リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Modeling of Surface Crack Defects Developed on Shear Edge in High-strength Automotive Steel Sheets」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Modeling of Surface Crack Defects Developed on Shear Edge in High-strength Automotive Steel Sheets

Goto Sota Yamazaki Kazuhiko Doan Thi-Huyen Funakawa Yoshimasa Umezawa Osamu 20343171 横浜国立大学

2020.01.15

概要

Surface crack defects developed on the shear edge cause a problem in shearing of high-strength steels. The surface crack formation mechanism was clarified by microstructural examinations and numerical simulation. Two types of 780 MPa grade hot-rolled steel sheets with a thickness of 2.6 mm were chosen for the evaluations because the materials show different surface crack susceptibilities. Cleavage fracture was responsible for the surface cracks, and micro-ductile cracks with a length of 30 µm to 40 µm were detected in the interrupted punching samples. A numerical simulation demonstrated that a tensile stress was developed in the direction of the micro-ductile cracks opening during punching process. The critical length of the micro-ductile crack for cleavage fracture as a crack initiation site was given by linear fracture mechanics; for example, the critical length is 23 µm or longer under the applied tensile stress of 910 MPa. The tensile stress causing cleavage fracture decreased by reducing the tool clearances, and it was shown experimentally that surface crack defects can be prevented by controlling the clearance appropriately.

参考文献

1) A. Dalloz, J. Besson, A. F. Gourgues-Lorenzon, T. Sturel and A.

Pineau: Eng. Fract. Mech., 76 (2009), 1411.

2) H. C. Shih, C. Chiriac and M. F. Shi: Proc. 2010 Int. Conf. on Manufacturing Science and Engineering (MSEC2010), ASME, New York,

(2010), 599.

3) K. Tomita, T. Shiozaki, T. Urabe and K. Osawa: Tetsu-to-Hagané,

87 (2001), 557 (in Japanese).

4) T. Shiozaki, Y. Tamai and T. Urabe: Int. J. Fatigue, 80 (2015), 324.

5) T. Okano, K. Sakumoto, K. Yamazaki, S. Toyoda and S. Suzuki: Key

Eng. Mater., 716 (2016), 643.

6) R. Hambli: Int. J. Mech. Sci., 43 (2001), 2769.

7) Y. Yoshida, Y. Murase, N. Yukawa and T. Ishikawa: J. Jpn. Soc.

Technol. Plast., 46 (2005), 392 (in Japanese).

8) Z. Yue, H. Badreddine, K. Saanouni, X. Zhuang and J. Gao: Int. J.

Damage Mech., 26 (2017), 1061.

9) O. León-García, R. Petrov and A. I. L. Kestens: Mater. Sci. Eng. A,

527 (2010), 4202.

10) A. S. Argon and J. Im: Metall. Trans. A, 6 (1975), 839.

11) D. Kwon and R. J. Asaro: Metall. Trans. A, 21 (1990), 117.

12) F. M. Beremin: Metall. Trans. A, 12 (1981), 723.

13) N. Ishikawa, D. M. Parks and M. Kurihara: ISIJ Int., 40 (2000), 519.

14) F. Minami, C. Ruggieri, M. Ohata and M. Toyoda: J. Soc. Mater. Sci.

Jpn., 45 (1996), 544 (in Japanese).

15) P. Bennet and G. M. Sinclair: J. Basic Eng., 88 (1966), 518.

16) D. A. Curry and J. F. Knott: Met. Sci., 12 (1978), 511.

17) T. Lin, A. G. Evans and R. O. Ritchie: Metall. Trans. A, 18 (1987),

641.

18) T. L. Anderson: Fracture Mechanics: Fundamentals and Applications,

2nd ed., Talor & Francis, Oxford, (1995), 38.

19) J. I. San Martin and J. M. Rodriguez-Ibabe: Scr. Mater., 40 (1999),

459.

20) J. R. Rice and D. M. Tracey: J. Mech. Phys. Solids, 17 (1969), 201.

21) A. L. Gurson: J. Eng. Mater. Technol., 99 (1977), 2.

22) V. Tvergaard: Int. J. Fract., 17 (1981), 389.

23) V. Tvergaard: J. Mech. Phys. Solids, 30 (1982), 265.

24) V. Tvergaard and A. Needleman: Acta Metall., 32 (1984), 157.

25) Dassault Systems: ABAQUS 6.11 Documentation, User’s Manual,

(2011), 14-17, http://130.149.89.49:2080/v6.11/pdf_books/CAE.pdf,

(accessed 2019-06-17).

26) T. Miyata, A. Otsuka, M. Mitsubayashi, T. Haze and S. Aihara: J.

Soc. Mater. Sci. Jpn., 37 (1988), 897 (in Japanese).

27) T. Tankoua, J. Crépin, P. Thibaux, S. Cooreman and A. F. GourguesLorenzon: Int. J. Fract., 212 (2018), 143.

6. Conclusions

The surface crack defects that develop on the shear edge

in punching of the high-strength steel sheets were characterized by a round hole punching process. The formation

mechanism can be described as follows:

(1) Surface crack defects were caused by cleavage

fracture.

(2) Micro-ductile cracks with maximum lengths of 30

μm to 40 μm, which initiated at inclusions, were detected

as pre-existing cracks in the material at the onset of material separation.

(3) The tensile stress perpendicular to the longitudinal

direction of the micro-ductile crack developed within a

period from the start to the end of material separation. This

tensile stress can produce cleavage fracture when the microductile crack satisfies a critical condition expressed by the

© 2020 ISIJ

152

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る