リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nickel phosphide nanoalloy catalyst for the selective deoxygenation of sulfoxides to sulfides under ambient H₂ pressure」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nickel phosphide nanoalloy catalyst for the selective deoxygenation of sulfoxides to sulfides under ambient H₂ pressure

Fujita, Shu 大阪大学

2020.11.21

概要

Exploring novel catalysis by less common, metal-non-metal nanoalloys is of great interest in organic synthesis. We herein report a titanium-dioxide-supported nickel phosphide nanoalloy (nano-Ni₂P/TiO₂) that exhibits high catalytic activity for the deoxygenation of sulfoxides. nano-Ni₂P/TiO₂ deoxygenated various sulfoxides to sulfides under 1 bar of H₂, representing the first non-noble metal catalyst for sulfoxide deoxygenation under ambient H₂ pressure. Spectroscopic analyses revealed that this high activity is due to cooperative catalysis by nano-Ni₂P and TiO₂.

この論文で使われている画像

参考文献

[1] K. D. Gilroy, A. Ruditskiy, H.-C. Peng, D. Qin and Y. Xia, Chem. Rev., 2016, 116, 10414–10472.

[2] M. Sankar, N. Dimitratos, P. J. Miedziak, P. P. Wells, C. J. Kiely and G. J. Hutchings, Chem. Soc. Rev., 2012, 41, 8099–8139.

[3] H. Fang, J. Yang, M. Wen and Q. Wu, Adv. Mater., 2018, 30, 1705698.

[4] W. Luo, M. Sankar, A. M. Beale, Q. He, C. J. Kiely, P. C. Bruijnincx and B. M. Weckhuysen, Nat. Commun., 2015, 6, 6540.

[5] L. Kesavan, R. Tiruvalam, M. H. Ab Rahim, M. I. bin Saiman, D. I. Enache, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, S. H. Taylor, D. W. Knight, C. J. Kiely and G. J. Hutchings, Science, 2011, 331, 195–199.

[6] Y. Li, Z. Dong and L. Jiao, Adv. Energy Mater., 2020, 10, 1902104.

[7] Y. Shi and B. Zhang, Chem. Soc. Rev., 2016, 45, 1529–1541.

[8] Y. Lv and X. Wang, Catal. Sci. Technol., 2017, 7, 3676–3691.

[9] M. C. Alvarez-Galvan, J. M. Campos-Martin and J. L. G. Fierro, Catalysts, 2019, 9, 293.

[10] S. T. Oyama, J. Catal., 2003, 216, 343–352.

[11] S. T. Oyama, T. Gott, H. Zhao and Y.-K. Lee, Catal. Today, 2009, 143, 94–107.

[12] D. Albani, K. Karajovic, B. Tata, Q. Li, S. Mitchell, N. López and J. Pérez-Ramírez, ChemCatChem, 2019, 11, 457–464.

[13] Y. Zhu, S. Yang, C. Cao, W. Song and L.-J. Wan, Inorg. Chem. Front., 2018, 5, 1094–1099.

[14] R. Gao, L. Pan, H. Wang, X. Zhang, L. Wang and J.-J. Zou, ACS Catal., 2018, 8, 8420–8429.

[15] S. Yang, L. Peng, E. Oveisi, S. Bulut, D. T. Sun, M. Asgari, O. Trukhina and W. L. Queen, Chem. – Eur. J., 2018, 24, 4234–4238.

[16] J.-J. Shi, H.-J. Feng, C.-L. Qv, D. Zhao, S.-G. Hong and N. Zhang, Appl. Catal., A, 2018, 561, 127–136.

[17] Y. Chen, C. Li, J. Zhou, S. Zhang, D. Rao, S. He, M. Wei, D. G. Evans and X. Duan, ACS Catal., 2015, 5, 5756–5765.

[18] S. Carenco, A. Leyva-Pérez, P. Concepción, C. Boissière, N. Mézailles, C. Sanchez and A. Corma, Nano Today, 2012, 7, 21–28.

[19] S. Fujita, K. Nakajima, J. Yamasaki, T. Mizugaki, K. Jitsukawa and T. Mitsudome, ACS Catal., 2020, 10, 4261–4267.

[20] T. Mitsudome, M. Sheng, A. Nakata, J. Yamasaki, T. Mizugaki and K. Jitsukawa, Chem. Sci., 2020, 11, 6682–6689.

[21] S. C. A. Sousa and A. C. Fernandes, Coord. Chem. Rev., 2015, 284, 67–92.

[22] M. C. Carreño, Chem. Rev., 1995, 95, 1717–1760.

[23] M. Madesclaire, Tetrahedron, 1988, 44, 6537–6580.

[24] P. Bravo, G. Resnati, F. Viani and A. Arnone, Tetrahedron, 1987, 43, 4635–4647.

[25] J. Drabowicz and M. Mikołajczyk, Synthesis, 1976, 527–528.

[26] S. Kano, Y. Tanaka, E. Sugino and S. Hibino, Synthesis, 1980, 695–697.

[27] J. Zhang, X. Gao, C. Zhang, C. Zhang, J. Luan and D. Zhao, Synth. Commun., 2010, 40, 1794– 1801.

[28] T. Aida, N. Furukawa and S. Oae, Tetrahedron Lett., 1973, 14, 3853–3856.

[29] D. Landini, A. M. Maia and F. Rolla, J. Chem. Soc., Perkin Trans. 2, 1976, 1288–1291.

[30] J. T. Doi and W. K. Musker, J. Am. Chem. Soc., 1981, 103, 1159–1163.

[31] T. J. Wallace and J. J. Mahon, J. Am. Chem. Soc., 1964, 86, 4099–4103.

[32] B. Karimi and D. Zareyee, Synthesis, 2003, 1875–1877.

[33] I. W. J. Still, S. K. Hasan and K. Turnbull, Can. J. Chem., 1978, 56, 1423–1428.

[34] S. Kikuchi, H. Konishi and Y. Hashimoto, Tetrahedron, 2005, 61, 3587–3591.

[35] Y. Jang, K. T. Kim and H. B. Jeon, J. Org. Chem., 2013, 78, 6328–6331.

[36] Z. Zhu and J. H. Espenson, J. Mol. Catal. A, 1995, 103, 87–94.

[37] R. Sanz, J. Escribano, R. Aguado, M. R. Pedrosa and F. J. Arnáiz, Synthesis, 2004, 1629–1632.

[38] M. Bagherzadeh, M. M. Haghdoost, M. Amini and P. G. Derakhshandeh, Catal. Commun., 2012, 23, 14–19.

[39] S. C. A. Sousa, J. R. Bernardo, M. Wolff, B. Machura and A. C. Fernandes, Eur. J. Org. Chem., 2014, 1855–1859.

[40] S. Enthaler, ChemCatChem, 2011, 3, 666–670.

[41] Y. Mikami, A. Noujima, T. Mitsudome, T. Mizugaki, K. Jitsukawa and K. Kaneda, Chem. – Eur. J. 2011, 17, 1768–1772.

[42] A. C. Fernandes and C. C. Romão, Tetrahedron Lett., 2007, 48, 9176–9179.

[43] S. Enthaler, S. Krackl, E. Irran and S. Inoue, Catal. Lett., 2012, 142, 1003–1010.

[44] D. J. Harrison, N. C. Tam, C. M. Vogels, R. F. Langler, R. T. Baker, A. Decken and S. A. Westcott, Tetrahedron Lett., 2004, 45, 8493–8496.

[45] N. García, P. García-García, M. A. Fernández-Rodríguez, R. Rubio, M. R. Pedrosa, F. J. Arnáiz and R. Sanz, Adv. Synth. Catal., 2012, 354, 321–327.

[46] N. García, P. García-García, M. A. Fernández-Rodríguez, D. García, M. R. Pedrosa, F. J. Arnáiz and R. Sanz, Green Chem., 2013, 15, 999–1005.

[47] Y. Takahashi, T. Mitsudome, T. Mizugaki, K. Jitsukawa and K. Kaneda, Chem. Lett., 2014, 43, 420–422.

[48] T. Mitsudome, Y. Takahashi, T. Mizugaki, K. Jitsukawa and K. Kaneda, Angew. Chem., Int. Ed., 2014, 53, 8348–8351.

[49] A. S. Touchy, S. M. A. H. Siddiki, W. Onodera, K. Kon and K. Shimizu, Green Chem., 2016, 18, 2554–2560.

[50] T. Uematsu, Y. Ogasawara, K. Suzuki, K. Yamaguchi and N. Mizuno, Catal. Sci. Technol., 2017, 7, 1912–1920.

[51] Y. Kuwahara, Y. Yoshimura, K. Haematsu and H. Yamashita, J. Am. Chem. Soc., 2018, 140, 9203– 9210.

[52] P. M. Reis, P. J. Costa, C. C. Romão, J. A. Fernandes, M. J. Calhorda and B. Royo, Dalton Trans., 2008, 1727–1733.

[53] K. Yao, Z. Yuan, S. Jin, Q. Chi, B. Liu, R. Huang and Z. Zhang, Green Chem., 2020, 22, 39–43.

[54] Y. Feng, C. Xu, E. Hu, B. Xia, J. Ning, C. Zheng, Y. Zhong, Z. Zhang and Y. Hu, J. Mater. Chem. A, 2018, 6, 14103–14111.

[55] D. Yang, Y. Gu, X. Yu, Z. Lin, H. Xue and L. Feng, ChemElectroChem, 2018, 5, 659–664.

[56] Y. Ni, L. Jin and J. Hong, Nanoscale, 2011, 3, 196–200.

[57] D. Shi, R. Wojcieszak, S. Paul and E. Marceau, Catalysts, 2019, 9, 451.

[58] H. Zhao, S. T. Oyama, H.-J. Freund, R. Włodarczyk and M. Sierka, Appl. Catal., B, 2015, 164, 204–216.

[59] H.-R. Seo, K.-S. Cho and Y.-K. Lee, Mater. Sci. Eng., B, 2011, 176, 132–140.

[60] H. Huang, H. Huang, P. Hu, X. Ye and D. Y. C. Leung, Int. J. Photoenergy, 2013, 2013, 350570.

[61] P. Li, X. Guo, S. Wang, R. Zang, X. Li, Z. Man, P. Li, S. Liu, Y. Wu and G. Wang, J. Mater. Chem. A, 2019, 7, 2553–2559.

[62] M. Lu, Y. Sun, P. Zhang, J. Zhu, M. Li, Y. Shan, J. Shen and C. Song, Ind. Eng. Chem. Res., 2019, 58, 1513–1524.

[63] P. Zhang, Y. Sun, M. Lu, J. Zhu, M. Li, Y. Shan, J. Shen and C. Song, Energy Fuels, 2019, 33, 7696–7704.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る