リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dietary Isosaponarin is Intestinally Metabolized to Isovitexin, Most of Which are Excreted in Feces without Being Absorbed」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dietary Isosaponarin is Intestinally Metabolized to Isovitexin, Most of Which are Excreted in Feces without Being Absorbed

Hashimoto, Takashi Long, Jiansheng Kanazawa, Kazuki 神戸大学

2023.03.28

概要

【Objective】 The metabolism of isosaponarin was investigated using a Caco-2 intestinal epithelial model and animal experiment. 【Background】 Isosaponarin is a flavonoid in wasabi (Wasabia japonica) leaves and has unique structure, in which two glucose molecules bind to apigenin through O-glycosidic and C-glycosidic bonds. 【Materials and Methods】 The absorption and metabolism of isosaponarin was investigated by a Caco-2 intestinal epithelial model in vitro and a single oral administration to mice in vivo. 【Results】 These experiments showed that isosaponarin was hardly absorbed into the body. However, isosaponarin was metabolized to isovitexin (apigenin-6-C-glucoside) by hydrolysis of O-glycosidic bond. This hydrolysis was mainly caused at small intestine, and the gastric acid in the stomach might partially contribute to the hydrolysis. Both Caco-2 intestinal epithelial model and animal experiment indicated that isovitexin was also not absorbed into the body, and that half of the administered isosaponarin was excreted as isovitexin in feces. 【Conclusion】 Half of the administered isosaponarin was metabolized to isovitexin in the intestinal tract and then excreted, and the rest was probably degraded by intestinal microflora. Therefore, it was suggested that the bioavailability of dietary isosaponarin is very low.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

5. CONCLUSION

The present study showed that dietary

isosaponarin is hardly absorbed into the body

and

metabolized

to

isovitexin

in

the

gastrointestinal tract. In other words, the

bioavailability of isosaponarin is very low,

suggesting that they cannot be expected to have

beneficial functions as dietary isosaponarin. On

the other hand, most of isovitexin is excreted with

feces, but isovitexin and its catabolites by

intestinal microflora may be beneficial to human

declared

8.

9.

114

Chadwick CI, Lumpkin TA, Elberson LR.

The botany, uses and production of

Wasabia japonica (Miq.) (Cruciferae)

Matsum Econ. Bot. 1993;47(2):113-35.

Hashimoto T, Yamada T, Nagai M, Yamada

K, Tanaka M, Shimoaki T, et al. Wasabi. In:

Govil JN,Singh VK, editors. Recent

progress

in

medicinal

plants

ethonomedicune: Source & Mechanism,

Studium Press LLC (USA). 2010;30:65-84.

Kinae N, Masuda H, Shin IS, Furugori M,

Shimoi K. Functional properties of wasabi

and horseradish. BioFactors. 2000;13:2659.

Uto T, Fujii M, Hou D-X. 6-(Methylsulfinyl)

hexyl isothiocyanate suppresses inducible

nitric oxide synthase expression through

the inhibition of Janus kinase 2-mediated

JNK pathway in lipopolysaccharideactivated murine macrophages. Biochem

Pharmacal. 2005;70:1211-21.

Morimitsu Y, Nakagawa Y, Hayashi K, Fujii

H, Kumagai T, Nakamura Y, et al. A

sulforaphane analogue that potently

activates the Nrf2-dependent detoxification

pathway. J Biol Chem. 2002;5:3456-63.

Nagai M, Akita K, Yamada K, Okunishi I.

The effect of isosaponarin isolated from

wasabi leaf on collagen synthesis in

human fibroblasts and its underlying

mechanism. J Nat Med. 2010;64(3):305-12.

Lu CW, Yeh KC, Chiu KM, Lee MY, Lin TY,

Wang SJ. The effect of isosaponarin

derived from wasabi leaves on glutamate

release in rat synaptosomes and its

underlying mechanism. Int J Mol Sci.

2022;23(15):8752.

Spencer JP, Chowrimootoo G, Choudhury

R, Debnam ES, Srai SK, Rice-Evans C.

The small intestine can both absorb and

glucuronidate luminal flavonoids. FEBS

Lett. 1999;458(2):224-30.

Walgren RA, Lin J-T, Kinne RK-H, Walle T.

Cellular uptake of dietary flavonoid

quercetin 4'-β-glucoside by sodium-

Hashimoto et al.; Asian J. Food Res. Nutri., vol. 2, no. 3, pp. 104-116, 2023; Article no.AJFRN.97674

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

dependent glucose transporter SGLT1. J

Pharmacol Exp Ther. 2000; 294(3):837-43.

Ioku K, Pongpiriyadacha Y, Konishi Y, Takei

Y, Nakatani N, Terao J. β-Glucosidase

activity in the rat small intestine toward

quercetin

monoglucosides.

Biosci

Biotechnol Biochem. 1998;62:1428-31.

Day AJ, Canada JF, Diaz JC, Kroon PA,

Mclauchlan R, Faulds CB, et al. Dietary

flavonoid and isoflavone glycosides are

hydrolysed by the lactase site of lactase

phlorizin

hydrolase.

FEBS

Lett.

2000;468(2-3):166-70.

Rice-Evans C. Flavonoids and isoflavones:

absorption, metabolism, and bioactivity.

Free Radic Biol Med. 2004; 36,827-8.

Walle T. Absorption and metabolism of

flavonoids. Free Radic Biol Med.

2004;36:829-37.

Graefe EU, Wittig J, Mueller S, Riethling

AK, Uehleke B, Drewelow B, et al.

Pharmacokinetics and bioavailability of

quercetin glycosides in humans. J Clin

Pharmacol. 2001;41:492-9.

Murota K, Shimizu S, Miyamoto S, Izumi T,

Obata A, Kikuchi M, et al. Unique uptake

and transport of isoflavone aglycones by

human intestinal caco-2 cells: comparison

of isoflavonoids and flavonoids. J Nutr.

2002;132(7):1956-61.

Abou-Zaid MM, Lombardo DA, Kite GC,

Grayer RJ, Veitch NC. Acylated flavone Cglycosides

from

Cucumis

sativus.

Phytochemistry. 2001;58:167-72.

Krafczyk N, Glomb MA. Characterization of

phenolic compounds in rooibos tea. J Agric

Food Chem. 2008; 56,3368-76.

Joubert E. HPLC quantification of the

dihydrochalcones,

aspalathin

and

nothofagin in rooibos tea (Aspalathus

linearis) as affected by processing. Food

Chem. 1996;55:403-11.

Zhang Y, Tie X, Bao B, Wu X, Zhang Y.

Metabolism of flavone C-glucosides and pcoumaric acid from antioxidant of bamboo

leaves (AOB) in rats. Br J Nutr.

2007;97:484-94.

Murota K, Shimizu S, Chujo H, Moon J-H,

Terao J. Efficiency of absorption and

metabolic conversion of quercetin and its

glucosides in human intestinal cell line

Caco-2.

Arch

Biochem

Biophys.

2000;384(2):391-7.

Walton MC, Hendriks WH, Broomfield AM,

McGhie TK. Viscous food matrix influences

absorption

and

excretion

but

not

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

115

metabolism of blackcurrant anthocyanins in

rats. J Food Sci. 2009;74:22-9.

Prasain JK, Jones K, Brissie N, Moore R,

Wyss JM., Barnes S. Identification of

puerarin and its metabolites in rats by

liquid

chromatography-tandem

mass

spectrometry. J Agric Food Chem.

2004;52(12):3708-12.

Yasuda T, Kano Y, Saito K, Ohsawa

K. Urinary and biliary metabolites of

puerarin in rats. Biol Pharm Bull.

1995;18:300-3.

Hultin PG. Bioactive C-glycosides from

bacterial secondary metabolism. Curr Top

Med Chem. 2005;5:1299-331.

Fanz G, Grun M. Chemistry, occurrence

and biosynthesis of C-glycosyl compounds

in plants. Planta Med. 1983;47:131-40.

Folador P, Cazarolli LH, Gazola AC,

Reginatto FH, Schenkel EP, Silva FR.

Potential insulin secretagogue effects of

isovitexin and swertisin isolated from

Wilbrandia ebracteata roots in non-diabetic

rats. Fitoterapia. 2010;81:1180-7.

Huang ST, Chen CT, Chieng KT, Huang SH,

Chiang BH, Wang LF, et al. Inhibitory

effects of a rice hull constituent on tumor

necrosis factor α, prostaglandin E2, and

cyclooxygenase-2

production

in

lipopolysaccharide-activated

mouse

macrophages. Ann N Y Acad Sci.

2005;1042:387-95.

Cao XY, Wang XH, Ma SL, Yang XJ, Wang

XQ, Ding H, et al. Study of relationship

between stress hyperglycemia and insulinresistance related factors. Zhongguo Wei

Zhong Bing Ji Jiu Yi Xue. 2006;12:7514.

Sezik E, Aslan M, Yesilada E, Ito S.

Hypoglycaemic activity of Gentiana olivieri

and isolation of the active constituent

through bioassay- directed fractionation

techniques. Life Sci. 2005;76(11):122338.

Kang KA, Zhang R, Chae S, Lee SJ, Kim J,

Kim J, et al. Phloroglucinol (1,3,5trihydroxybenzene)

protects

against

ionizing radiation-induced cell damage

through inhibition of oxidative stress in vitro

and in vivo. Chem Biol Interact.

2010;185:215-26.

Li TT, Zhang YS, He L, Li NS, Peng J, Li

YJ. Protective effect of phloroglucinol

against myocardial ischaemia-reperfusion

injury is related to inhibition of

myeloperoxidase activity and inflammatory

Hashimoto et al.; Asian J. Food Res. Nutri., vol. 2, no. 3, pp. 104-116, 2023; Article no.AJFRN.97674

cell infiltration. Clin Exp Pharmacol Physiol.

Antibacterial substances of low molecular

weight isolated from the blowfly, Lucilia

2011;38:27-33.

sericata. Med Vet Entomol. 2007;21:12732. Huberman L, Gollop N, Mumcuoglu KY,

31.

Breuer E, Bhusare SR, Shai Y, et al.

_________________________________________________________________________________

© 2023 Hashimoto et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution

License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/97674

116

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る