リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Generation of gravity waves from thermal tides in the Venus atmosphere」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Generation of gravity waves from thermal tides in the Venus atmosphere

Sugimoto, Norihiko Fujisawa, Yukiko Kashimura, Hiroki Noguchi, Katsuyuki Kuroda, Takeshi Takagi, Masahiro Hayashi, Yoshi-Yuki 神戸大学

2021.06.17

概要

Gravity waves play essential roles in the terrestrial atmosphere because they propagate far from source regions and transport momentum and energy globally. Gravity waves are also observed in the Venus atmosphere, but their characteristics have been poorly understood. Here we demonstrate activities of small-scale gravity waves using a high-resolution Venus general circulation model with less than 20 and 0.25 km in the horizontal and vertical grid intervals, respectively. We find spontaneous gravity wave radiation from nearly balanced flows. In the upper cloud layer (~70 km), the thermal tides in the super-rotation are primary sources of small-scale gravity waves in the low-latitudes. Baroclinic/barotropic waves are also essential sources in the mid- and high-latitudes. The small-scale gravity waves affect the three-dimensional structure of the super-rotation and contribute to material mixing through their breaking processes. They propagate vertically and transport momentum globally, which decelerates the super-rotation in the upper cloud layer (~70 km) and accelerates it above ~80 km.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Fritts, D. C. & Alexander, M. J. Gravity wave dynamics and effects in the

middle atmosphere. Rev. Geophys. 41, 1–59 (2003).

Plougonven, R. & Zhang, F. Internal gravity waves from atmospheric jets and

fronts. Rev. Geophys. 52, 33–76 (2014).

McIntyre, M. E. Spontaneous imbalance and hybrid vortex-gravity structures.

J. Atmos. Sci. 66, 1315–1325 (2009).

Vanneste, J. Balance and spontaneous wave generation in geophysical flows.

Annu. Rev. Fluid Mech. 45, 147–172 (2013).

Ford, R. Gravity wave radiation from vortex trains in rotating shallow water. J.

Fluid Mech. 281, 81–118 (1994).

Sugimoto, N., Ishioka, K. & Ishii, K. Parameter sweep experiments on

spontaneous gravity wave radiation from unsteady rotational flow in an fplane shallow water system. J. Atmos. Sci. 65, 235–249 (2008).

Sugimoto, N., Ishioka, K., Kobayashi, H. & Shimomura, Y. Cycloneanticyclone asymmetry in gravity wave radiation from a co-rotating vortex

pair in rotating shallow water. J. Fluid Mech. 772, 80–106 (2015).

Yasuda, Y., Sato, K. & Sugimoto, N. A theoretical study on the spontaneous

radiation of inertia-gravity waves using the renormalization group method.

Part II: verification of the theoretical equations by numerical simulation. J.

Atmos. Sci. 72, 984–1009 (2015).

Sugimoto, N. & Plougonven, R. Generation and backreaction of spontaneously

emitted inertia-gravity waves. Geophys. Res. Lett. 43, 3519–3526 (2016).

Yasuda, Y., Sato, K. & Sugimoto, N. A theoretical study on the spontaneous

radiation of inertia-gravity waves using the renormalization group method.

Part I: derivation of the renormalization group equations. J. Atmos. Sci. 72,

957–983 (2015).

Read, P. L. & Lebonnois, S. Superrotation on venus, on titan, and elsewhere.

Annu. Rev. Earth Planet. Sci. 46, 175–202 (2018).

Baker, R., Schubert, D. G. & Jones, P. W. Convectively generated internal

gravity waves in the lower atmosphere of Venus. Part II: mean wind shear and

wave–mean flow interaction. J. Atmos. Sci. 57, 200–215 (2000).

Imamura, T. et al. Inverse insolation dependence of Venus’ cloud-level

convection. Icarus 228, 181–188 (2014).

Lefèvre, M., Spiga, A. & Lebonnois, S. Three-dimensional turbulence-resolving

modeling of the Venusian cloud layer and induced gravity waves. J. Geophys.

Res. Planets 122, 134–149 (2017).

Yamamoto, M. & Takahashi, M. Gravity waves and convection cells resulting from

feedback heating of Venus’ lower clouds. J. Meteor. Soc. Jpn 81, 885–892 (2003).

Tellmann, S. et al. Small-scale temperature fluctuations seen by the VeRa radio

science experiment on Venus Express. Icarus 221, 471–480 (2012).

Garcia, R. F., Drossart, P., Piccioni, G., Lopez-Valverde, M. & Occhipinti, G.

Gravity waves in the upper atmosphere of Venus revealed by CO2

nonlocal thermodynamic equilibrium emissions. J. Geophys. Res. 114, E00B32

(2009).

Markiewicz, W. J. et al. Morphology and dynamics of the upper cloud layer of

Venus. Nature 450, 633–636 (2007).

Piccialli, A. et al. High latitude gravity waves at the Venus cloud tops as

observed by the Venus Monitoring Camera on board Venus Express. Icarus

227, 94–111 (2014).

Peralta, J. et al. Characterization of mesoscale gravity waves in the

upper and lower clouds of VEX-VIRTIS images. J. Geophys. Res. 113, E00B18

(2008).

Zalucha, A. M., Brecht, A. S., Rafkin, S., Bougher, S. W. & Alexander, M. J.

Incorporation of a gravity wave momentum deposition parameterization into

the Venus Thermosphere General Circulation Model (VTGCM). J. Geophys.

Res. Planets 118, 147–160 (2013).

Hoshino, H., Fujiwara, H., Takagi, M. & Kasaba, Y. Effects of gravity waves on

the day-night difference of the general circulation in the Venusian lower

thermosphere. J. Geophys. Res. Planets 118, 2004–2015 (2013).

Yamamoto, M. & Takahashi, M. Superrotation and equatorial waves in a T21

Venus-like AGCM. Geophys. Res. Lett. 30, 1449 (2003).

Sugimoto, N., Takagi, M. & Matsuda, Y. Waves in a Venus general circulation

model. Geophys. Res. Lett. 41, 7461–7467 (2014).

Lebonnois, S., Sugimoto, N. & Gilli, G. Wave analysis in the atmosphere of

Venus below 100-km altitude, simulated by LMD Venus GCM. Icarus 278,

38–51 (2016).

Ohfuchi, W. et al. 10-km Mesh meso-scale resolving simulations of the global

atmosphere on the earth simulator, preliminary outcomes of AFES (AGCM

for the Earth Simulator). J. Earth Simul. 1, 8–34 (2004).

Sugimoto, N., Takagi, M. & Matsuda, Y. Baroclinic instability in the Venus

atmosphere simulated by GCM. J. Geophys. Res. 119, 1950–1968 (2014).

28. Sugimoto, N., Takagi, M. & Matsuda, Y. Fully developed super-rotation driven

by the mean meridional circulation in a Venus GCM. Geophys. Res. Lett. 46,

1776–1784 (2019).

29. Takagi, M., Sugimoto, N., Ando, H. & Matsuda, Y. Three dimensional

structures of thermal tides simulated by a Venus GCM. J. Geophys. Res.

Planets 123, 335–352 (2018).

30. Ando, H. et al. The puzzling Venusian polar atmospheric structure

reproduced by a general circulation model. Nat. Commun. 7, 10398 (2016).

31. Ando, H. et al. Local time dependence of the thermal structure in the

Venusian equatorial upper atmosphere: Comparison of Akatsuki radio

occultation measurements and GCM results. J. Geophys. Res. Planets 123,

2970–2980 (2018).

32. Kashimura, H. et al. Planetary-scale streak structure reproduced in a Venus

atmospheric simulation. Nat. Commun. 10, 23 (2019).

33. Newman, M. & Leovy, C. Maintenance of strong rotational winds in Venus’

middle atmosphere by thermal tides. Science 257, 647–650 (1992).

34. Takagi, M. & Matsuda, Y. Effects of thermal tides on the Venus atmospheric

superrotation. J. Geophys. Res. 112, D09112 (2007).

35. Pechmann, A. P. & Ingersoll, J. B. Venus lower atmosphere heat balance. J.

Geophys. Res. 85, 8219–8222 (1980).

36. Takagi, M. & Matsuda, Y. Dynamical effect of thermal tides in the lower

Venus atmosphere. Geophys. Res. Lett. 33, L026168 (2006).

37. Limaye, S. S. et al. Venus atmospheric thermal structure and radiative balance.

Space Sci. Rev. 214, 102 (2018).

38. Van Tuyl, A. H. & Young, J. A. Numerical simulation of nonlinear jet streak

adjustment. Mon. Weather Rev. 110, 2038–2054 (1982).

39. O’Sullivan, D. & Dunkerton, T. Generation of inertia-gravity waves in a simulated

life cycle of baroclinic instability. J. Atmos. Sci. 52, 3695–3716 (1995).

40. Zhang, F., Koch, S. E., Davis, C. A. & Kaplan, M. L. A survey of unbalanced

flow diagnostics and their application. Adv. Atmos. Sci. 17, 165–183 (2000).

41. Del Genio, A. D. & Rossow, W. B. Planetary-scale waves and the cyclic nature

of cloud top dynamics on Venus. J. Atmos. Sci. 47, 293–318 (1990).

42. Imamura, T. Meridional propagation of planetary-scale waves in vertical shear:

implication for the Venus atmosphere. J. Atmos. Sci. 63, 1623–1636 (2006).

43. Kouyama, T., Imamura, T., Nakamura, M., Satoh, T. & Futaana, Y. Vertical

propagation of planetary-scale waves in variable background winds in the

upper cloud region of Venus. Icarus 248, 560–568 (2015).

44. Horinouchi, T. et al. How waves and turbulence maintain the super-rotation

of Venus’ atmosphere. Science 368, 405–409 (2020).

45. Yamamoto, M., Ikeda, K. & Takahashi, M. Atmospheric response to highresolution topographical and radiative forcings in a general circulation model of

Venus: time-mean structures of waves and variances. Icarus 355, 114154 (2021).

46. Ando, H. et al. Vertical wavenumber spectra of gravity waves in the Venus

atmosphere obtained from Venus Express radio occultation data: evidence for

saturation. J. Atmos. Sci. 72, 2318–2329 (2015).

47. Bühler, O. & McIntyre, M. Wave capture and wavevortex duality. J. Fluid

Mech. 534, 67–95 (2005).

48. Sánchez-Lavega, A., Lebonnois, S., Imamura, T., Read, P. & Luz, D. The

atmospheric dynamics of Venus. Space Sci. Rev. 212, 1541–1616 (2017).

49. Tomasko, M. G., Doose, L. R., Smith, P. H. & Odell, A. P. Measurements of

the flux of sunlight in the atmosphere of Venus. J. Geophys. Res. 85,

8167–8186 (1980).

50. Crisp, D. Radiative forcing of the Venus mesosphere: I. solar fluxes and

heating rates. Icarus 67, 484–514 (1986).

51. Seiff, A. et al. Models of the structure of the atmosphere of Venus from the

surface to 100 kilometers altitude. Adv. Space Res. 5, 3–58 (1985).

52. Tellmann, S., Patzold, M., Hausler, B., Bird, M. K. & Tyler, G. L. Structure of

the Venus neutral atmosphere as observed by the radio science experiment

VeRa on Venus Express. J. Geophys. Res. 114, E00B36 (2009).

Acknowledgements

This study was conducted under the Earth Simulator Proposed Research Project with title

High Resolution General Circulation Simulation of Venus and Mars Atmosphere using AFES.

The work is partly supported by JSPS KAKENHI grants Numbers JP19H01971, JP19H05605,

JP20K04062, and JP20K04064. Authors thank to Ms. Hinako Onuma who provided analysed

data to produce Supplementay Fig. 4, while the original data was produced in this study.

Author contributions

N.S. developed the high-resolution version of AFES-Venus with a help of M.T. and

performed numerical experiments. N.S. analysed obtained data with a help of Y.F. and

H.K. Y.F. created Figs. 1–5 and Supplementary Figs. 1–3 and 5 with a help of N.S. on the

platform of GFD-DENNOU Library. N.S. created Supplementary Figs. 4 and 6 on the

same platform. All the authors including K.N., T.K., and Y.-Y.H. contributed to the

theoretical interpretations.

Competing interests

The authors declare no competing interests.

NATURE COMMUNICATIONS | (2021)12:3682 | https://doi.org/10.1038/s41467-021-24002-1 | www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24002-1

Additional information

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s41467-021-24002-1.

Correspondence and requests for materials should be addressed to N.S.

Peer review information Nature Communications thanks Peter Read, Robert Wilson and

the other, anonymous, reviewer for their contribution to the peer review of this work.

Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

ARTICLE

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | (2021)12:3682 | https://doi.org/10.1038/s41467-021-24002-1 | www.nature.com/naturecommunications

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る