リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of substrates for the culture of human pluripotent stem cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of substrates for the culture of human pluripotent stem cells

Kawase, Eihachiro Nakatsuji, Norio 京都大学 DOI:10.1039/d2bm01473d

2023.05.07

概要

Although human pluripotent stem cell (hPSC) lines were initially established in culture using feeder cells, the development of culture media and substrates is essential for safe, stable, high-quality, and efficient production of large numbers of cells. Many researchers are now culturing hPSCs in chemically defined media and on culture substrates without feeder cells. In this review, we first discuss the problems with Matrigel, which has long been used as a culture substrate. Then, we summarize the development of extracellular matrix proteins for hPSCs, which are now the mainstream alternative, and synthetic substrates that are expected to be the future mainstream alternative. We also highlight three-dimensional culture for suitable mass production of hPSCs.

この論文で使われている画像

参考文献

1 M. J. Evans and M. H. Kaufman, Establishment in culture

of pluripotential cells from mouse embryos, Nature, 1981,

292, 154–156.

2 G. R. Martin, Isolation of a pluripotent cell line from early

mouse embryos cultured in medium conditioned by teratocarcinoma stem cells, Proc. Natl. Acad. Sci. U. S. A., 1981,

78, 7634–7638.

3 J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro,

M. A. Waknitz, J. J. Swiergiel, V. S. Marshall and

J. M. Jones, Embryonic stem cell lines derived from

human blastocysts, Science, 1988, 282, 1145–1147.

4 A. G. Smith, J. K. Heath, D. D. Donaldson, G. G. Wong,

J. Moreau, M. Stahl and D. Rogers, Inhibition of pluripotential embryonic stem cell differentiation by purified

polypeptides, Nature, 1988, 336, 688–690.

5 K. Takahashi and S. Yamanaka, Induction of pluripotent

stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, 126, 663–676.

6 K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita,

T. Ichisaka, K. Tomoda and S. Yamanaka, Induction of

pluripotent stem cells from adult human fibroblasts by

defined factors, Cell, 2007, 131, 861–872.

7 J. Yu, M. A. Vodyanik, K. Smuga-Otto, J. AntosiewiczBourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir,

V. Ruotti, R. Stewart, I. I. Slukvin and J. A. Thomson,

Induced pluripotent stem cell lines derived from human

somatic cells, Science, 2007, 318, 1917–1920.

8 A. Higuchi, Q. D. Ling, Y. A. Ko, Y. Chang and

A. Umezawa, Biomaterials for the feeder-free culture of

human embryonic stem cells and induced pluripotent

stem cells, Chem. Rev., 2011, 111, 3021–3035.

9 A. Higuchi, Q. D. Ling, S. Kumar, M. Munusamy,

A. A. Alarfajj, A. Umezawa and G. J. Wu, Design of polymeric materials for culturing human pluripotent stem

cells: Progress toward feeder-free and xeno-free culturing,

Prog. Polym. Sci., 2014, 39, 1348–1374.

10 S. Schmidt, A. Lilienkampf and M. Bradley, New substrates for stem cell control, Philos. Trans. R. Soc., B, 2018,

373, 20170223.

11 A. Polanco, B. Kuang and S. Yoon, Bioprocess

Technologies that Preserve the Quality of iPSCs, Trends

Biotechnol., 2020, 38, 1128–1140.

12 S. E. Tannenbaum and B. E. Reubinoff, Advances in hPSC

expansion towards therapeutic entities: A review, Cell

Proliferation, 2022, 55, e13247.

13 C. Xu, M. S. Inokuma, J. Denham, K. Golds, P. Kundu,

J. D. Gold and M. K. Carpenter, Feeder-free growth of

undifferentiated human embryonic stem cells, Nat.

Biotechnol., 2001, 19, 971–974.

14 M. Amit, C. Shariki, V. Margulets and J. Itskovitz-Eldor,

Feeder layer- and serum-free culture of human embryonic

stem cells, Biol. Reprod., 2004, 70, 837–845.

15 D. James, A. J. Levine, D. Besser and A. HemmatiBrivanlou, TGFbeta/activin/nodal signaling is necessary

This journal is © The Royal Society of Chemistry 2023

16

17

18

19

20

21

22

23

24

25

26

27

for the maintenance of pluripotency in human embryonic

stem cells, Development, 2005, 132, 1273–1282.

I. Klimanskaya, Y. Chung, L. Meisner, J. Johnson,

M. D. West and R. Lanza, Human embryonic stem cells

derived without feeder cells, Lancet, 2005, 365, 1636–1641.

G. Wang, H. Zhang, Y. Zhao, J. Li, J. Cai, P. Wang,

S. Meng, J. Feng, C. Miao, M. Ding, D. Li and H. Deng,

Noggin and bFGF cooperate to maintain the pluripotency

of human embryonic stem cells in the absence of feeder

layers, Biochem. Biophys. Res. Commun., 2005, 330, 934–

942.

R. H. Xu, R. M. Peck, D. S. Li, X. Feng, T. Ludwig and

J. A. Thomson, Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES

cells, Nat. Methods, 2005, 2, 185–190.

M. K. Furue, J. Na, J. P. Jackson, T. Okamoto, M. Jones,

D. Baker, R. Hata, H. D. Moore, J. D. Sato and

P. W. Andrews, Heparin promotes the growth of human

embryonic stem cells in a defined serum-free medium,

Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 13409–13414.

Y. Li, S. Powell, E. Brunette, J. Lebkowski and

R. Mandalam, Expansion of human embryonic stem cells

in defined serum-free medium devoid of animal-derived

products, Biotechnol. Bioeng., 2005, 91, 688–698.

Y. Liu, Z. Song, Y. Zhao, H. Qin, J. Cai, H. Zhang, T. Yu,

S. Jiang, G. Wang, M. Ding and H. Deng, A novel chemical-defined medium with bFGF and N2B27 supplements

supports undifferentiated growth in human embryonic

stem cells, Biochem. Biophys. Res. Commun., 2006, 346,

131–139.

J. Lu, R. Hou, C. J. Booth, S. H. Yang and M. Snyder,

Defined culture conditions of human embryonic stem

cells, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 5688–5693.

L. Vallier, M. Alexander and R. A. Pedersen, Activin/Nodal

and FGF pathways cooperate to maintain pluripotency of

human embryonic stem cells, J. Cell Sci., 2005, 118, 4495–

4509.

S. Yao, S. Chen, J. Clark, E. Hao, G. M. Beattie, A. Hayek

and S. Ding, Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically

defined conditions, Proc. Natl. Acad. Sci. U. S. A., 2006,

103, 6907–6912.

L. Wang, T. C. Schuiz, E. S. Sherrer, D. S. Dauphin,

S. Shin, A. M. Nelson, C. B. Ware, M. Zhan, C. Z. Song,

X. Chen, S. N. Brimble, A. McLean, M. J. Galeano,

E. W. Uhl, K. A. D’Amour, J. D. Chesnut, M. S. Rao,

C. A. Blau and A. J. Robins, Self-renewal of human

embryonic stem cells requires insulin-like growth factor-1

receptor and ERBB2 receptor signaling, Blood, 2007, 110,

4111–4119.

T. E. Ludwig, V. Bergendahl, M. E. Levenstein, J. Yu,

M. D. Probasco and J. A. Thomson, Feeder-independent

culture of human embryonic stem cells, Nat. Methods,

2006, 3, 637–646.

T. E. Ludwig, M. E. Levenstein, J. M. Jones,

W. T. Berggren, E. R. Mitchen, J. L. Frane, L. J. Crandall,

Biomater. Sci., 2023, 11, 2974–2987 | 2983

View Article Online

Open Access Article. Published on 15 March 2023. Downloaded on 7/5/2023 2:55:07 AM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Minireview

28

29

30

31

32

33

34

35

36

37

38

C. A. Daigh, K. R. Conard, M. S. Piekarczyk, R. A. Llanas

and J. A. Thomson, Derivation of human embryonic stem

cells in defined conditions, Nat. Biotechnol., 2006, 24,

185–187.

International Stem Cell Initiative Consortium; V. Akopian,

P. W. Andrews, S. Beil, N. Benvenisty, J. Brehm,

M. Christie, A. Ford, V. Fox, P. J. Gokhale, L. Healy,

F. Holm, O. Hovatta, B. B. Knowles, T. E. Ludwig,

R. D. McKay, T. Miyazaki, N. Nakatsuji, S. K. Oh,

M. F. Pera, J. Rossant, G. N. Stacey and H. Suemori,

Comparison of defined culture systems for feeder cell free

propagation of human embryonic stem cells, In Vitro Cell.

Dev. Biol.: Anim., 2010, 46, 247–258.

G. Chen, D. R. Gulbranson, Z. Hou, J. M. Bolin, V. Ruotti,

M. D. Probasco, K. Smuga-Otto, S. E. Howden, N. R. Diol,

N. E. Propson, R. Wagner, G. O. Lee, J. AntosiewiczBourget, J. M. Teng and J. A. Thomson, Chemically

defined conditions for human iPSC derivation and

culture, Nat. Methods, 2011, 8, 424–429.

K. Watanabe, M. Ueno, D. Kamiya, A. Nishiyama,

M. Matsumura, T. Wataya, J. B. Takahashi, S. Nishikawa,

K. Muguruma and Y. Sasai, A ROCK inhibitor permits survival of dissociated human embryonic stem cells, Nat.

Biotechnol., 2007, 25, 681–686.

S. I. Vernardis, K. Terzoudis, N. Panoskaltsis and

A. Mantalaris, Human embryonic and induced pluripotent stem cells maintain phenotype but alter their metabolism after exposure to ROCK inhibitor, Sci. Rep., 2017, 7,

42138.

G. Benton, I. Arnaoutova, J. George, H. K. Kleinman and

J. Koblinski, Matrigel: from discovery and ECM mimicry

to assays and models for cancer research, Adv. Drug

Delivery Rev., 2014, 79–80, 3–18.

S. Kaur, I. Kaur, P. Rawal, D. M. Tripathi and

A. Vasudevan, Non-matrigel scaffolds for organoid cultures, Cancer Lett., 2021, 504, 58–66.

M. T. Kozlowski, C. J. Crook and H. T. Ku, Towards organoid

culture without Matrigel, Commun. Biol., 2021, 4, 1387.

H. K. Kleinman, M. L. McGarvey, J. R. Hassell, V. L. Star,

F. B. Cannon, G. W. Laurie and G. R. Martin, Basement

membrane

complexes

with

biological

activity,

Biochemistry, 1986, 25, 312–318. Corning® Matrigel®

Matrix Frequently Asked Questions.

C. S. Hughes, L. M. Postovit and G. A. Lajoie, Matrigel: a

complex protein mixture required for optimal growth of

cell culture, Proteomics, 2010, 10, 1886–1890.

N. C. Talbot and T. J. Caperna, Proteome array identification of bioactive soluble proteins/peptides in Matrigel:

relevance to stem cell responses, Cytotechnology, 2015, 67,

873–883.

S. Vukicevic, H. K. Kleinman, F. P. Luyten, A. B. Roberts,

N. S. Roche and A. H. Reddi, Identification of multiple

active growth factors in basement membrane Matrigel

suggests caution in interpretation of cellular activity

related to extracellular matrix components, Exp. Cell Res.,

1992, 202, 1–8.

2984 | Biomater. Sci., 2023, 11, 2974–2987

Biomaterials Science

39 J. A. Carlson Scholz, R. Garg, S. R. Compton, H. G. Allore,

C. J. Zeiss and E. M. Uchio, Poliomyelitis in MuLVinfected ICR-SCID mice after injection of basement membrane matrix contaminated with lactate dehydrogenaseelevating virus, Comp. Med., 2011, 61, 404–411.

40 M. J. Martin, A. Muotri, F. Gage and A. Varki, Human

embryonic stem cells express an immunogenic nonhuman sialic acid, Nat. Med., 2005, 11, 228–232.

41 R. O. Hynes, Integrins: bidirectional, allosteric signaling

machines, Cell, 2002, 110, 673–687.

42 T. Miyazaki, S. Futaki, K. Hasegawa, M. Kawasaki,

N. Sanzen, M. Hayashi, E. Kawase, K. Sekiguchi,

N. Nakatsuji and H. Suemori, Recombinant human

laminin isoforms can support the undifferentiated growth

of human embryonic stem cells, Biochem. Biophys. Res.

Commun., 2008, 375, 27–32.

43 T. Miyazaki, S. Futaki, H. Suemori, Y. Taniguchi, M. Yamada,

M. Kawasaki, M. Hayashi, H. Kumagai, N. Nakatsuji,

K. Sekiguchi and E. Kawase, Laminin E8 fragments support

efficient adhesion and expansion of dissociated human pluripotent stem cells, Nat. Commun., 2012, 3, 1236.

44 L. G. Villa-Diaz, J. K. Kim, A. Laperle, S. P. Palecek and

P. H. Krebsbach, Inhibition of Focal Adhesion Kinase

Signaling by Integrin α6β1 Supports Human Pluripotent

Stem Cell Self-Renewal, Stem Cells, 2016, 34, 1753–1764.

45 R. Nishiuchi, J. Takagi, M. Hayashi, H. Ido, Y. Yagi,

N. Sanzen, T. Tsuji, M. Yamada and K. Sekiguchi, Ligandbinding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using

recombinant α3β1, α6β1, α7β1 and α6β4 integrins, Matrix

Biol., 2006, 25, 189–197.

46 J. H. Miner and P. D. Yurchenco, Laminin functions in

tissue morphogenesis, Annu. Rev. Cell Dev. Biol., 2004, 20,

255–284.

47 S. Rodin, A. Domogatskaya, S. Ström, E. M. Hansson,

K. R. Chien, J. Inzunza, O. Hovatta and K. Tryggvason,

Long-term self-renewal of human pluripotent stem cells

on human recombinant laminin-511, Nat. Biotechnol.,

2010, 28, 611–615.

48 S. Rodin, L. Antonsson, C. Niaudet, O. E. Simonson,

E. Salmela, E. M. Hansson, A. Domogatskaya, Z. Xiao,

P. Damdimopoulou, M. Sheikhi, J. Inzunza, A. S. Nilsson,

D. Baker, R. Kuiper, Y. Sun, E. Blennow, M. Nordenskjöld,

K. H. Grinnemo, J. Kere, C. Betsholtz, O. Hovatta and

K. Tryggvason, Clonal culturing of human embryonic

stem cells on laminin-521/E-cadherin matrix in defined

and xeno-free environment, Nat. Commun., 2014, 5, 3195.

49 H. Ido, A. Nakamura, R. Kobayashi, S. Ito, S. Li, S. Futaki

and K. Sekiguchi, The requirement of the glutamic acid

residue at the third position from the carboxyl termini of

the laminin gamma chains in integrin binding by laminins, J. Biol. Chem., 2007, 282, 11144–11154.

50 T. Miyazaki, T. Isobe, N. Nakatsuji and H. Suemori,

Efficient Adhesion Culture of Human Pluripotent Stem

Cells Using Laminin Fragments in an Uncoated Manner,

Sci. Rep., 2017, 7, 41165.

This journal is © The Royal Society of Chemistry 2023

View Article Online

Open Access Article. Published on 15 March 2023. Downloaded on 7/5/2023 2:55:07 AM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Biomaterials Science

51 H. Main, M. Hedenskog, G. Acharya, O. Hovatta and

F. Lanner, Karolinska Institutet Human Embryonic Stem

Cell Bank, Stem Cell Res., 2020, 45, 101810.

52 E. Kawase, K. Takada, R. Nakatani, S. Yamazaki and

H. Suemori, Generation of clinical-grade human embryonic stem cell line KthES11 according to Japanese regulations, Stem Cell Res., 2021, 54, 102383.

53 T. Souralova, D. Rehakova, M. Jeseta, L. Tesarova,

J. Beranek, P. Ventruba, A. Hampl and I. Koutna, The

Manufacture of Xeno- and Feeder-Free Clinical-Grade

Human Embryonic Stem Cell Lines: First Step for Cell

Therapy, Int. J. Mol. Sci., 2022, 23, 12500.

54 K. Takada, R. Nakatani, E. Moribe, S. Yamazaki-Fujigaki,

M. Fujii, M. Furuta, H. Suemori and E. Kawase, Efficient

derivation and banking of clinical-grade human embryonic stem cell lines in accordance with Japanese regulations, Regen. Ther., 2022, 21, 553–559.

55 I. Schvartz, D. Seger and S. Shaltiel, Vitronectin,

Int. J. Biochem. Cell Biol., 1999, 31, 539–544.

56 S. R. Braam, L. Zeinstra, S. Litjens, D. Ward-van

Oostwaard, S. van den Brink, L. van Laake, F. Lebrin,

P. Kats, R. Hochstenbach, R. Passier, A. Sonnenberg and

C. L. Mummery, Recombinant vitronectin is a functionally

defined substrate that supports human embryonic stem

cell self-renewal via alphavbeta5 integrin, Stem Cells, 2008,

26, 2257–2265.

57 M. Takeichi, Morphogenetic roles of classic cadherins,

Curr. Opin. Cell Biol., 1995, 7, 619–627.

58 A. M. Eastham, H. Spencer, F. Soncin, S. Ritson, C. L. Merry,

P. L. Stern and C. M. Ward, Epithelial-mesenchymal transition events during human embryonic stem cell differentiation, Cancer Res., 2007, 67, 11254–11262.

59 D. Li, J. Zhou, L. Wang, M. E. Shin, P. Su, X. Lei,

H. Kuang, W. Guo, H. Yang, L. Cheng, T. S. Tanaka,

D. E. Leckband, A. B. Reynolds, E. Duan and F. Wang,

Integrated biochemical and mechanical signals regulate

multifaceted human embryonic stem cell functions, J. Cell

Biol., 2010, 191, 631–644.

60 M. Nagaoka, K. Si-Tayeb, T. Akaike and S. A. Duncan,

Culture of human pluripotent stem cells using completely

defined conditions on a recombinant E-cadherin substratum, BMC Dev. Biol., 2010, 10, 60.

61 Z. Melkoumian, J. L. Weber, D. M. Weber, A. G. Fadeev,

Y. Zhou, P. Dolley-Sonneville, J. Yang, L. Qiu, C. A. Priest,

C. Shogbon, A. W. Martin, J. Nelson, P. West, J. P. Beltzer,

S. Pal and R. Brandenberger, Synthetic peptide-acrylate

surfaces for long-term self-renewal and cardiomyocyte

differentiation of human embryonic stem cells, Nat.

Biotechnol., 2010, 28, 606–610.

62 S. Jin, H. Yao, J. L. Weber, Z. K. Melkoumian and K. Ye, A

synthetic, xeno-free peptide surface for expansion and

directed differentiation of human induced pluripotent

stem cells, PLoS One, 2012, 7, e50880.

63 E. Kawase, Efficient Expansion of Dissociated Human

Pluripotent Stem Cells Using a Synthetic Substrate,

Methods Mol. Biol., 2016, 1307, 61–69.

This journal is © The Royal Society of Chemistry 2023

Minireview

64 B. A. Tucker, K. R. Anfinson, R. F. Mullins, E. M. Stone

and M. J. Young, Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and

retinal differentiation, Stem Cells Transl. Med., 2013, 2,

16–24.

65 Y. Li, A. Gautam, J. Yang, L. Qiu, Z. Melkoumian,

J. Weber, L. Telukuntla, R. Srivastava, E. M. Whiteley and

R. Brandenberger, Differentiation of oligodendrocyte progenitor cells from human embryonic stem cells on vitronectin-derived synthetic peptide acrylate surface, Stem

Cells Dev., 2013, 22, 1497–1505.

66 P. Y. Lin, S. H. Hung, Y. C. Yang, L. C. Liao, Y. C. Hsieh,

H. J. Yen, H. E. Lu, M. S. Lee, I. M. Chu and S. M. Hwang,

A synthetic peptide-acrylate surface for production of

insulin-producing cells from human embryonic stem

cells, Stem Cells Dev., 2014, 23, 372–379.

67 A. Higuchi, S. H. Kao, Q. D. Ling, Y. M. Chen, H. F. Li,

A. A. Alarfaj, M. A. Munusamy, K. Murugan, S. C. Chang,

H. C. Lee, S. T. Hsu, S. S. Kumar and A. Umezawa, Longterm xeno-free culture of human pluripotent stem cells on

hydrogels with optimal elasticity, Sci. Rep., 2015, 5, 18136.

68 Y. M. Chen, L. H. Chen, M. P. Li, H. F. Li, A. Higuchi,

S. S. Kumar, Q. D. Ling, A. A. Alarfaj, M. A. Munusamy,

Y. Chang, G. Benelli, K. Murugan and A. Umezawa, Xenofree culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs, Sci.

Rep., 2017, 7, 45146.

69 J. R. Klim, L. Li, P. J. Wrighton, M. S. Piekarczyk and

L. L. Kiessling, A defined glycosaminoglycan-binding substratum for human pluripotent stem cells, Nat. Methods,

2010, 7, 989–994.

70 Y. Deng, X. Zhang, X. Zhao, Q. Li, Z. Ye, Z. Li, Y. Liu,

Y. Zhou, H. Ma, G. Pan, D. Pei, J. Fang and S. Wei, Longterm self-renewal of human pluripotent stem cells on

peptide-decorated poly(OEGMA-co-HEMA) brushes under

fully defined conditions, Acta Biomater., 2013, 9, 8840–

8850.

71 H. J. Park, K. Yang, M. J. Kim, J. Jang, M. Lee, D. W. Kim,

H. Lee and S. W. Cho, Bio-inspired oligovitronectingrafted surface for enhanced self-renewal and long-term

maintenance of human pluripotent stem cells under

feeder-free conditions, Biomaterials, 2015, 50, 127–139.

72 P. Zhou, F. Wu, T. Zhou, X. Cai, S. Zhang, X. Zhang, Q. Li,

Y. Li, Y. Zheng, M. Wang, F. Lan, G. Pan, D. Pei and

S. Wei, Simple and versatile synthetic polydopaminebased surface supports reprogramming of human somatic

cells and long-term self-renewal of human pluripotent

stem cells under defined conditions, Biomaterials, 2016,

87, 1–17.

73 P. Zhou, B. Yin, R. Zhang, Z. Xu, Y. Liu, Y. Yan, X. Zhang,

S. Zhang, Y. Li, H. Liu, Y. A. Yuan and S. Wei, Molecular

basis for RGD-containing peptides supporting adhesion

and self-renewal of human pluripotent stem cells on synthetic surface, Colloids Surf., B, 2018, 171, 451–460.

74 J. W. Lambshead, L. Meagher, J. Goodwin, T. Labonne,

E. Ng, A. Elefanty, E. Stanley, C. M. O’Brien and

Biomater. Sci., 2023, 11, 2974–2987 | 2985

View Article Online

Open Access Article. Published on 15 March 2023. Downloaded on 7/5/2023 2:55:07 AM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Minireview

75

76

77

78

79

80

81

82

83

84

85

86

A. L. Laslett, Long-Term Maintenance of Human

Pluripotent Stem Cells on cRGDfK-Presenting Synthetic

Surfaces, Sci. Rep., 2018, 8, 701.

A. A. Alarfaj, A. H. Hirad, M. A. Munusamy, S. S. Kumar

and A. Higuchi, Human embryonic stem cells cultured on

hydrogels grafted with extracellular matrix protein-derived

peptides with polyethylene glycol joint nanosegments, IET

Nanobiotechnol., 2022, 16, 295–304.

T. C. Sung, M. W. Lu, Z. Tian, H. H. Lee, J. Pan, Q. D. Ling

and A. Higuchi, Poly(vinyl alcohol- co-itaconic acid) hydrogels grafted with several designed peptides for human

pluripotent stem cell culture and differentiation into cardiomyocytes, J. Mater. Chem. B, 2021, 9, 7662–7673.

L. G. Villa-Diaz, H. Nandivada, J. Ding, N. C. Nogueira-deSouza, P. H. Krebsbach, K. S. O’Shea, J. Lahann and

G. D. Smith, Synthetic polymer coatings for long-term

growth of human embryonic stem cells, Nat. Biotechnol.,

2010, 28, 581–583.

Y. Mei, K. Saha, S. R. Bogatyrev, J. Yang, A. L. Hook,

Z. I. Kalcioglu, S. W. Cho, M. Mitalipova, N. Pyzocha,

F. Rojas, K. J. Van Vliet, M. C. Davies, M. R. Alexander,

R. Langer, R. Jaenisch and D. G. Anderson, Combinatorial

development of biomaterials for clonal growth of human

pluripotent stem cells, Nat. Mater., 2010, 9, 768–778.

D. A. Brafman, C. W. Chang, A. Fernandez, K. Willert,

S. Varghese and S. Chien, Long-term human pluripotent

stem cell self-renewal on synthetic polymer surfaces,

Biomaterials, 2010, 31, 9135–9144.

E. F. Irwin, R. Gupta, D. C. Dashti and K. E. Healy,

Engineered polymer-media interfaces for the long-term

self-renewal of human embryonic stem cells, Biomaterials,

2011, 32, 6912–6919.

C. W. Chang, Y. Hwang, D. Brafman, T. Hagan, C. Phung

and S. Varghese, Engineering cell-material interfaces for

long-term expansion of human pluripotent stem cells,

Biomaterials, 2013, 34, 912–921.

N. T. Kohen, L. E. Little and K. E. Healy, Characterization

of Matrigel interfaces during defined human embryonic

stem cell culture, Biointerphases, 2009, 4, 69–79.

S. Musah, S. A. Morin, P. J. Wrighton, D. B. Zwick, S. Jin

and L. L. Kiessling, Glycosaminoglycan-binding hydrogels

enable mechanical control of human pluripotent stem

cell self-renewal, ACS Nano, 2012, 6, 10168–10177.

S. Paiva, P. Joanne, C. Migdal, E. L. Soler, Y. Hovhannisyan,

A. Nicolas and O. Agbulut, Polyacrylamide Hydrogels with

Rigidity-Independent Surface Chemistry Show Limited LongTerm Maintenance of Pluripotency of Human Induced

Pluripotent Stem Cells on Soft Substrates, ACS Biomater. Sci.

Eng., 2020, 6, 340–351.

M. Serra, C. Brito, C. Correia and P. M. Alves, Process

engineering of human pluripotent stem cells for clinical

application, Trends Biotechnol., 2012, 30, 350–359.

S. Tohyama, J. Fujita, C. Fujita, M. Yamaguchi,

S. Kanaami, R. Ohno, K. Sakamoto, M. Kodama,

J. Kurokawa, H. Kanazawa, T. Seki, Y. Kishino, M. Okada,

K. Nakajima, S. Tanosaki, S. Someya, A. Hirano,

2986 | Biomater. Sci., 2023, 11, 2974–2987

Biomaterials Science

87

88

89

90

91

92

93

94

95

96

97

S. Kawaguchi, E. Kobayashi and K. Fukuda, Efficient

Large-Scale 2D Culture System for Human Induced

Pluripotent

Stem

Cells

and

Differentiated

Cardiomyocytes, Stem Cell Rep., 2017, 9, 1406–1414.

A. T. Lam, J. Li, A. K. Chen, W. R. Birch, S. Reuveny and

S. K. Oh, Improved Human Pluripotent Stem Cell

Attachment and Spreading on Xeno-Free Laminin-521Coated Microcarriers Results in Efficient Growth in

Agitated Cultures, BioRes. Open Access, 2015, 4, 242–257.

S. M. Badenes, T. G. Fernandes, C. S. Cordeiro,

S. Boucher, D. Kuninger, M. C. Vemuri, M. M. Diogo and

J. M. Cabral, Defined Essential 8™ Medium and

Vitronectin Efficiently Support Scalable Xeno-Free

Expansion of Human Induced Pluripotent Stem Cells in

Stirred Microcarrier Culture Systems, PLoS One, 2016, 11,

e0151264.

Y. Fan, F. Zhang and E. S. Tzanakakis, Engineering XenoFree Microcarriers with Recombinant Vitronectin,

Albumin and UV Irradiation for Human Pluripotent Stem

Cell Bioprocessing, ACS Biomater. Sci. Eng., 2017, 3, 1510–

1518.

Y. Fan, M. Hsiung, C. Cheng and E. S. Tzanakakis, Facile

engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension, Tissue Eng., Part A, 2014, 20, 588–599.

A. L. Rodrigues, C. A. V. Rodrigues, A. R. Gomes,

S. F. Vieira, S. M. Badenes, M. M. Diogo and

J. M. S. Cabral, Dissolvable Microcarriers Allow Scalable

Expansion And Harvesting Of Human Induced

Pluripotent Stem Cells Under Xeno-Free Conditions,

Biotechnol. J., 2019, 14, e1800461.

S. Derakhti, S. H. Safiabadi-Tali, G. Amoabediny and

M. Sheikhpour, Attachment and detachment strategies in

microcarrier-based cell culture technology: A comprehensive review, Mater. Sci. Eng., C, 2019, 103, 109782.

P. Fattahi, A. Rahimian, M. Q. Slama, K. Gwon,

A. M. Gonzalez-Suarez, J. Wolf, H. Baskaran, C. D. Duffy,

G. Stybayeva, Q. P. Peterson and A. Revzin, Core-shell

hydrogel microcapsules enable formation of human pluripotent stem cell spheroids and their cultivation in a

stirred bioreactor, Sci. Rep., 2021, 11, 7177.

V. C. Chen, S. M. Couture, J. Ye, Z. Lin, G. Hua,

H. I. Huang, J. Wu, D. Hsu, M. K. Carpenter and

L. A. Couture, Scalable GMP compliant suspension

culture system for human ES cells, Stem Cell Res., 2012, 8,

388–402.

D. E. Kehoe, D. Jing, L. T. Lock and E. S. Tzanakakis,

Scalable stirred-suspension bioreactor culture of human

pluripotent stem cells, Tissue Eng., Part A, 2010, 16, 405–

421.

R. Krawetz, J. T. Taiani, S. Liu, G. Meng, X. Li, M. S. Kallos

and D. E. Rancourt, Large-scale expansion of pluripotent

human embryonic stem cells in stirred-suspension bioreactors, Tissue Eng., Part C, 2010, 16, 573–582.

R. Olmer, A. Haase, S. Merkert, W. Cui, J. Palecek, C. Ran,

A. Kirschning, T. Scheper, S. Glage, K. Miller,

This journal is © The Royal Society of Chemistry 2023

View Article Online

Open Access Article. Published on 15 March 2023. Downloaded on 7/5/2023 2:55:07 AM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Biomaterials Science

98

99

100

101

102

103

104

105

106

107

108

109

E. C. Curnow, E. S. Hayes and U. Martin, Long term

expansion of undifferentiated human iPS and ES cells in

suspension culture using a defined medium, Stem Cell

Res., 2010, 5, 51–64.

R. Olmer, A. Lange, S. Selzer, C. Kasper, A. Haverich,

U. Martin and R. Zweigerdt, Suspension culture of human

pluripotent stem cells in controlled, stirred bioreactors,

Tissue Eng., Part C, 2012, 18, 772–784.

H. Singh, P. Mok, T. Balakrishnan, S. N. Rahmat and

R. Zweigerdt, Up-scaling single cell-inoculated suspension

culture of human embryonic stem cells, Stem Cell Res.,

2010, 4, 165–179.

D. Steiner, H. Khaner, M. Cohen, S. Even-Ram, Y. Gil,

P. Itsykson, T. Turetsky, M. Idelson, E. Aizenman, R. Ram,

Y. Berman-Zaken and B. Reubinoff, Derivation, propagation and controlled differentiation of human embryonic

stem cells in suspension, Nat. Biotechnol., 2010, 28, 361–

364.

R. Zweigerdt, R. Olmer, H. Singh, A. Haverich and

U. Martin, Scalable expansion of human pluripotent stem

cells in suspension culture, Nat. Protoc., 2011, 6, 689–700.

M. Amit, J. Chebath, V. Margulets, I. Laevsky,

Y. Miropolsky, K. Shariki, M. Peri, I. Blais, G. Slutsky,

M. Revel and J. Itskovitz-Eldor, Suspension culture of

undifferentiated human embryonic and induced pluripotent stem cells, Stem Cell Rev. Rep., 2010, 6, 248–259.

J. Wu, M. R. Rostami, D. P. Cadavid Olaya and

E. S. Tzanakakis, Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures, PLoS One,

2014, 9, e102486.

T. G. Otsuji, J. Bin, A. Yoshimura, M. Tomura,

D. Tateyama, I. Minami, Y. Yoshikawa, K. Aiba,

J. E. Heuser, T. Nishino, K. Hasegawa and N. Nakatsuji, A

3D sphere culture system containing functional polymers

for large-scale human pluripotent stem cell production,

Stem Cell Rep., 2014, 2, 734–745.

R. Chandrasekaran and V. G. Thailambal, The influence

of calcium ions, acetate and l -glycerate groups on the

gellan double-helix, Carbohydr. Polym., 1990, 12, 431–442.

B. Abecasis, T. Aguiar, É. Arnault, R. Costa, P. GomesAlves, A. Aspegren, M. Serra and P. M. Alves, Expansion of

3D human induced pluripotent stem cell aggregates in

bioreactors: Bioprocess intensification and scaling-up

approaches, J. Biotechnol., 2017, 246, 81–93.

Y. Y. Lipsitz, P. D. Tonge and P. W. Zandstra, Chemically

controlled aggregation of pluripotent stem cells,

Biotechnol. Bioeng., 2018, 115, 2061–2066.

D. E. S. Nogueira, C. A. V. Rodrigues, M. S. Carvalho,

C. C. Miranda, Y. Hashimura, S. Jung, B. Lee and

J. M. S. Cabral, Strategies for the expansion of human

induced pluripotent stem cells as aggregates in single-use

Vertical-Wheel™ bioreactors, J. Biol. Eng., 2019, 13, 74.

H. Wu, X. Tang, Y. Wang, N. Wang, Q. Chen, J. Xie, S. Liu,

Z. Zhong, Y. Qiu, P. Situ, M. A. Zern, J. Wang, H. Chen

and Y. Duan, Dextran sulfate prevents excess aggregation

This journal is © The Royal Society of Chemistry 2023

Minireview

110

111

112

113

114

115

116

117

118

119

of human pluripotent stem cells in 3D culture by inhibiting ICAM1 expression coupled with down-regulating

E-cadherin through activating the Wnt signaling pathway,

Stem Cell Res. Ther., 2022, 13, 218.

X. Tang, H. Wu, J. Xie, N. Wang, Q. Chen, Z. Zhong,

Y. Qiu, J. Wang, X. Li, P. Situ, L. Lai, M. A. Zern, H. Chen

and Y. Duan, The combination of dextran sulphate and

polyvinyl alcohol prevents excess aggregation and promotes proliferation of pluripotent stem cells in suspension culture, Cell Proliferation, 2021, 54, e13112.

X. Chen, A. B. Prowse, Z. Jia, H. Tellier, T. P. Munro,

P. P. Gray and M. J. Monteiro, Thermoresponsive worms

for expansion and release of human embryonic stem cells,

Biomacromolecules, 2014, 15, 844–855.

X. Chen, L. Harkness, Z. Jia, A. Prowse, M. J. Monteiro

and P. P. Gray, Methods for Expansion of ThreeDimensional Cultures of Human Embryonic Stem Cells

Using a Thermoresponsive Polymer, Tissue Eng., Part C,

2018, 24, 146–157.

B. L. Ekerdt, C. M. Fuentes, Y. Lei, M. M. Adil,

A. Ramasubramanian, R. A. Segalman and D. V. Schaffer,

Thermoreversible Hyaluronic Acid-PNIPAAm Hydrogel

Systems for 3D Stem Cell Culture, Adv. Healthcare Mater.,

2018, 7, e1800225.

H. J. Johnson, S. Chakraborty, R. J. Muckom, N. P. Balsara

and D. V. Schaffer, A scalable and tunable thermoreversible polymer for 3D human pluripotent stem cell biomanufacturing, iScience, 2022, 25, 104971.

R. Zhang, H. K. Mjoseng, M. A. Hoeve, N. G. Bauer,

S. Pells, R. Besseling, S. Velugotla, G. Tourniaire,

R. E. Kishen, Y. Tsenkina, C. Armit, C. R. Duffy,

M. Helfen, F. Edenhofer, P. A. de Sousa and M. Bradley, A

thermoresponsive and chemically defined hydrogel for

long-term culture of human embryonic stem cells, Nat.

Commun., 2013, 4, 1335.

Y. Deng, S. Wei, L. Yang, W. Yang, M. S. Dargusch and

Z.-G. Chen, A Novel Hydrogel Surface Grafted With Dual

Functional Peptides for Sustaining Long-Term SelfRenewal of Human Induced Pluripotent Stem Cells and

Manipulating Their Osteoblastic Maturation, Adv. Funct.

Mater., 2018, 28, 1705546.

F. Etezadi, M. N. T. Le, H. Shahsavarani, A. Alipour,

N. Moazzezy, S. Samani, A. Amanzadeh, S. Pahlavan,

S. Bonakdar, M. A. Shokrgozar and K. Hasegawa,

Optimization of a PDMS-Based Cell Culture Substrate for

High-Density Human-Induced Pluripotent Stem Cell

Adhesion

and

Long-Term

Differentiation

into

Cardiomyocytes under a Xeno-Free Condition, ACS

Biomater. Sci. Eng., 2022, 8, 2040–2052.

D. Grimm, EPA plan to end animal testing splits scientists, Science, 2019, 365, 1231.

X. Y. Tang, S. Wu, D. Wang, C. Chu, Y. Hong, M. Tao,

H. Hu, M. Xu, X. Guo and Y. Liu, Human organoids in

basic research and clinical applications, Signal

Transduction Targeted Ther., 2022, 7, 168.

Biomater. Sci., 2023, 11, 2974–2987 | 2987

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る