リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ナス属植物におけるステロイドグリコアルカロイド生合成の解明」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ナス属植物におけるステロイドグリコアルカロイド生合成の解明

Akiyama, Ryota 神戸大学

2020.03.25

概要

ステロイドグリコアルカロイド (~GA) は、窒素原子を含むステロイドを基本骨格とする代謝産物であり、特にナス属作物であるジャガイモ (Solanumtuberosum)、トマト (Solanumlycopersicum)、ナス (Solanummelongena)に含まれる毒性化合物としてよく知られている。 SGAは様々な生物に幅広く毒性を示すため、防御物質であると考えられている。ジャガイモの緑化した塊茎表皮や萌芽には α-ソラニン等の SGAが高濃度で蓄積しており、これらは不快な苦味の原因となるだけでなく、多量な摂取により食中毒を引き起こす。このように、 SGAは身近な植物二次代謝産物であるが、その生合成については不明な点が多い。学位申請者である秋山遼太氏は、第 1章ではゲノム編集技術による SGAを全く含まないジャガイモの分子育種、第 2章ではトマトにおける α-トマチン生合成に関わる生合成遺伝子の同定、第 3章ではジャガイモのα-ソラニンのソラニダン骨格形成機構についてそれぞれ論じ、さらに、これらの結果について総合的に考察している。

参考文献

1. Harrison, D. M. Steroidal alkaloids. Nat. Prod. Rep. 7, 139 (1990).

2. Petersen, H. W., Mølgaard, P., Nyman, U. & Olsen, C. E. Chemotaxonomy of the tuber-bearing Solanum species, subsection Potatoe (Solanaceae). Biochem. Syst. Ecol. 21, 629–644 (1993).

3. Heftmann, E. Biogenesis of steroids in solanaceae. Phytochemistry 22, 1843– 1860 (1983).

4. Friedman†, M. Potato Glycoalkaloids and Metabolites: Roles in the Plant and in the Diet. (2006). doi:10.1021/JF061471T

5. Friedman†, M. Tomato Glycoalkaloids: Role in the Plant and in the Diet. (2002). doi:10.1021/JF020560C

6. Milner, S. E. et al. Bioactivities of glycoalkaloids and their aglycones from solanum species. J. Agric. Food Chem. 59, 3454–3484 (2011).

7. Roddick, J. G. The acetylcholinesterase-inhibitory activity of steroidal glycoalkaloids and their aglycones. Phytochemistry 28, 2631–2634 (1989).

8. Al Sinani, S. S. S. & Eltayeb, E. A. The steroidal glycoalkaloids solamargine and solasonine in Solanum plants. South African Journal of Botany 112, 253–269 (2017).

9. Sonawane, P. D. et al. Short-chain dehydrogenase/reductase governs steroidal specialized metabolites structural diversity and toxicity in the genus Solanum. Proc. Natl. Acad. Sci. U. S. A. 115, E5419–E5428 (2018).

10. Lee, H. J. et al. Identification of a 3β-Hydroxysteroid Dehydrogenase/ 3- Ketosteroid Reductase Involved in α-Tomatine Biosynthesis in Tomato. Plant Cell Physiol. 60, 1304–1315 (2019).

11. Cárdenas, P. D. et al. Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nat. Commun. 10, (2019).

12. Nakayasu, M. et al. Identification of α-Tomatine 23-Hydroxylase Involved in the Detoxification of a Bitter Glycoalkaloid. Plant Cell Physiol. (2019). doi:10.1093/pcp/pcz224

13. Friedman, M. et al. Tomatine-Containing Green Tomato Extracts Inhibit Growth of Human Breast, Colon, Liver, and Stomach Cancer Cells. J. Agric. Food Chem. 57, 5727–5733 (2009).

14. Itkin, M. et al. Biosynthesis of Antinutritional Alkaloids in Solanaceous Crops Is Mediated by Clustered Genes. Science (80-. ). 341, (2013).

15. Shakya, R. & Navarre, D. A. LC-MS analysis of solanidane glycoalkaloid diversity among tubers of four wild potato species and three cultivars (Solanum tuberosum). J. Agric. Food Chem. 56, 6949–6958 (2008).

16. Itkin, M. et al. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 23, 4507–25 (2011).

17. Iijima, Y. et al. Steroidal glycoalkaloid profiling and structures of glycoalkaloids in wild tomato fruit. Phytochemistry 95, 145–157 (2013).

18. Schwahn, K., de Souza, L. P., Fernie, A. R. & Tohge, T. Metabolomics-assisted refinement of the pathways of steroidal glycoalkaloid biosynthesis in the tomato clade. J. Integr. Plant Biol. 56, 864–875 (2014).

19. Wu, S. B., Meyer, R. S., Whitaker, B. D., Litt, A. & Kennelly, E. J. A new liquid chromatography-mass spectrometry-based strategy to integrate chemistry,morphology, and evolution of eggplant (Solanum) species. J. Chromatogr. A 1314, 154–172 (2013).

20. Sawai, S. et al. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26, 3763–74 (2014).

21. Umemoto, N. et al. Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway. Plant Physiol. 171, 2458–67 (2016).

22. Ginzberg, I., Tokuhisa, J. G. & Veilleux, R. E. Potato steroidal glycoalkaloids: Biosynthesis and genetic manipulation. Potato Research 52, 1–15 (2009).

23. Ohyama, K., Okawa, A. & Fujimoto, Y. Biosynthesis of steroidal alkaloids in Solanaceae plants: Incorporation of 3β-hydroxycholest-5-en-26-al into tomatine with tomato seedlings. Bioorganic & Medicinal Chemistry Letters 24, (2014).

24. Nakayasu, M. et al. A dioxygenase catalyzes steroid 16α-hydroxylation in steroidal glycoalkaloid biosynthesis. Plant Physiol. 175, 120–133 (2017).

25. McCue, K. F. et al. Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry 68, 327–334 (2007).

26. McCue, K. F. et al. The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry 67, 1590–1597 (2006).

27. McCue, K. F. et al. Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: Using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase. Plant Sci. 168, 267–273 (2005).

28. Moehs, C. P., Allen, P. V., Friedman, M. & Belknap, W. R. Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J. 11, 227–236 (1997).

29. Umemoto N, Sasaki K. June 2, 2013. Protein having glycoalkaloid biosynthetic enzyme activity and gene encoding the same. US Patent Application No. 20130167271 A1

30. Van Eck, J. Genome editing and plant transformation of solanaceous food crops.Current Opinion in Biotechnology 49, 35–41 (2018).

31. Nicolia, A. et al. Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J. Biotechnol. 204, 17–24 (2015).

32. Clasen, B. M. et al. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol. J. 14, 169–176 (2016).

33. Butler, N. M., Atkins, P. A., Voytas, D. F. & Douches, D. S. Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System. PLoS One 10, e0144591 (2015).

34. Andersson, M. et al. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 36, 117–128 (2017).

35. Xie, K., Minkenberg, B. & Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci.U. S. A. 112, 3570–5 (2015).

36. Ueta, R. et al. Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci. Rep. 7, (2017).

37. Xiao, A. et al. CasOT: a genome-wide Cas9/gRNA off-target searching tool.Bioinformatics 30, 1180–1182 (2014).

38. Engler, C., Kandzia, R. & Marillonnet, S. A One Pot, One Step, Precision Cloning Method with High Throughput Capability. PLoS One 3, e3647 (2008).

39. Thagun, C. et al. Jasmonate-Responsive ERF Transcription Factors Regulate Steroidal Glycoalkaloid Biosynthesis in Tomato. Plant Cell Physiol. 57, 961–975 (2016).

40. Abdelkareem, A. et al. Jasmonate-induced biosynthesis of steroidal glycoalkaloids depends on COI1 proteins in tomato. Biochem. Biophys. Res. Commun. 489, 206–210 (2017).

41. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U. S. A. 109, (2012).

42. Wang, Z. et al. The positive effects of secreting cytokines IL-17 and IFN-γ on the early-stage differentiation and negative effects on the calcification of primary osteoblasts in vitro. Int. Immunopharmacol. 57, 1–10 (2018).

43. Qi, X., Ye, C., Hou, Y. & Guo, X. A large spontaneous intrahepatic portosystemic shunt in a cirrhotic patient. Intractable Rare Dis. Res. 5, 58–60 (2016).

44. Arora, L. & Narula, A. Gene editing and crop improvement using CRISPR-cas9 system. Frontiers in Plant Science 8, (2017).

45. Li, J.-F. et al. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688–691 (2013).

46. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/cas-mediated genome engineering. Cell 153, 910–918 (2013).

47. Ron, M. et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 166, 455–69 (2014).

48. Porter, J. R. Host range and implications of plant infection by agrobacterium rhizogenes. CRC. Crit. Rev. Plant Sci. 10, 387–421 (1991).

49. Noguchi, T. et al. Arabidopsis det2 is defective in the conversion of (24R)-24- methylcholest-4-en-3-one to (24R)-24-methyl-5α-cholestan-3-one in brassinosteroid biosynthesis. Plant Physiol. 120, 833–839 (1999).

50. Rosati, F. et al. 5α-Reductase activity in Lycopersicon esculentum: Cloning and functional characterization of LeDET2 and evidence of the presence of two isoenzymes. J. Steroid Biochem. Mol. Biol. 96, 287–299 (2005).

51. Ohnishi, T., Watanabe, B., Sakata, K. & Mizutani, M. CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato. Biosci. Biotechnol. Biochem. 70, 2071–2080 (2006).

52. Nakayasu, M. et al. Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol. Biochem. 131, 70–77 (2018).

53. Hashimoto, R., Ueta, R., Abe, C., Osakabe, Y. & Osakabe, K. Efficient Multiplex Genome Editing Induces Precise, and Self-Ligated Type Mutations in Tomato Plants. Front. Plant Sci. 9, (2018).

54. Russell, D. W. & Wilson, J. D. Steroid 5alpha-Reductase: Two Genes/Two Enzymes. Annu. Rev. Biochem. 63, 25–61 (1994).

55. Roddick, J. G. The steroidal glycoalkaloid α-tomatine. Phytochemistry 13, 9–25 (1974).

56. Sonawane, P. D. et al. Corrigendum: Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat. plants 3, 17101 (2017).

57. Christ, B. et al. Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants. Nat. Commun. 10, (2019).

58. Thomas, J. L., Boswell, E. L., Scaccia, L. A., Pletnev, V. & Umland, T. C. Identification of key amino acids responsible for the substantially higher affinities of human type 1 3β-hydroxysteroid dehydrogenase/isomerase (3β- HSD1) for substrates, coenzymes, and inhibitors relative to human 3β-HSD2. J. Biol. Chem. 280, 21321–21328 (2005).

59. Obata, T. Metabolons in plant primary and secondary metabolism. Phytochem.Rev. (2019). doi:10.1007/s11101-019-09619-x

60. Nicot, N., Hausman, J.-F., Hoffmann, L. & Evers, D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 56, 2907–2914 (2005).

61. Hernandez, A. & Ruiz, M. T. An EXCEL template for calculation of enzyme kinetic parameters by non- linear regression. Bioinformatics 14, 227–228 (1998).

62. Hesse, M.; Meier, H.; Zeeh, B. Spectroscopic Methods in Organic Chemistry, Translated by Dunmur, R. and Murray, M, 2nd Ed.; Thieme: New York, p 222 (2008).

63. Volz, H. & Gartner, H. N-acetoxyammonium ions - Reactive intermediates in the polonovski reaction. European J. Org. Chem. 2007, 2791–2801 (2007).

64. Sinden, S. L. & Sanford, L. L. Origin and inheritance of solarmarine glycoalkaloids in commercial potato cultivars. Am. Potato J. 58, 305–325 (1981).

65. Shih, M.-J. & Kuć, J. α and β-solamarine in kennebec Solanum tuberosum leaves and aged tuber slices. Phytochemistry 13, 997–1000 (1974).

66. Kawai, Y., Ono, E. & Mizutani, M. Evolution and diversity of the 2- oxoglutarate-dependent dioxygenase superfamily in plants. Plant J. 78, 328–343 (2014).

67. Barco, B. & Clay, N. K. Evolution of Glucosinolate Diversity via Whole- Genome Duplications, Gene Rearrangements, and Substrate Promiscuity. Annu. Rev. Plant Biol 70, 585–604 (2019).

68. Cárdenas, P. D. et al. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat. Commun. 7, 10654 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る