2019).

Dodig, S., Čepelak, I. & Pavić, I. Hallmarks of senescence and aging. Biochem.

Med. 29, 030501 (2019).

Regulski, M. J. Cellular senescence: what, why, and how. Wounds 29, 168–174

(2017).

Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of

senescence. Genes Dev. 24, 2463–2479 (2010).

Prieur, A. & Peeper, D. S. Cellular senescence in vivo: a barrier to

tumorigenesis. Curr. Opin. Cell Biol. 20, 150–155 (2008).

Pérez-Mancera, P. A., Young, A. R. & Narita, M. Inside and out: the activities

of senescence in cancer. Nat. Rev. Cancer 14, 547–558 (2014).

Muñoz-Espín, D. & Serrano, M. Cellular senescence: from physiology to

pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits

liver cancer development. Nature 479, 547–551 (2011).

Wei, W. & Ji, S. Cellular senescence: molecular mechanisms and

pathogenicity. J. Cell. Physiol. 233, 9121–9135 (2018).

Ruscetti, M. et al. Senescence-induced vascular remodeling creates therapeutic

vulnerabilities in pancreas cancer. Cell 181, 424.e1–441.e1 (2020).

Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular

senescence and the senescent secretory phenotype: therapeutic opportunities.

J. Clin. Investig. 123, 966–972 (2013).

Lecot, P., Alimirah, F., Desprez, P. Y., Campisi, J. & Wiley, C. Contextdependent effects of cellular senescence in cancer development. Br. J. Cancer

114, 1180–1184 (2016).

Demaria, M. et al. Cellular senescence promotes adverse effects of

chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

Supek, F. et al. A novel accessory subunit for vacuolar H(+)-ATPase from

chromaffin granules. J. Biol. Chem. 269, 24102–24106 (1994).

Ludwig, J. et al. Identification and characterization of a novel 9.2-kDa

membrane sector-associated protein of vacuolar proton-ATPase from

chromaffin granules. J. Biol. Chem. 273, 10939–10947 (1998).

Kinouchi, K. et al. The (pro)renin receptor/ATP6AP2 is essential for vacuolar H

+-ATPase assembly in murine cardiomyocytes. Circ. Res. 107, 30–34 (2010).

Oshima, Y. et al. Prorenin receptor is essential for normal podocyte structure

and function. J. Am. Soc. Nephrol. 22, 2203 (2011).

Forgac, M. Structure and properties of the vacuolar (H+)-ATPases. J. Biol.

Chem. 274, 12951–12954 (1999).

Futai, M., Sun-Wada, G. H., Wada, Y., Matsumoto, N. & Nakanishi-Matsui,

M. Vacuolar-type ATPase: a proton pump to lysosomal trafficking. Proc. Jpn.

Acad. Ser. B Phys. Biol. Sci. 95, 261–277 (2019).

Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and

pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929 (2007).

Ochotny, N., Voronov, I., Owen, C., Aubin, J. E. & Manolson, M. F. The

R740S mutation in the V-ATPase a3 subunit results in osteoclast apoptosis

and defective early-stage autophagy. J. Cell. Biochem. 114, 2823–2833 (2013).

Rujano, M. A. et al. Mutations in the X-linked ATP6AP2 cause a glycosylation

disorder with autophagic defects. J. Exp. Med. 214, 3707–3729 (2017).

Abbas, Y. M., Wu, D., Bueler, S. A., Robinson, C. V. & Rubinstein, J. L.

Structure of V-ATPase from the mammalian brain. Science 367, 1240–1246

(2020).

Cruciat, C. M. et al. Requirement of prorenin receptor and vacuolar H

+-ATPase-mediated acidification for Wnt signaling. Science 327, 459–463

(2010).

Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and

disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

COMMUNICATIONS BIOLOGY | (2023)6:1147 | https://doi.org/10.1038/s42003-023-05433-6 | www.nature.com/commsbio

15

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05433-6

30. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

31. Beitia, M. et al. (Pro)renin receptor expression increases throughout the

colorectal adenoma-adenocarcinoma sequence and it is associated with worse

colorectal cancer prognosis. Cancers 11, 6 (2019).

32. Wang, J., Nishiyama, A., Matsuyama, M., Wang, Z. & Yuan, Y. The (pro)renin

receptor: a novel biomarker and potential therapeutic target for various

cancers. Cell Commun. Signal. 18, 39 (2020).

33. Ohba, K. et al. Expression of (pro)renin receptor in breast cancers and its

effect on cancercell proliferation. Biomed. Res. 35, 117–126 (2014).

34. Wendling, O. et al. Atp6ap2 ablation in adult mice impairs viability through

multiple organ deficiencies. Sci. Rep. 7, 9618 (2017).

35. Binger, K. J. et al. Atp6ap2 deletion causes extensive vacuolation that

consumes the insulin content of pancreatic β cells. Proc. Natl Acad. Sci. USA

116, 19983–19988 (2019).

36. Li, W. et al. Neuron-specific (pro)renin receptor knockout prevents the

development of salt-sensitive hypertension. Hypertension 63, 316–323 (2014).

37. Geisberger, S. et al. New role for the (pro)renin receptor in T-cell

development. Blood 126, 504–507 (2015).

38. Bogdanov, A. et al. Tumor acidity: from hallmark of cancer to target of

treatment. Front. Oncol. 12, 979154 (2022).

39. Czowski, B. J., Romero-Moreno, R., Trull, K. J. & White, K. A. Cancer and pH

dynamics: transcriptional regulation, proteostasis, and the need for new

molecular tools. Cancers 12, 10 (2020).

40. Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH:

a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).

41. White, K. A., Grillo-Hill, B. K. & Barber, D. L. Cancer cell behaviors mediated

by dysregulated pH dynamics at a glance. J. Cell Sci. 130, 663–669 (2017).

42. Nishie, M. et al. Downregulated ATP6V1B1 expression acidifies the intracellular

environment of cancer cells leading to resistance to antibody-dependent cellular

cytotoxicity. Cancer Immunol. Immunother. 70, 817–830 (2021).

43. Bergmann, M., Schütt, F., Holz, F. G. & Kopitz, J. Inhibition of the ATPdriven proton pump in RPE lysosomes by the major lipofuscin fluorophore

A2-E may contribute to the pathogenesis of age-related macular degeneration.

FASEB J. 18, 562–564 (2004).

44. Hu, Y.-B., Dammer, E. B., Ren, R.-J. & Wang, G. The endosomal-lysosomal

system: from acidification and cargo sorting to neurodegeneration. Transl.

Neurodegener. 4, 18 (2015).

45. Eskelinen, E. L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and

autophagy. Mol. Aspects Med. 27, 495–502 (2006).

46. Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane

proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10, 623–635

(2009).

47. Coppé, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescenceassociated secretory phenotype: the dark side of tumor suppression. Annu.

Rev. Pathol. 5, 99–118 (2010).

48. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169,

1000–1011 (2017).

49. Johmura, Y. et al. Senolysis by glutaminolysis inhibition ameliorates various

age-associated disorders. Science 371, 265–270 (2021).

50. Kim, Y. Y. et al. Cooperation between p21 and Akt is required for p53dependent cellular senescence. Aging Cell 16, 1094–1103 (2017).

51. Herranz, N. & Gil, J. Mechanisms and functions of cellular senescence. J. Clin.

Investig. 128, 1238–1246 (2018).

52. Chen, L. et al. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation

of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence

signaling. Aging Cell 18, e12951 (2019).

53. Wagner, K. D. & Wagner, N. The senescence markers p16INK4A, p14ARF/

p19ARF, and p21 in organ development and homeostasis. Cells 11, 12 (2022).

54. Bojko, A. et al. Improved autophagic flux in escapers from doxorubicininduced senescence/polyploidy of breast cancer cells. Int. J. Mol. Sci. 21, 6084

(2020).

55. Eom, Y.-W. et al. Two distinct modes of cell death induced by doxorubicin:

apoptosis and cell death through mitotic catastrophe accompanied by

senescence-like phenotype. Oncogene 24, 4765–4777 (2005).

56. Jackson, J. G. & Pereira-Smith, O. M. Primary and compensatory roles for RB

family members at cell cycle gene promoters that are deacetylated and

downregulated in doxorubicin-induced senescence of breast cancer cells. Mol.

Cell. Biol. 26, 2501–2510 (2006).

57. Piegari, E. et al. Doxorubicin induces senescence and impairs function of

human cardiac progenitor cells. Basic Res. Cardiol. 108, 334 (2013).

58. Rebbaa, A., Zheng, X., Chou, P. M. & Mirkin, B. L. Caspase inhibition switches

doxorubicin-induced apoptosis to senescence. Oncogene 22, 2805–2811 (2003).

59. Sun, T. et al. Characterization of cellular senescence in doxorubicin-induced

aging mice. Exp. Gerontol. 163, 111800 (2022).

60. Chong, Q.-Y. et al. A unique CDK4/6 inhibitor: current and future therapeutic

strategies of abemaciclib. Pharmacol. Res. 156, 104686 (2020).

16

61. Ozman, Z., Guney Eskiler, G. & Sekeroglu, M. R. In vitro therapeutic effects of

abemaciclib on triple-negative breast cancer cells. J. Biochem. Mol. Toxicol. 35,

e22858 (2021).

62. Zhang, J., Xu, D., Zhou, Y., Zhu, Z. & Yang, X. Mechanisms and implications

of CDK4/6 inhibitors for the treatment of NSCLC. Front. Oncol. 11, 676041

(2021).

63. Wang, D. et al. Loss of legumain induces premature senescence and mediates

aging-related renal fibrosis. Aging Cell 21, e13574 (2022).

64. Li, D. L. et al. Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting

lysosome acidification. Circulation 133, 1668–1687 (2016).

65. Jung, Y.-S. et al. TMEM9 promotes intestinal tumorigenesis through vacuolarATPase-activated Wnt/β-catenin signalling. Nat. Cell Biol. 20, 1421–1433 (2018).

66. Colacurcio, D. J. & Nixon, R. A. Disorders of lysosomal acidification-The

emerging role of v-ATPase in aging and neurodegenerative disease. Ageing

Res. Rev. 32, 75–88 (2016).

67. Song, Q., Meng, B., Xu, H. & Mao, Z. The emerging roles of vacuolar-type

ATPase-dependent lysosomal acidification in neurodegenerative diseases.

Transl. Neurodegener. 9, 17 (2020).

68. Kawai, A., Uchiyama, H., Takano, S., Nakamura, N. & Ohkuma, S.

Autophagosome-lysosome fusion depends on the pH in acidic compartments

in CHO cells. Autophagy 3, 154–157 (2007).

69. Klionsky, D. J., Elazar, Z., Seglen, P. O. & Rubinsztein, D. C. Does bafilomycin

A1 block the fusion of autophagosomes with lysosomes? Autophagy 4,

849–850 (2008).

70. Georgilis, A. et al. PTBP1-mediated alternative splicing regulates the

inflammatory secretome and the pro-tumorigenic effects of senescent cells.

Cancer Cell 34, 85.e9–102.e9 (2018).

71. Guccini, I. et al. Senescence reprogramming by TIMP1 deficiency promotes

prostate cancer metastasis. Cancer Cell 39, 68.e9–82.e9 (2021).

72. Ansieau, S. et al. Induction of EMT by twist proteins as a collateral effect of

tumor-promoting inactivation of premature senescence. Cancer Cell 14, 79–89

(2008).

73. Janda, E. et al. Ras and TGF[beta] cooperatively regulate epithelial cell

plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol. 156,

299–313 (2002).

74. Smit, M. A. & Peeper, D. S. Epithelial-mesenchymal transition and senescence:

two cancer-related processes are crossing paths. Aging 2, 735–741 (2010).

75. Faheem, M. M. et al. Convergence of therapy-induced senescence (TIS) and

EMT in multistep carcinogenesis: current opinions and emerging perspectives.

Cell Death Discov. 6, 51 (2020).

76. Wang, T. W. et al. Blocking PD-L1-PD-1 improves senescence surveillance

and ageing phenotypes. Nature 611, 358–364 (2022).

77. Onorati, A. et al. Upregulation of PD-L1 in senescence and aging. Mol. Cell.

Biol. 42, e0017122 (2022).

78. Bartek, J., Hodny, Z. & Lukas, J. Cytokine loops driving senescence. Nat. Cell

Biol. 10, 887–889 (2008).

79. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a

leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

80. Grivennikov, S. I. & Karin, M. Dangerous liaisons: STAT3 and NF-kappaB

collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 21, 11–19

(2010).

81. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low

memory requirements. Nat. Methods 12, 357–360 (2015).

82. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose

program for assigning sequence reads to genomic features. Bioinformatics 30,

923–930 (2014).

83. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc

4, 44–57 (2009).

84. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based

approach for interpreting genome-wide expression profiles. Proc. Natl Acad.

Sci. USA 102, 15545–15550 (2005).

85. Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark

gene set collection. Cell Syst. 1, 417–425 (2015).

Acknowledgements

We thank the Medical Research Support Center (MRSC), Graduate School of Medicine,

Kyoto University for providing the research instruments. We thank KEYENCE for

providing the fluorescence microscope used in this study. We also thank Masahiro

Kawashima, Fengling Pu, Yukiko Fukui, and Yuki Nakamura for their helpful suggestions. This study was supported in part by the Japan Science and Technology Agency

Support for Pioneering Research Initiated by the Next Generation (JST-SPRING; grant

number JPMJSP2110). This work was also supported by a scholarship from the China

Scholarship Council under Grant No.202208050044.

COMMUNICATIONS BIOLOGY | (2023)6:1147 | https://doi.org/10.1038/s42003-023-05433-6 | www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05433-6

ARTICLE

Author contributions

Correspondence and requests for materials should be addressed to Kosuke Kawaguchi.

W.L., K.K., M.T., and E.S. contributed substantially to project design. W.L. performed the

experiments and analyzed the data. W.L., C.H., and Y.M. analyzed the RNA-Seq data and

interpreted the results. K.K. and S.T. provided suggestions and technical support for the

experiments. W.L. drafted the manuscript. K.K. and M.T. supervised the study and

revised the manuscript. All authors have approved the submitted version of the manuscript and agreed to be accountable for any part of this work.

Peer review information Communications Biology thanks Mara De Martino and the

other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Primary handling editors: Georgios Giamas and Manuel Breuer. A peer review file is

available.

Reprints and permission information is available at http://www.nature.com/reprints

Competing interests

The authors declare the following competing interests: K.K.: grants from TERUMO,

Astellas, Eli Lilly, and Kyoto Breast Cancer Research Network; consulting fees from

Becton Dickinson, Japan; honoraria from Eisai, Chugai, and Takeda. M.T.: grants from

Chugai, Takeda, Pfizer, Kyowa-Kirin, Taiho, JBCRG Associates, Eisai, Eli Lilly, DaiichiSankyo, AstraZeneca, Astellas, Shimadzu, Yakult, Nippon Kayaku, AFI Technology,

Luxonus, Shionogi, and GL Science; honoraria from Chugai, Takeda, Pfizer, KyowaKirin, Taiho, Eisai, Daiichi-Sankyo, AstraZeneca, Eli Lilly, MSD, Exact Science, Novartis,

Konica Minolta, Shimadzu, Yakult, and Nippon Kayaku; advisory board of Kyowa-Kirin,

Daiichi-Sankyo, Eli Lilly, Konica Minolta, BMS, Athenex Oncology, Bertis, Terumo,

Kansai Medical Net; board of directors of JBCRG Associates, KBCRN, OOTR; Associate

Editor of the British Journal of Cancer, Scientific Reports, Breast Cancer Research and

Treatment, Cancer Science, Frontiers in Women’s Cancer, Asian Journal of Surgery, Asian

Journal of Breast Surgery; deputy editor of International Journal of Oncology. The other

authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

Additional information

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s42003-023-05433-6.

© The Author(s) 2023

COMMUNICATIONS BIOLOGY | (2023)6:1147 | https://doi.org/10.1038/s42003-023-05433-6 | www.nature.com/commsbio

17

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る