リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spatiotemporal dynamics of high-wavenumber turbulence in a basic laboratory plasma」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spatiotemporal dynamics of high-wavenumber turbulence in a basic laboratory plasma

Kawachi, Yuichi Sasaki, Makoto Kosuga, Yusuke Terasaka, Kenichiro Nishizawa, Takashi Yamada, Takuma Kasuya, Naohiro Moon, Chanho Inagaki, Shigeru 京都大学 DOI:10.1038/s41598-022-23559-1

2022

概要

High-spatial resolution observation of high-wavenumber broadband turbulence is achieved by controlling the magnetic field to be relatively low and measuring with a azimuthally arranged multi-channel Langmuir array in a basic laboratory plasma. The observed turbulence consists of narrowband low-frequency fluctuations and broadband high-frequency turbulent fluctuations. The low-frequency fluctuations have a frequency of about 0.7 times the ion cyclotron frequency and a spatial scale of 1/10 of the ion inertial scale. In comparison, high-frequency fluctuations have a higher frequency than the ion cyclotron frequency and spatial scales of 1/10–1/40 of the ion inertial scale. Two-dimensional correlation analysis evaluates the spatial and temporal correlation lengths and reveals that the high-wavenumber broadband fluctuations have turbulent characteristics. The measurements give us further understanding of small scale turbulence in space and fusion plasmas.

この論文で使われている画像

参考文献

1. Pécseli, H. Low Frequency Waves and Turbulence in Magnetized Laboratory Plasmas and in the Ionosphere (IOP Publishing Bristol,

2016).

2. Chen, C. H. K., Klein, K. G. & Howes, G. G. Evidence for electron Landau damping in space plasma turbulence. Nat. Commun.

10, 740. https://​doi.​org/​10.​1038/​s41467-​019-​08435-3 (2019).

3. Lysak, R., Hudson, M. & Temerin, M. Ion heating by strong electrostatic ion cyclotron turbulence. J. Geophys. Res. 85, 678–686.

https://​doi.​org/​10.​1029/​JA085​iA02p​00678 (1980).

4. Vranjes, J. & Poedts, S. The universally growing mode in the solar atmosphere: Coronal heating by drift waves. Mon. Not. R. Astron.

Soc. 398, 918–930. https://​doi.​org/​10.​1111/j.​1365-​2966.​2009.​15180.x (2009).

5. Dorland, W., Jenko, F., Kotschenreuther, M. & Rogers, B. N. Electron temperature gradient turbulence. Phys. Rev. Lett. 85, 5579–

5582. https://​doi.​org/​10.​1103/​PhysR​evLett.​85.​5579 (2000).

6. Garbet, X., Idomura, Y., Villard, L. & Watanabe, T. H. Gyrokinetic simulations of turbulent transport. Nucl. Fusion 50, 043002.

https://​doi.​org/​10.​1088/​0029-​5515/​50/4/​043002 (2010).

7. Jenko, F., Dorland, W. & Hammett, G. W. Critical gradient formula for toroidal electron temperature gradient modes. Phys. Plasmas

8, 4096–4104. https://​doi.​org/​10.​1063/1.​13912​61 (2001).

8. Sasaki, M. et al. Interactions of drift wave turbulence with streamer flows in wave-kinetic formalism. J. Geophys. Res. 28, 102304.

https://​doi.​org/​10.​1063/5.​00598​39 (2021).

9. Brochard, F., Windisch, T., Grulke, O. & Klinger, T. Experimental evidence of mode coupling in drift wave intermittent turbulence

using a wave number bicoherence analysis. Phys. Plasmas 13, 122305. https://​doi.​org/​10.​1063/1.​24021​31 (2006).

10. Burin, M. J., Tynan, G. R., Antar, G. Y., Crocker, N. A. & Holland, C. On the transition to drift turbulence in a magnetized plasma

column. Phys. Plasmas 12, 052320. https://​doi.​org/​10.​1063/1.​18894​43 (2005).

11. Yamada, T. et al. Anatomy of plasma turbulence. Nat. Phys. 4, 721–725. https://​doi.​org/​10.​1038/​nphys​1029 (2008).

12. Tynan, G. R. et al. Observation of turbulent-driven shear flow in a cylindrical laboratory plasma device. Plasma Phys. Control.

Fusion 48, S51–S73. https://​doi.​org/​10.​1088/​0741-​3335/​48/4/​S05 (2006).

13. Fujisawa, A. et al. Identification of zonal flows in a toroidal plasma. Phys. Rev. Lett. 93, 165002. https://​doi.​org/​10.​1103/​PhysR​

evLett.​93.​165002 (2004).

14. Cheng, J. et al. Formation of radially elongated flow leading to onset of type-III edge localized modes in toroidal plasmas. Nucl.

Fusion 60, 046021. https://​doi.​org/​10.​1088/​1741-​4326/​ab742a (2020).

15. Mazzucato, E. et al. Short-Scale Turbulent Fluctuations Driven by the Electron-Temperature Gradient in the National Spherical

Torus Experiment. Phys. Rev. Lett. 101, 075001. https://​doi.​org/​10.​1103/​PhysR​evLett.​101.​075001 (2008).

Scientific Reports |

(2022) 12:19799 |

https://doi.org/10.1038/s41598-022-23559-1

Vol.:(0123456789)

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

16. Rost, J. C., Porkolab, M., Dorris, J. & Burrell, K. H. Short wavelength turbulence generated by shear in the quiescent H-mode edge

on DIII-D. Phys. Plasmas 21, 062306. https://​doi.​org/​10.​1063/1.​48831​35 (2014).

17. Tokuzawa, T. et al. W-band millimeter-wave back-scattering system for high wavenumber turbulence measurements in LHD. Rev.

Sci. Instrum. 92, 043536. https://​doi.​org/​10.​1063/5.​00434​74 (2021).

18. Scime, E. E., Carr, J., Galante, M., Magee, R. M. & Hardin, R. Ion heating and short wavelength fluctuations in a helicon plasma

source. Phys. Plasmas 20, 032103. https://​doi.​org/​10.​1063/1.​47943​51 (2013).

19. Hendel, H. W. & Yamada, M. Identification of ion-cyclotron drift instability with discrete and continuous spectra. Phys. Rev. Lett.

33, 1076–1079. https://​doi.​org/​10.​1103/​PhysR​evLett.​33.​1076 (1974).

20. Moon, C., Kaneko, T. & Hatakeyama, R. Dynamics of nonlinear coupling between electron-temperature-gradient mode and driftwave mode in linear magnetized plasmas. Phys. Rev. Lett. 111, 115001. https://​doi.​org/​10.​1103/​PhysR​evLett.​111.​115001 (2013).

21. Yamada, T. et al. Fine positioning of a poloidal probe array. Rev. Sci. Instrum. 78, 123501. https://d

​ oi.o

​ rg/1​ 0.1​ 063/1.2​ 81879​ 6 (2007).

22. Schröder, C. et al. Mode selective control of drift wave turbulence. Phys. Rev. Lett. 86, 5711–5714. https://​doi.​org/​10.​1103/​PhysR​

evLett.​86.​5711 (2001).

23. Stroth, U. et al. Study of edge turbulence in dimensionally similar laboratory plasmas. Phys. Plasmas 11, 2558–2564. https://​doi.​

org/​10.​1063/1.​16887​89 (2004).

24. Kawachi, Y. et al. Effects of electron temperature fluctuation on turbulence measurement by langmuir probe in a magnetized

helicon plasma. Plasma Fusion Res. 16, 1202081–1202081. https://​doi.​org/​10.​1585/​pfr.​16.​12020​81 (2021).

25. Arakawa, H. et al. Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma. Sci. Rep. 6, 33371. https://​doi.​org/​10.​

1038/​srep3​3371 (2016).

26. Dux, R. et al. Influence of CX-reactions on the radiation in the pedestal region at ASDEX Upgrade. Nucl. Fusion 60, 126039. https://​

doi.​org/​10.​1088/​1741-​4326/​abb748 (2020).

27. Nishizawa, T. et al. Non-parametric inference of impurity transport coefficients in the ASDEX Upgrade tokamak. Nucl. Fusion 62,

076021. https://​doi.​org/​10.​1088/​1741-​4326/​ac60e8 (2022).

28. Osborne, T. H. et al. Gas puff fueled H-mode discharges with good energy confinement above the Greenwald density limit on

DIII-D. Phys. Plasmas 8, 2017–2022. https://​doi.​org/​10.​1063/1.​13455​04 (2001).

29. Schuster, C. et al. Edge transport and fuelling studies via gas puff modulation in ASDEX Upgrade L-mode plasmas. Nucl. Fusion

62, 066035. https://​doi.​org/​10.​1088/​1741-​4326/​ac6072 (2022).

30. Wersal, C. & Ricci, P. A first-principles self-consistent model of plasma turbulence and kinetic neutral dynamics in the tokamak

scrape-off layer. Nucl. Fusion 55, 123014. https://​doi.​org/​10.​1088/​0029-​5515/​55/​12/​123014 (2015).

31. Zhang, Y., Krasheninnikov, S. I., Masline, R. & Smirnov, R. D. Neutral impact on anomalous edge plasma transport and its correlation with divertor plasma detachment. Nucl. Fusion 60, 106023. https://​doi.​org/​10.​1088/​1741-​4326/​aba9ec (2020).

32. Lunt, T. et al. Study of detachment in future ASDEX Upgrade alternative divertor configurations by means of EMC3-EIRENE.

Nucl. Mater. Energy 26, 100950. https://​doi.​org/​10.​1016/j.​nme.​2021.​100950 (2021).

33. Arai, S. & Kosuga, Y. Characteristics of Density and Temperature Fluctuation in Fusion Edge Plasma and Implication on Scrape

off Layer Width. Plasma Fusion Res. 17, 1403050–1403050. https://​doi.​org/​10.​1585/​pfr.​17.​14030​50 (2022).

34. Faraji, F., Reza, M. & Knoll, A. Enhancing one-dimensional particle-in-cell simulations to self-consistently resolve instabilityinduced electron transport in Hall thrusters. J. Appl. Phys. 131, 193302. https://​doi.​org/​10.​1063/5.​00908​53 (2022).

35. Takahashi, K., Sugawara, T. & Ando, A. Spatially- and vector-resolved momentum flux lost to a wall in a magnetic nozzle rf plasma

thruster. Sci. Rep. 10, 1061. https://​doi.​org/​10.​1038/​s41598-​020-​58022-6 (2020).

36. Rishbeth, H. Rotation of the variation of upper atmosphere. Nature 229, 333–334. https://​doi.​org/​10.​1038/​22933​3a0 (1971).

37. Zhao, J. S., Voitenko, Y., Yu, M. Y., Lu, J. Y. & Wu, D. J. Properties of short-wavelength oblique alfvén and slow waves. ApJ 793, 107.

https://​doi.​org/​10.​1088/​0004-​637X/​793/2/​107 (2014).

38. Shoji, M. et al. Discovery of proton hill in the phase space during interactions between ions and electromagnetic ion cyclotron

waves. Sci. Rep. 11, 13480. https://​doi.​org/​10.​1038/​s41598-​021-​92541-0 (2021).

39. Adrian, P. J., Baalrud, S. D. & Lafleur, T. Influence of neutral pressure on instability enhanced friction and ion velocities at the

sheath edge of two-ion-species plasmas. Phys. Plasmas 24, 123505. https://​doi.​org/​10.​1063/1.​49862​39 (2017).

40. Singh, S. K. et al. Theory of coupled whistler-electron temperature gradient mode in high beta plasma: Application to linear plasma

device. Phys. Plasmas 18, 102109. https://​doi.​org/​10.​1063/1.​36444​68 (2011).

41. Krämer, M. et al. Anomalous helicon wave absorption and parametric excitation of electrostatic fluctuations in a helicon-produced

plasma. Plasma Phys. Control. Fusion 49, A167–A175. https://​doi.​org/​10.​1088/​0741-​3335/​49/​5A/​S14 (2007).

42. Rasmussen, J. & Schrittwieser, R. On the current-driven electrostatic ion-cyclotron instability: A review. IEEE Trans. Plasma Sci.

19, 457–501. https://​doi.​org/​10.​1109/​27.​87228 (1991).

43. Ghosh, A., Saha, S. K., Chowdhury, S. & Janaki, M. S. Observation of upper drift modes in radio frequency produced magnetized

plasmas with frequency above ion cyclotron frequency. Phys. Plasmas 22, 122111. https://​doi.​org/​10.​1063/1.​49385​07 (2015).

44. Okuda, H., Cheng, C. Z. & Lee, W. W. Anomalous diffusion and ion heating in the presence of electrostatic hydrogen cyclotron

instabilities. Phys. Rev. Lett. 46, 427–430. https://​doi.​org/​10.​1103/​PhysR​evLett.​46.​427 (1981).

45. Fraternale, F., Pogorelov, N. V., Richardson, J. D. & Tordella, D. Magnetic turbulence spectra and intermittency in the heliosheath

and in the local interstellar medium. ApJ 872, 40. https://​doi.​org/​10.​3847/​1538-​4357/​aafd30 (2019).

46. Zhang, B. et al. Study of turbulence intermittency in linear magnetized plasma. Plasma Phys. Control. Fusion 61, 115010. https://​

doi.​org/​10.​1088/​1361-​6587/​ab434f (2019).

47. Xu, Y. H. et al. Investigation of self-organized criticality behavior of edge plasma transport in Torus experiment of technology

oriented research. Phys. Plasmas 11, 5413–5422. https://​doi.​org/​10.​1063/1.​18101​60 (2004).

48. Inagaki, S. et al. A concept of cross-ferroic plasma turbulence. Sci. Rep. 6, 22189. https://​doi.​org/​10.​1038/​srep2​2189 (2016).

49. Zweben, S. J., Stotler, D. P., Scotti, F. & Myra, J. R. Two-dimensional turbulence cross-correlation functions in the edge of NSTX.

Phys. Plasmas 24, 102509. https://​doi.​org/​10.​1063/1.​50026​95 (2017).

50. Inagaki, S. et al. Observation of long-distance radial correlation in toroidal plasma turbulence. Phys. Rev. Lett. 107, 115001. https://​

doi.​org/​10.​1103/​PhysR​evLett.​107.​115001 (2011).

Acknowledgements

Fruitful discussions with T. Kobayashi and S. Maeyama are gratefully acknowledged. We thank S. Shimbara and

S. Arai for support in the experimental operation. This work was supported in part by JSPS KAKENHI Grant

Numbers JP21H01066, JP20J12625, JP17H06089, JP17K06994, the Collaborative Research Program of Research

Institute for Applied Mechanics Kyushu University, and the JSPS Core-to-Core Program (’PLADyS’).

Author contributions

Y. K. performed the experiments and analyzed the data. M .S., Y. K., K. T., T. N., T. Y., N. K., C. M., and S. I.

contributed to the discussion and the preparation of the manuscript. All authors reviewed the manuscript.

Scientific Reports |

Vol:.(1234567890)

(2022) 12:19799 |

https://doi.org/10.1038/s41598-022-23559-1

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Competing interests The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to Y.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

Scientific Reports |

(2022) 12:19799 |

https://doi.org/10.1038/s41598-022-23559-1

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る