リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nighttime Midlatitude E-F Coupling in Geomagnetic Conjugate Ionospheres: A Double Thin Shell Model and a Multi-Source Data Investigation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nighttime Midlatitude E-F Coupling in Geomagnetic Conjugate Ionospheres: A Double Thin Shell Model and a Multi-Source Data Investigation

Fu, Weizheng Yokoyama, Tatsuhiro Ssessanga, Nicholas Ma, Guanyi Yamamoto, Mamoru 京都大学 DOI:10.1029/2022JA031074

2023.03

概要

Geomagnetic conjugate mid-latitude nighttime ionospheres are frequently simultaneously populated with electrified nighttime medium-scale traveling ionospheric disturbances (MSTIDs). Earlier observations and theoretical analysis have underscored the ionosphere E-F coupling and the postulation of coupled conjugate hemispheres, playing a pivotal role in the formation of electrified MSTIDs. In this paper, the conjugate MSTIDs are studied to elucidate the causes and effects of E-F coupling in the interhemispheric coupled ionosphere. The hemisphere-coupled ionospheres over Japan and Australia are observed and analyzed using total electron content (TEC) measurements, supplemented with multi-source observations from ionosondes, Ionospheric Connection Explorer (neutral wind), Constellation Observing System for Meteorology, Ionosphere, and Climate (electron density), and Swarm (magnetic field). A double-thin-shell model is introduced to analyze the ionospheric responses in E and F regions during the coupling process. For the first time, observation results provide the evidence that F-region geomagnetic conjugate irregularities in both hemispheres are mainly driven by the Es layers in the summer hemisphere. The Es layer in the summer hemisphere subsequently triggers local E-F coupling and inter-hemispheric coupling. In the winter hemisphere, Es layers show amplitude reduction or even dissipation during the interhemispheric coupling process. Furthermore, thermospheric winds, non-equipotential magnetic field lines, and background TEC are presumed candidates for the inter-hemispheric asymmetry in MSTIDs amplitudes and growth rates.

この論文で使われている画像

参考文献

Abdu, M., De Souza, J., Batista, I., Santos, A., Sobral, J., Rastogi, R., & Chandra, H. (2014). The role of electric fields in sporadic E layer formation over low latitudes under quiet and magnetic storm conditions. Journal of Atmospheric and Solar-Terrestrial Physics, 115, 95–105. https://

doi.org/10.1016/j.jastp.2013.12.003

Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., et al. (2021). International geomagnetic reference field: The thirteenth

generation. Earth, Planets and Space, 73(1), 1–25. https://doi.org/10.1186/s40623-020-01288-x

Bowman, G. (1985). Some aspects of mid-latitude spread-Es, and its relationship with spread-F. Planetary and Space Science, 33(9), 1081–1089.

https://doi.org/10.1016/0032-0633(85)90027-3

Bowman, G. (1990). A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes. Journal of Geomagnetism

and Geoelectricity, 42(2), 109–138. https://doi.org/10.5636/jgg.42.109

Buonsanto, M., & Foster, J. (1993). Effects of magnetospheric electric fields and neutral winds on the low-middle latitude ionosphere during the

March 20–21, 1990, storm. Journal of Geophysical Research, 98(A11), 19133–19140. https://doi.org/10.1029/93JA01807

Buonsanto, M., Foster, J., Galasso, A., Sipler, D., & Holt, J. (1990). Neutral winds and thermosphere/ionosphere coupling and energetics during

the geomagnetic disturbances of March 6–10, 1989. Journal of Geophysical Research, 95(A12), 21033–21050. https://doi.org/10.1029/

JA095iA12p21033

Burke, W., Martinis, C., Lai, P., Gentile, L., Sullivan, C., & Pfaff, R. F. (2016). C/NOFS observations of electromagnetic coupling

between magnetically conjugate MSTID structures. Journal of Geophysical Research: Space Physics, 121(3), 2569–2582. https://doi.

org/10.1002/2015JA021965

Chen, J., Lei, J., Zhang, S., Wang, W., & Dang, T. (2020). A simulation study on the relationship between field-aligned and field-perpendicular

plasma velocities in the ionospheric F region. Journal of Geophysical Research: Space Physics, 125(1), e2019JA027350. https://doi.

org/10.1029/2019JA027350

Cherniak, I., Zakharenkova, I., Braun, J., Wu, Q., Pedatella, N., Schreiner, W., et al. (2021). Accuracy assessment of the quiet-time ionospheric

F2 peak parameters as derived from COSMIC-2 multi-GNSS radio occultation measurements. Journal of Space Weather and Space Climate,

11, 18. https://doi.org/10.1051/swsc/2020080

Cosgrove, R. B. (2007). Generation of mesoscale F layer structure and electric fields by the combined Perkins and Es layer instabilities, in simulations. Annales Geophysicae, 25(7), 1579–1601. https://doi.org/10.5194/angeo-25-1579-2007

Cosgrove, R. B. (2013). Mechanisms for E–F coupling and their manifestation. Journal of Atmospheric and Solar-Terrestrial Physics, 103, 56–65.

https://doi.org/10.1016/j.jastp.2013.03.011

Cosgrove, R. B., & Tsunoda, R. T. (2002). A direction-dependent instability of sporadic-E layers in the nighttime midlatitude ionosphere.

Geophysical Research Letters, 29(18), 11–1. https://doi.org/10.1029/2002GL014669

Cosgrove, R. B., & Tsunoda, R. T. (2004). Instability of the E-F coupled nighttime midlatitude ionosphere. Journal of Geophysical Research,

109(A4), A04305. https://doi.org/10.1029/2003JA010243

Cosgrove, R. B., Tsunoda, R. T., Fukao, S., & Yamamoto, M. (2004). Coupling of the Perkins instability and the sporadic E layer instability

derived from physical arguments. Journal of Geophysical Research, 109(A6), A06301. https://doi.org/10.1029/2003JA010295

21 of 24

21699402, 2023, 3, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA031074 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

10.1029/2022JA031074

Ding, F., Wan, W., Xu, G., Yu, T., Yang, G., & Wang, J.-s. (2011). Climatology of medium-scale traveling ionospheric disturbances observed by

a GPS network in central China. Journal of Geophysical Research, 116(A9). https://doi.org/10.1029/2011JA016545

Farley, D., Jr. (1959). A theory of electrostatic fields in a horizontally stratified ionosphere subject to a vertical magnetic field. Journal of

Geophysical Research, 64(9), 1225–1233. https://doi.org/10.1029/JZ064i009p01225

Finlay, C. C., Kloss, C., Olsen, N., Hammer, M. D., Tøffner-Clausen, L., Grayver, A., & Kuvshinov, A. (2020). The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth, Planets and Space, 72(1), 1–31. https://doi.org/10.1186/

s40623-020-01252-9

Forbes, J. M., Bruinsma, S. L., Miyoshi, Y., & Fujiwara, H. (2008). A solar terminator wave in thermosphere neutral densities measured by the

CHAMP satellite. Geophysical Research Letters, 35(14), L14802. https://doi.org/10.1029/2008GL034075

Fu, W., Ma, G., Lu, W., Maruyama, T., Li, J., Wan, Q., et al. (2021). Improvement of global ionospheric TEC derivation with multi-source data

in modip latitude. Atmosphere, 12(4), 434. https://doi.org/10.3390/atmos12040434

Fu, W., Ssessanga, N., Yokoyama, T., & Yamamoto, M. (2021). High-resolution 3-D imaging of daytime sporadic-E over Japan by using GNSS

TEC and ionosondes. Space Weather, 19(12), e2021SW002878. https://doi.org/10.1029/2021SW002878

Fu, W., Yokoyama, T., Ssessanga, N., Yamamoto, M., & Liu, P. (2022). On using a double-thin-shell approach and TEC perturbation component

to sound night-time mid-latitude E–F coupling. Earth, Planets and Space, 74(1), 1–17. https://doi.org/10.1186/s40623-022-01639-w

Haldoupis, C. (2012). Midlatitude sporadic E. A typical paradigm of atmosphere-ionosphere coupling. Space Science Reviews, 168(1), 441–461.

https://doi.org/10.1007/s11214-011-9786-8

Haldoupis, C., Kelley, M. C., Hussey, G. C., & Shalimov, S. (2003). Role of unstable sporadic-E layers in the generation of midlatitude spread F.

Journal of Geophysical Research, 108(A12), 1446. https://doi.org/10.1029/2003JA009956

Haldoupis, C., Pancheva, D., Singer, W., Meek, C., & MacDougall, J. (2007). An explanation for the seasonal dependence of midlatitude sporadic

E layers. Journal of Geophysical Research, 112(A6). https://doi.org/10.1029/2007JA012322

Harding, B. J., Chau, J. L., He, M., Englert, C. R., Harlander, J. M., Marr, K. D., et al. (2021). Validation of ICON-MIGHTI thermospheric wind

observations: 2. Green-line comparisons to specular meteor radars. Journal of Geophysical Research: Space Physics, 126(3), e2020JA028947.

https://doi.org/10.1029/2020JA028947

Harding, B. J., Wu, Y.-J. J., Alken, P., Yamazaki, Y., Triplett, C. C., Immel, T. J., et al. (2022). Impacts of the January 2022 Tonga volcanic

eruption on the ionospheric dynamo: ICON-MIGHTI and swarm observations of extreme neutral winds and currents. Geophysical Research

Letters, 49(9), e2022GL098577. https://doi.org/10.1029/2022GL098577

He, M., Liu, L., Wan, W., & Zhao, B. (2011). A study on the nighttime midlatitude ionospheric trough. Journal of Geophysical Research,

116(A5). https://doi.org/10.1029/2010JA016252

Heelis, R., Crowley, G., Rodrigues, F., Reynolds, A., Wilder, R., Azeem, I., & Maute, A. (2012). The role of zonal winds in the production of

a pre-reversal enhancement in the vertical ion drift in the low latitude ionosphere. Journal of Geophysical Research, 117(A8). https://doi.

org/10.1029/2012JA017547

Hooke, W. H. (1968). Ionospheric irregularities produced by internal atmospheric gravity waves. Journal of Atmospheric and Terrestrial Physics,

30(5), 795–823. https://doi.org/10.1016/S0021-9169(68)80033-9

Hunsucker, R. D. (1982). Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Reviews of Geophysics, 20(2), 293–315.

https://doi.org/10.1029/RG020i002p00293

Kelley, M. C. (2009). The Earth’s ionosphere: Plasma physics and electrodynamics. Academic Press.

Kil, H., & Paxton, L. J. (2017). Global distribution of nighttime medium-scale traveling ionospheric disturbances seen by swarm satellites.

Geophysical Research Letters, 44(18), 9176–9182. https://doi.org/10.1002/2017GL074750

Larsen, M. (2002). Winds and shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind measurements. Journal of Geophysical Research, 107(A8), SIA28-1–SIA28-14. https://doi.org/10.1029/2001JA000218

Lee, W. K., Kil, H., & Paxton, L. J. (2021). Global distribution of nighttime MSTIDs and its association with E region irregularities seen by

CHAMP satellite. Journal of Geophysical Research: Space Physics, 126(5), e2020JA028836. https://doi.org/10.1029/2020JA028836

Lin, C.-Y., Lin, C. C.-H., Liu, J.-Y., Rajesh, P., Matsuo, T., Chou, M.-Y., et al. (2020). The early results and validation of FORMOSAT-7/COSMIC-2

space weather products: Global ionospheric specification and Ne-aided Abel electron density profile. Journal of Geophysical Research: Space

Physics, 125(10), e2020JA028028. https://doi.org/10.1029/2020JA028028

Liu, Y., Zhou, C., Tang, Q., Kong, J., Gu, X., Ni, B., et al. (2019). Evidence of mid-and low-latitude nighttime ionospheric E–F coupling: Coordinated observations of sporadic E layers, F-region field-aligned irregularities, and medium-scale traveling ionospheric disturbances. IEEE

Transactions on Geoscience and Remote Sensing, 57(10), 7547–7557. https://doi.org/10.1109/TGRS.2019.2914059

Liu, Y., Zhou, C., Xu, T., Wang, Z., Tang, Q., Deng, Z., & Chen, G. (2020). Investigation of midlatitude nighttime ionospheric E-F coupling and

interhemispheric coupling by using cosmic GPS radio occultation measurements. Journal of Geophysical Research: Space Physics, 125(3),

e2019JA027625. https://doi.org/10.1029/2019JA027625

Lühr, H., Rother, M., Maus, S., Mai, W., & Cooke, D. (2003). The diamagnetic effect of the equatorial Appleton anomaly: Its characteristics and

impact on geomagnetic field modeling. Geophysical Research Letters, 30(17). https://doi.org/10.1029/2003GL017407

Ma, G., Gao, W., Li, J., Chen, Y., & Shen, H. (2014). Estimation of GPS instrumental biases from small scale network. Advances in Space

Research, 54(5), 871–882. https://doi.org/10.1016/j.asr.2013.01.008

Ma, G., & Maruyama, T. (2003). Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Annales Geophysicae, 21(10),

2083–2093. https://doi.org/10.5194/angeo-21-2083-2003

Maeda, J., & Heki, K. (2014). Two-dimensional observations of midlatitude sporadic E irregularities with a dense GPS array in Japan. Radio

Science, 49(1), 28–35. https://doi.org/10.1002/2013RS005295

Maeda, J., & Heki, K. (2015). Morphology and dynamics of daytime mid-latitude sporadic-E patches revealed by GPS total electron content

observations in Japan. Earth, Planets and Space, 67(1), 1–9. https://doi.org/10.1186/s40623-015-0257-4

Makela, J. J., Baughman, M., Navarro, L. A., Harding, B. J., Englert, C. R., Harlander, J. M., et al. (2021). Validation of ICON-MIGHTI thermospheric wind observations: 1. Nighttime red-line ground-based Fabry-Perot interferometers. Journal of Geophysical Research: Space Physics,

126(2), e2020JA028726. https://doi.org/10.1029/2020JA028726

Maruyama, T., Saito, S., Yamamoto, M., & Fukao, S. (2006). Simultaneous observation of sporadic E with a rapid-run ionosonde and VHF

coherent backscatter radar. Annales Geophysicae, 24(1), 153–162. https://doi.org/10.5194/angeo-24-153-2006

Mathews, J. (1998). Sporadic E: Current views and recent progress. Journal of Atmospheric and Solar-Terrestrial Physics, 60(4), 413–435.

https://doi.org/10.1016/S1364-6826(97)00043-6

Miyoshi, Y., Fujiwara, H., Forbes, J. M., & Bruinsma, S. L. (2009). Solar terminator wave and its relation to the atmospheric tide. Journal of

Geophysical Research, 114(A7). https://doi.org/10.1029/2009JA014110

FU ET AL.

22 of 24

21699402, 2023, 3, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA031074 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

10.1029/2022JA031074

Narayanan, V., Shiokawa, K., Otsuka, Y., & Neudegg, D. (2018). On the role of thermospheric winds and sporadic E layers in the formation and

evolution of electrified MSTIDs in geomagnetic conjugate regions. Journal of Geophysical Research: Space Physics, 123(8), 6957–6980.

https://doi.org/10.1029/2018JA025261

Olsen, N., Hulot, G., Lesur, V., Finlay, C. C., Beggan, C., Chulliat, A., et al. (2015). The Swarm initial field model for the 2014 geomagnetic field.

Geophysical Research Letters, 42(4), 1092–1098. https://doi.org/10.1002/2014GL062659

Otsuka, Y. (2021). Medium-scale traveling ionospheric disturbances. Ionosphere Dynamics and Applications, 421–437. https://doi.

org/10.1002/9781119815617.ch18

Otsuka, Y., Onoma, F., Shiokawa, K., Ogawa, T., Yamamoto, M., & Fukao, S. (2007). Simultaneous observations of nighttime medium-scale

traveling ionospheric disturbances and E region field-aligned irregularities at midlatitude. Journal of Geophysical Research, 112(A6). https://

doi.org/10.1029/2005JA011548

Otsuka, Y., Shinbori, A., Tsugawa, T., & Nishioka, M. (2021). Solar activity dependence of medium-scale traveling ionospheric disturbances

using GPS receivers in Japan. Earth, Planets and Space, 73(1), 1–11. https://doi.org/10.1186/s40623-020-01353-5

Otsuka, Y., Shiokawa, K., Ogawa, T., & Wilkinson, P. (2004). Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers. Geophysical Research Letters, 31(15), L15803. https://doi.org/10.1029/2004GL020262

Otsuka, Y., Suzuki, K., Nakagawa, S., Nishioka, M., Shiokawa, K., & Tsugawa, a. (2013). GPS observations of medium-scale traveling ionospheric disturbances over Europe. Annales Geophysicae, 31(2), 163–172. https://doi.org/10.5194/angeo-31-163-2013

Otsuka, Y., Tani, T., Tsugawa, T., Ogawa, T., & Saito, A. (2008). Statistical study of relationship between medium-scale traveling ionospheric

disturbance and sporadic E layer activities in summer night over Japan. Journal of Atmospheric and Solar-Terrestrial Physics, 70(17), 2196–

2202. https://doi.org/10.1016/j.jastp.2008.07.008

Park, J., Lühr, H., Kervalishvili, G., Rauberg, J., Michaelis, I., Stolle, C., & Kwak, Y.-S. (2015). Nighttime magnetic field fluctuations in the

topside ionosphere at midlatitudes and their relation to medium-scale traveling ionospheric disturbances: The spatial structure and scale sizes.

Journal of Geophysical Research: Space Physics, 120(8), 6818–6830. https://doi.org/10.1002/2015JA021315

Park, J., Lühr, H., Stolle, C., Rother, M., Min, K. W., Chung, J.-K., et al. (2009a). Magnetic signatures of medium-scale traveling ionospheric

disturbances as observed by CHAMP. Journal of Geophysical Research, 114(A3). https://doi.org/10.1029/2008JA013792

Park, J., Lühr, H., Stolle, C., Rother, M., Min, K., & Michaelis, I. (2009b). The characteristics of field-aligned currents associated with equatorial

plasma bubbles as observed by the CHAMP satellite. Annales Geophysicae, 27(7), 2685–2697. https://doi.org/10.5194/angeo-27-2685-2009

Perkins, F. (1973). Spread F and ionospheric currents. Journal of Geophysical Research, 78(1), 218–226. https://doi.org/10.1029/JA078i001p00218

Pitteway, M., & Hines, C. (1963). The viscous damping of atmospheric gravity waves. Canadian Journal of Physics, 41(12), 1935–1948. https://

doi.org/10.1139/p63-194

Saito, A., Fukao, S., & Miyazaki, S. (1998). High resolution mapping of TEC perturbations with the GSI GPS network over Japan. Geophysical

Research Letters, 25(16), 3079–3082. https://doi.org/10.1029/98GL52361

Saito, A., Iyemori, T., Blomberg, L., Yamamoto, M., & Takeda, M. (1998). Conjugate observations of the mid-latitude electric field fluctuations

with the MU radar and the Freja satellite. Journal of Atmospheric and Solar-Terrestrial Physics, 60(1), 129–140. https://doi.org/10.1016/

S1364-6826(97)00094-1

Saito, A., Nishimura, M., Yamamoto, M., Fukao, S., Kubota, M., Shiokawa, K., et al. (2001). Traveling ionospheric disturbances detected in the

FRONT campaign. Geophysical Research Letters, 28(4), 689–692. https://doi.org/10.1029/2000GL011884

Saito, S., Yamamoto, M., Hashiguchi, H., Maegawa, A., & Saito, A. (2007). Observational evidence of coupling between quasi-periodic echoes

and medium scale traveling ionospheric disturbances. Annales Geophysicae, 25(10), 2185–2194. https://doi.org/10.5194/angeo-25-2185-2007

Shiokawa, K., Ihara, C., Otsuka, Y., & Ogawa, T. (2003). Statistical study of nighttime medium-scale traveling ionospheric disturbances using

midlatitude airglow images. Journal of Geophysical Research, 108(A1), 1052. https://doi.org/10.1029/2002JA009491

Shiokawa, K., Otsuka, Y., Ihara, C., Ogawa, T., & Rich, F. (2003). Ground and satellite observations of nighttime medium-scale traveling ionospheric disturbance at midlatitude. Journal of Geophysical Research, 108(A4), 1145. https://doi.org/10.1029/2002JA009639

Shiokawa, K., Otsuka, Y., Tsugawa, T., Ogawa, T., Saito, A., Ohshima, K., et al. (2005). Geomagnetic conjugate observation of nighttime

medium-scale and large-scale traveling ionospheric disturbances: FRONT3 campaign. Journal of Geophysical Research, 110(A5). A05303.

https://doi.org/10.1029/2004JA010845

Sinno, K., Ouchi, C., & Nemoto, C. (1964). Structure and movement of Es detected by LORAN observations. Journal of Geomagnetism and

Geoelectricity, 16(2), 75–88. https://doi.org/10.5636/jgg.16.75

Somsikov, V. (2011). Solar terminator and dynamic phenomena in the atmosphere: A review. Geomagnetism and Aeronomy, 51(6), 707–719.

https://doi.org/10.1134/S0016793211060168

Ssessanga, N., Kim, Y. H., & Kim, E. (2015). Vertical structure of medium-scale traveling ionospheric disturbances. Geophysical Research

Letters, 42(21), 9156–9165. https://doi.org/10.1002/2015GL066093

Tepley, C., Robles, E., García, R., Santos, P., Brum, C., & Burnside, R. (2011). Directional trends in thermospheric neutral winds observed at

Arecibo during the past three solar cycles. Journal of Geophysical Research, 116(A2). https://doi.org/10.1029/2010JA016172

Tsugawa, T., Nishioka, M., Ishii, M., Hozumi, K., Saito, S., Shinbori, A., et al. (2018). Total electron content observations by dense regional and

worldwide international networks of GNSS. Journal of Disaster Research, 13(3), 535–545. https://doi.org/10.20965/jdr.2018.p0535

Tsunoda, R. T. (2006). On the coupling of layer instabilities in the nighttime midlatitude ionosphere. Journal of Geophysical Research, 111(A11),

A11304. https://doi.org/10.1029/2006JA011630

Tsunoda, R. T., & Cosgrove, R. B. (2001). Coupled electrodynamics in the nighttime midlatitude ionosphere. Geophysical Research Letters,

28(22), 4171–4174. https://doi.org/10.1029/2001GL013245

Valladares, C. E., & Sheehan, R. (2016). Observations of conjugate MSTIDs using networks of GPS receivers in the American sector. Radio

Science, 51(9), 1470–1488. https://doi.org/10.1002/2016RS005967

Wan, X., Xiong, C., Wang, H., Zhang, K., & Yin, F. (2020). Spatial characteristics on the occurrence of the nighttime midlatitude medium-scale

traveling ionospheric disturbance at topside ionosphere revealed by the Swarm satellite. Journal of Geophysical Research: Space Physics,

125(8), e2019JA027739. https://doi.org/10.1029/2019JA027739

Whitehead, J. (1989). Recent work on mid-latitude and equatorial sporadic-E. Journal of Atmospheric and Terrestrial Physics, 51(5), 401–424.

https://doi.org/10.1016/0021-9169(89)90122-0

Wu, D. L., Ao, C. O., Hajj, G. A., de La Torre Juarez, M., & Mannucci, A. J. (2005). Sporadic E morphology from GPS-CHAMP radio occultation. Journal of Geophysical Research, 110(A1), A01306. https://doi.org/10.1029/2004JA010701

Yokoyama, T. (2014). Hemisphere-coupled modeling of nighttime medium-scale traveling ionospheric disturbances. Advances in Space Research,

54(3), 481–488. https://doi.org/10.1016/j.asr.2013.07.048

Yokoyama, T., & Hysell, D. L. (2010). A new midlatitude ionosphere electrodynamics coupling model (MIECO): Latitudinal dependence and

propagation of medium-scale traveling ionospheric disturbances. Geophysical Research Letters, 37(8). https://doi.org/10.1029/2010GL042598

FU ET AL.

23 of 24

21699402, 2023, 3, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA031074 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

10.1029/2022JA031074

Yokoyama, T., Hysell, D. L., Otsuka, Y., & Yamamoto, M. (2009). Three-dimensional simulation of the coupled Perkins and Es-layer instabilities

in the nighttime midlatitude ionosphere. Journal of Geophysical Research, 114(A3). https://doi.org/10.1029/2008JA013789

Yokoyama, T., Jin, H., & Shinagawa, H. (2015). West wall structuring of equatorial plasma bubbles simulated by three-dimensional HIRB model.

Journal of Geophysical Research: Space Physics, 120(10), 8810–8816. https://doi.org/10.1002/2015JA021799

Yokoyama, T., & Stolle, C. (2017). Low and midlatitude ionospheric plasma density irregularities and their effects on geomagnetic field. Space

Science Reviews, 206(1), 495–519. https://doi.org/10.1007/s11214-016-0295-7

Yokoyama, T., Yamamoto, M., Fukao, S., & Cosgrove, R. (2004). Three-dimensional simulation on generation of polarization electric field in the

midlatitude E-region ionosphere. Journal of Geophysical Research, 109(A1), A01309. https://doi.org/10.1029/2003JA010238

Yokoyama, T., Yamamoto, M., Fukao, S., Takahashi, T., & Tanaka, M. (2005). Numerical simulation of mid-latitude ionospheric E-region based

on SEEK and SEEK-2 observations. Annales Geophysicae, 23(7), 2377–2384. https://doi.org/10.5194/angeo-23-2377-2005

FU ET AL.

24 of 24

21699402, 2023, 3, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA031074 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る