リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Wavenumber Spectra of Atmospheric Gravity Waves and Medium‐Scale Traveling Ionospheric Disturbances Based on More Than 10‐Year Airglow Images in Japan, Russia, and Canada」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Wavenumber Spectra of Atmospheric Gravity Waves and Medium‐Scale Traveling Ionospheric Disturbances Based on More Than 10‐Year Airglow Images in Japan, Russia, and Canada

Tsuchiya, Satoshi Shiokawa, Kazuo Otsuka, Yuichi Nakamura, Takuji Yamamoto, Mamoru Connors, Martin Schofield, Ian Shevtsov, Boris Poddelsky, Igor 名古屋大学

2020.03

概要

We have studied atmospheric gravity waves (AGWs) and nighttime medium‐scale traveling ionospheric disturbances (MSTIDs) by applying three‐dimensional spectral analysis technique to 557.7‐ and 630.0‐nm airglow images at Shigaraki (SGK) (35°N, 136°E, 1999–2017) and Rikubetsu (RIK) (44°N, 144°E, 1999–2017), Japan, Athabasca (ATH), Canada, (55°N, 247°E, 2005–2017), and Magadan (MGD), Russia (60°N, 151°E, 2008–2017), focusing on their horizontal wavenumber spectra. For the AGWs in 557.7‐nm images, the power spectra in summer are stronger than in other seasons, probably due to stronger tropospheric convection. The highest energy content of the waves are mostly at wavelengths between 20 and 300 km at MGD, ATH, and RIK, while it is above 200 km at SGK. The largest power spectral density is obtained at RIK at wavelengths of 30–100 km and then ATH. The slopes of the horizontal wavenumber spectra varies from −2.77 to −3.22. From the MSTIDs in 630.0‐nm images, the power spectra in summer at RIK and SGK are stronger than those in other seasons regardless of solar activity. The power spectra in solar quiet time are stronger than those in solar active time at all four stations. These features can be explained by the Perkins instability with coupling between sporadic E and F layers. The spectral slope decreases with increasing latitudes. Weak positive correlations were obtained between the daily wave power of AGWs in 557.7‐nm images and MSTIDs in 630.0‐nm images, suggesting that the MSTIDs in the thermosphere may be partially generated by the AGWs from the mesopause region.

この論文で使われている画像

参考文献

Amorim, D. C. M., Pimenta, A. A., Bittencourt, J. A., & Fagundes, P. R. (2001). Long‐term study of medium‐scale traveling ionospheric

disturbances using OI 630 nm all‐sky imaging and ionosonde over Brazilian low latitudes. Journal of Geophysical Research, 116(A6),

A06312. https://doi.org/10.1029/2010JA016090

Azeem, I., Yue, J., Hoffmann, L., Miller, S. D., Straka, W. C., & Crowley, G. (2015). Multisensor profiling of a concentric gravity wave event

propagating from the troposphere to the ionosphere. Geophysical Research Letters, 42, 7874–7880. https://doi.org/10.1002/

2015GL065903

Coble, M., Papen, G. C., & Gardner, C. S. (1998). Computing two‐dimensional unambiguous horizontal wavenumber spectra from OH

airglow images. IEEE Transactions on Geoscience and Remote Sensing, 36(2), 368–382. https://doi.org/10.1109/36.662723

Cosgrove, R. B., & Tsunoda, R. T. (2004). Instability of the E‐F coupled nighttime midlatitude ionosphere. Journal of Geophysical Research,

109, A04305. https://doi.org/10.1029/2003JA010243

Davies, K. (1990). Ionospheric Radio. London: Peter Peregrinus.

Ejiri, M. K., Shiokawa, K., Ogawa, T., Igarashi, K., Nakamura, T., & Tsuda, T. (2003). Statistical study of short‐period gravity waves in OH

and OI nightglow images at two separated sites. Journal of Geophysical Research, 108(D21), 4679. https://doi.org/10.1029/2002JD002795

Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41(1), 1003.

https://doi.org/10.1029/2001RG000106

Fritts, D. C., Isler, J. R., Hecht, J. H., Walterscheid, R. L., & Andreassen, O. (1997). Wave breaking signatures in sodium densities and OH

nightglow: 2. Simulation of wave and instability structures. Journal of Geophysical Research, 102(D6), 6669–6684. https://doi.org/

10.1029/96JD01902

Garcia, F. J., Kelley, M. C., Makela, J. J., & Huang, C.‐S. (2000). Airglow observations of mesoscale low‐velocity traveling ionospheric

disturbances at midlatitudes. Journal of Geophysical Research, 105(A8), 18,407–18,415. https://doi.org/10.1029/1999JA000305

Gardner, C. S. (1994). Diffusive filtering theory of gravity wave spectra in the atmosphere. Journal of Geophysical Research, 99(D10),

20,601–20,622. https://doi.org/10.1029/94JD00819

Gardner, C. S., Hostetler, C. A., & Franke, S. J. (1993). Gravity wave models for the horizontal wave number spectra of atmospheric velocity

and density fluctuations. Journal of Geophysical Research, 98(D1), 1035–1049. https://doi.org/10.1029/92JD02051

Hecht, J. H., Walterscheid, R. L., & Ross, M. N. (1994). First measurements of the two‐dimensional horizontal wave number spectrum from

CCD images of the nightglow. Journal of Geophysical Research, 99(A6), 11,449–11,460. https://doi.org/10.1029/94JA00584

Hunsucker, R. D. (1982). Atmospheric gravity waves generated in the high latitude ionosphere: A review. Reviews of Geophysics, 20(2),

293–315. https://doi.org/10.1029/RG020i002p00293

Makela, J. J., & Kelley, M. C. (2003). Using the 630.0‐nm nightglow emission as a surrogate for the ionospheric Pedersen conductivity.

Journal of Geophysical Research, 108(A6), 1253. https://doi.org/10.1029/2003JA009894

Makela, J. J., & Otsuka, Y. (2012). Overview of nighttime ionospheric instabilities at low‐ and mid‐latitudes: Coupling aspects resulting in

structuring at the mesoscale. Space Science Reviews, 168, 419–440. https://doi.org/10.1007/s11214‐011‐9816‐6

Martinis, C., Baumgardner, J., Wroten, J., & Mendillo, M. (2010). Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging

at Arecibo. Geophysical Research Letters, 37, L11103. https://doi.org/10.1029/2010GL043569

Matsuda, T. S., Nakamura, T., Ejiri, M. K., Tsutsumi, M., & Shiokawa, K. (2014). New statistical analysis of the horizontal phase velocity

distribution of gravity waves observed by airglow imaging. Journal of Geophysical Research: Atmospheres, 119, 9707–9718. https://doi.

org/10.1002/2014JD021543

Matsuno, T. (1982). A quasi one‐dimensional model of the middle atmosphere circulation interacting with internal gravity waves. Journal

of the Meteorological Society of Japan Series II, 60(1), 215–226. https://doi.org/10.2151/jmsj1965.60.1‐215

17 of 19

Journal of Geophysical Research: Space Physics

10.1029/2019JA026807

Miller, S. D., Straka, W. C., Yue, J., Smith, S. M., Alexander, M. J., Hoffmann, L., et al. (2015). Upper atmospheric gravity wave details

revealed in nightglow satellite imagery. Proceedings of the National Academy of Sciences, 112(49), E6728–E6735. https://doi.org/10.1073/

pnas.1508084112

Miyoshi, Y., Jin, H., Fujiwara, H., and Shinagawa, H. (2018). Numerical study of traveling ionospheric disturbances generated by an

upward propagating gravity wave. Journal of Geophysical Research: Space Physics, 123, 2141–2155. https://doi.org/10.1002/

2017JA025110

Nakamura, T., Higashikawa, A., Tsuda, T., & Matsushita, Y. (1999). Seasonal variations of gravity wave structures in OH airglow with a

CCD imager at Shigaraki. Earth, Planets and Space, 51(7‐8), 897–906. https://doi.org/10.1186/BF03353248

Narayanan, L., Shiokawa, K., Otsuka, Y., & Saito, S. (2014). Airglow observations of nighttime medium‐scale traveling ionospheric disturbances from Yonaguni: Statistical characteristics and low‐latitude limit. Journal of Geophysical Research: Space Physics, 119,

9268–9282. https://doi.org/10.1002/2014JA020368

Narayanan, V. L., Shiokawa, K., Otsuka, Y., & Neudegg, D. (2018). On the role of thermospheric winds and sporadic E layers in the formation and evolution of electrified MSTIDs in geomagnetic conjugate regions. Journal of Geophysical Research: Space Physics, 123,

6957–6980. https://doi.org/10.1029/2018JA025261

Otsuka, Y., Shiokawa, K., Ogawa, T., & Wilkinson, P. (2004). Geomagnetic conjugate observations of medium‐scale traveling ionospheric

disturbances at midlatitude using all sky airglow imagers. Geophysical Research Letters, 31, L15803. https://doi.org/10.1029/

2004GL020262

Otsuka, Y., Suzuki, K., Nakagawa, S., Nishioka, M., Shiokawa, K., & Tsugawa, T. (2013). GPS observations of medium‐scale traveling

ionospheric disturbances over Europe. Annales de Geophysique, 31, 163–172. https://doi.org/10.5194/angeo‐31‐163‐2013

Perkins, F. (1973). Spread F and ionospheric currents. Journal of Geophysical Research, 78(1), 216–226. https://doi.org/10.1029/

JA078i001p00218

Plougonven, R., & Zhang, F. (2014). Internal gravity waves from atmospheric jets and fronts. Reviews of Geophysics, 52, 33–76. https://doi.

org/10.1002/2012RG000419

Richmond, A. D. (1978). Gravity wave generation, propagation, and dissipation in the thermosphere. Journal of Geophysical Research,

83(A9), 4131–4145. https://doi.org/10.1029/JA083iA09p04131

Shiokawa, K., Kato, Y., Hamaguchi, Y., Yamamoto, Y., Adachi, T., Ozaki, M., et al. (2017). Ground‐based instruments of the PWING

project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG‐ground coordinated observation

network. Earth, Planets and Space, 69, 160. https://doi.org/10.1186/s40623‐017‐0745‐9

Shiokawa, K., Katoh, Y., Satoh, M., Ejiri, M. K., Ogawa, T., Nakamura, T., et al. (1999). Development of Optical Mesosphere Thermosphere

Imagers 482 (OMTI). Earth, Planets and Space, 51(7), 887–896. https://doi.org/10.1186/BF03353247

Shiokawa, K., Mori, M., Otsuka, Y., Oyama, S., Nozawa, S., Suzuki, S., & Connors, M. (2013). Observation of nighttime medium‐scale

travelling ionospheric disturbances by two 630‐nm airglow imagers near the auroral zone. Journal of Atmospheric and Solar ‐ Terrestrial

Physics, 103, 184–194. https://doi.org/10.1016/j.jastp.2013.03.024

Shiokawa, K., Otsuka, Y., Ihara, C., Ogawa, T., & Rich, F. J. (2003). Ground and satellite observations of nighttime medium‐scale traveling

ionospheric disturbance at midlatitude. Journal of Geophysical Research, 108(A4), 1145. https://doi.org/10.1029/2002JA009639

Shiokawa, K., Otsuka, Y., & Ogawa, T. (2009). Propagation characteristics of nighttime mesospheric and thermospheric waves observed by

optical mesosphere thermosphere imagers at middle and low latitudes. Earth, Planets and Space, 61(4), 479–491. https://doi.org/

10.1186/BF03353165

Suzuki, S., Shiokawa, K., Otsuka, Y., Kawamura, S., & Murayama, Y. (2013). Evidence of gravity wave ducting in the mesopause region

from airglow network observations. Geophysical Research Letters, 40, 601–605. https://doi.org/10.1029/2012GL054605

Suzuki, S., Shiokawa, K., Otsuka, Y., Ogawa, T., & Wilkinson, P. (2004). Statistical characteristics of gravity waves observed by an all‐sky

imager at Darwin, Australia. Journal of Geophysical Research, 109, D20S07. https://doi.org/10.1029/2003JD004336

Taguchi, S., & Shibata, H. (1961). World maps of foEs. Journal of the Radio Research Laboratories, 8, 355–386.

Takeo, D., Shiokawa, K., Fujinami, H., Otsuka, Y., Matsuda, T. S., Ejiri, M. K., et al. (2017). Sixteen year variation of horizontal phase

velocity and propagation direction of mesospheric and thermospheric waves in airglow images at Shigaraki, Japan. Journal of

Geophysical Research: Space Physics, 122, https://doi.org/10.1002/2017JA023919

Taylor, M. J., & Hapgood, M. A. (1988). Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric

nightglow emissions. Planetary and Space Science, 36(10), 975–985. https://doi.org/10.1016/0032‐0633(88)90035‐9

Taylor, M. J., Jahn, J.‐M., Fukao, S., & Saito, A. (1998). Possible evidence of gravity wave coupling into the mid‐latitude F region ionosphere

during the SEEK campaign. Geophysical Research Letters, 25(11), 1801–1804. https://doi.org/10.1029/97GL03448

Tsuchiya, S., Shiokawa, K., Fujinami, H., Otsuka, Y., Nakamura, T., Connors, M., et al. (2019). Statistical analysis of the phase

velocity distributions of mesospheric and ionospheric waves based on airglow images collected over 10 years: Comparison of

Magadan, Russia, and Athabasca, Canada. Journal of Geophysical Research: Space Physics, 124, 8110–8124. https://doi.org/10.1029/

2019JA026783

Tsuchiya, S., Shiokawa, K., Fujinami, H., Otsuka, Y., Nakamura, T., & Yamamoto, M. (2018). Statistical analysis of the phase velocity

distribution of mesospheric and ionospheric waves observed in airglow images over a 16‐year period: Comparison between Rikubetsu

and Shigaraki, Japan. Journal of Geophysical Research: Space Physics, 123, 6930–6947. https://doi.org/10.1029/2018JA025585

Tsugawa, T., Nishioka, M., Ishii, M., Hozumi, K., Saito, S., Shinbori, A., et al. (2018). Total electron content observations by dense

regional and worldwide international networks of GNSS. Journal of Disaster Research, 13(3), 535–545. https://doi.org/10.20965/

jdr.2018.p0535

Tsunoda, R. T., & Cosgrove, R. B. (2001). Coupled electrodynamics in the nighttime midlatitude ionosphere. Geophysical Research Letters,

28(22), 4171–4174. https://doi.org/10.1029/2001GL013245

Vadas, S. L. (2007). Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and

thermospheric sources. Journal of Geophysical Research, 112, A06305. https://doi.org/10.1029/2006JA011845

Vadas, S. L., Liu, H.‐L., & Lieberman, R. S. (2014). Numerical modeling of the global changes to the thermosphere and ionosphere from the

dissipation of gravity waves from deep convection. Journal of Geophysical Research: Space Physics, 119, 7762–7793. https://doi.org/

10.1002/2014JA020280

Vincent, R. (1984). Gravity‐wave motions in the mesosphere. Journal of Atmospheric and Terrestrial Physics, 46(2), 119–128. https://doi.

org/10.1016/0021‐9169(84)90137‐5

Walterscheid, R., Hecht, J., Vincent, R., Reid, I., Woithe, J., & Hickey, M. (1999). Analysis and interpretation of airglow and radar observations of quasi‐monochromatic gravity waves in the upper mesosphere and lower thermosphere over Adelaide, Australia (35°S, 138°E).

Journal of Atmospheric and Solar‐Terrestrial Physics, 61(6), 461–478. https://doi.org/10.1016/S1364‐6826(99)00002‐4

TSUCHIYA ET AL.

18 of 19

Journal of Geophysical Research: Space Physics

10.1029/2019JA026807

Wu, Q., & Killeen, T. L. (1996). Seasonal dependence of mesospheric gravity waves (<100 km) at Peach Mountain Observatory, Michigan.

Geophysical Research Letters, 23(17), 2211–2214. https://doi.org/10.1029/96GL02168

Yokoyama, T., Hysell, D. L., Otsuka, Y., & Yamamoto, M. (2009). Three‐dimensional simulation of the coupled Perkins and Es‐layer

instabilities in the nighttime midlatitude ionosphere. Journal of Geophysical Research, 114, A03308. https://doi.org/10.1029/

2008JA013789

Yue, J., Nakamura, T., She, C.‐Y., Weber, M., Lyons, W., & Li, T. (2010). Seasonal and local time variability of ripples from airglow imager

observations in US and Japan. Annales Geophysicae, 28(7), 1401–1408. https://doi.org/10.5194/angeo‐28‐1401‐2010

TSUCHIYA ET AL.

19 of 19

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る