リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of lithium ion batteries and next-generation rechargeable batteries with ionic liquid-based electrolyte containing FSI anion」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of lithium ion batteries and next-generation rechargeable batteries with ionic liquid-based electrolyte containing FSI anion

髙橋 卓矢 横浜国立大学 DOI:info:doi/10.18880/00014095

2021.11.24

概要

本研究の⽬的は、Bis(fluorosulfonyl)imide (以下、FSI)アニオンを有するイオン液体を⽤いたリチウムイオン電池及び次世代⼆次電池の開発を⾏うことである。イオン液体は、低揮発性・難燃性という特徴を有しており、⼆次電池の電解液として利⽤することによって安全性や信頼性を向上させることが期待されている。特に、FSI アニオンを有するイオン液体はリチウムイオン電池の様々な正極、負極において安定作動することが報告されている。本研究では、FSI系イオン液体を⽤いた⼆次電池を実⽤的なレベルまで向上させるために、電解液中の Li 塩濃度、作動条件を最適化し、その性能の底上げが可能か検討を⾏なった。また本研究では⾼イオン伝導度且つ低粘度という特徴を持つ 1-ethyl-3-methyl imidazolium(以下、EMIm)カチオンもしくは N-methyl-N-propyl pyrrolidinium(以下、MPPy)カチオンと FSI アニオンから構成されるイオン液体(EMImFSI)に Lithium FSI(以下、LiFSI)を組み合わせたイオン液体電解液に焦点を当てた。

初めに、様々な市場で使⽤されているパウチ型構造のリチウムイオン電池に異なる Li 塩濃度を含有した FSI 系イオン液体電解液を適⽤し、電池性能の⽐較を⾏なった。本検討では、 Li(Ni0.5 Mn0.3 Co0.2 )O2/Graphite(以下、NMC532/G)タイプのリチウムイオン電池を使⽤した。 LiFSI/EMImFSI 中の Li 塩濃度が電池性能に及ぼす影響を確認し、最適な Li 塩濃度を⾒出すとともにその影響のメカニズムについて電気化学的な解析を⾏なった。

次に、Li 塩濃度を最適化した LiFSI/EMImFSI 電解液を⽤いたリチウムイオン電池の急速充電性能の向上について作動環境の観点から検討を⾏なった。電池の構成としては近年注⽬されている⾼容量を発現する Li(Ni0.8 Mn0.1 Co0.1)O2(以下、NMC811)正極と Graphite+SiO 負極を採⽤し、可逆容量として 3.5 mAh/cm2 程度の実⽤的なものとした。本検討の結果、イオン液体電解液を⽤いた⾼エネルギー型リチウムイオン電池はその作動温度を増加させることにより、急速充電性能を向上させることが可能であることを⾒出すだけでなく、充放電サイクル寿命についても実⽤的な結果を得ることが可能であった。作動条件を最適化することにより⾼エネルギー密度、急速充電性能、⾼安全性を満たす電池の開発に成功した。

最後に、次世代⼆次電池の正極材料として注⽬されている硫⻩正極において FSI 系イオン液体電解液の適⽤検討を⾏なった。活性炭の細孔内に硫⻩を充填した複合物の合成によって硫⻩とリチウムの還元⽣成物であるリチウムポリスルフィドの電解液への溶出を抑制し、イオン液体電解液においても安定に充放電作動できることを⾒出した。⾼エネルギー密度な⼆次電池を作製するためにプレドープ処理を⾏なったシリコン負極と組み合わせたレアメタルフリー硫⻩/シリコン⼆次電池を作製し、⻑期間の繰り返し充放電にも耐久性を有する次世代⼆次電池を構築することを⾒出した。また、合成した硫⻩-活性炭複合体の充放電メカニズムについて電気化学的な解析を⾏い、更なる性能向上のための因⼦について検討を⾏なった。

本論⽂では上記で⽰した NMC532/G のような従来型のリチウムイオン電池から NMC811/Graphite+SiO、S/Si-Li の⼆次電池にもイオン液体電解液を適⽤し、安定作動する次世代リチウムイオン電池及び⼆次電池を開発した。

参考文献

1. G. J. May, A. Davidson, B. Monahov, “Lead batteries for utility energy storage: A review”, Journal of Energy Storage, 15, 145, 2018

2. Z. Sun, H. Cao, X. Zhang, X. Lin, W. Zheng, G. Cao, Y. Sun, Y. Zhang, “Spent lead-acid battery recycling in China – A review and sustainable analyses on mass flow of lead”, Waste Management, 64, 190, 2017

3. J. E. Harlow, X. Ma, J. Li, E. Logan, Y. Liu, N. Zhang, L. Ma, S. L. Glazier, M. M. E. Cormier, M. Genovese, S. Buteau, A. Cameron, J. E. Stark, J. R. Dahn, “A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies”, Journal of The Electrochemical Society, 13, 166, A3031, 2019

4. 経済産業省, エネルギー庁, https://www.enecho.meti.go.jp

5. ⼩久⾒善⼋, 安倍武志, 稲葉稔, 内本善晴, “リチウム⼆次電池”, 2008

6. Z. Chen, J. R. Dahn, “Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V”, Electrochimica Acta, 49, 1079, 2004

7. J. Cho, G. Kim, “Enhancement of thermal stability of LiCoO2 by LiMn2O4 coating”, Electrochem. Solid-state Lett., 2. 253, 1999

8. J. Cho, Y. J. Kim, T. J. Kim, B. Park, “Zero-strain intercalation cathode for rechargeable Li-ion cell”, Angewandte Chemie international edition, 40, 3367, 2001

9. H. Li, M. Cormier, N. Zhang, J. Inglis, J. Li, J. R. Dahn, “Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries?”, Journal of the electrochemical society, 4, 166, 2019

10. Q. Die, W. Li, A. Manthiram, “A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries”, 31, 3, 938, 2019

11. A. Yamada, S. C. Chung, K. Hinokuma, “Optimized LiFePO4 for lithium battery cathodes”, Journal of electrochemical society, 148, 3, A224, 2001

12. A. K. Padhi, K. S. Nanjundaswamy, J. B. Good enough, “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries”, Journal of the electrochemical society, 144, 4, 1997

13. M, Takahashi, S. Tobishima, K. Takei, Y. Sakurai, “Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries”, Solid State Ionics, 148, 283, 2002

14. J. R. Dahn, T. Zheng, Y. Liu, J. S. Xue, “Mechanisms for lithium insertion in carbonaceous materials”, Science, 270, 5236, 590, 1995

15. E. Peled, S. Menkin, “Review-SEI: Past, Present and future”, Journal of the electrochemical society, 164, A1703, 2017

16. M. Yoshio, H. Wang, K. Fukuda, Y. Hara, Y. Adachi, “Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material”, Journal of the electrochemical society, 147, 4, 1245, 2000

17. M. Yoshi, H. Wang, K. Fukuda, “Spherical carbon-coated natural graphite as a lithium-ion battery anode material”, Angew. Chem. Int. Ed., 42, 4203, 2003

18. T. Ohzuku, A. Ueda, N. Yamamoto, “Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells”, Journal of the electrochemical society, 142. 1431, 1995

19. N. Takami, H. Inagaki, T. Kishi, Y. Harada, Y. Fujita, K. Hoshina, “Electrochemical kinetics and safety of 2-volt class Li-ion battery system using lithium titanium oxide anode”, Journal of the electrochemical society, 156, 2, A128, 2009

20. M. T. McDowell, S. W.Lee, W. D. Nix, Y. Cui, “25th Anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries”, Adv. Mater, 25, 4966, 2013

21. T. Hirose, M. Morishita, H. Yoshitake, T. Sakai, “Study of structural changes that occurred during charge/discharge of carbon-coated SiO anode by nuclear magnetric resonance”, Solid State Ionics, 303 154, 2017

22. Y. Reynier, C. Vincens, C. Leys, B. Amestoy, E. Mayousse, B. Chavillon, L. Blanc, E. Gutel, W. Porcher, T. Hirose, C. Matsui, “Practical implementation of Li doped SiO in high energy density 21700 cell”, Journal of power sources, 450, 29, (2020)

23. N. N. Sinha, J. C. Burns, J. R. Dahn, “Storage studies on Li/Graphite Cells and the impact of so- called SEI-forming electrolyte additives”, Journal of the electrochemical society, 160, 4, A709, 2013

24. L. X. XinpingAi, Y. Cao, H. Yang, “Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries”, Electrochimica Acta, 49 24, 4189, 2004

25. Y. E. Hyung, D. R. Vissers, K. Amine, “Flame-retardant additives for lithium-ion batteries”, Journal of power sources, 119, 1, 383, 2003

26. Y. G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D. S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, “”High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anode”, Nature energy, 5, 299, 2020

27. N. Takami, K. Yoshima, Y. Harada, “12 V-class bipolar lithium-ion batteries using Li4Ti5O12 anode for low-voltage system applications”, Journal of the electrochemical society, 164 1 A6254, 2017

28. S. T. Myung, F. Maglia, K. J. Park, C. S. Yoon, P. Lamp, S. J. Kim, Y. K. Sun, “Nickel-rich layed cathode materials for automotive lithium-ion batteries: achievements and perspectives”, ACS Energy Lett., 2, 1, 196, 2017

29. Y. Ding, Z, P, Cano, A. Yu, J. Lu, Z. Chen, “Automotive Li-ion batteries: current status and future perspectives”, Electrochemical energy reviews, 2:1, 28, 2019

30. H. Sooyeon, K. S. Min, B. S. Min, K. S. Young, C. B. Won, C. K, Yoon, L. J. Yong, S. Eric A, C. Wonyoung, “Using real-time electron microscopy to explore the effects of transition-metal composition on the local thermal stability in charged LixNiyMnzCo1-y-zO2 cathode materials”, Chemistry of materials, 27, 11, 2015

31. I. A. Shkrob, J. A. Gilbert, P. J. Phillips, R. Klie, R. T. Haasch, J. Bareno, D. P. Abraham, “Chemical weathering of layered Ni-rich oxide electrode materials: Evidence for cation exchange”, Journal of the electrochemical society, 164 7, A1489, 2017

32. G. Li, H. Azuma, M. Tohda, “LiMnPO4 as the cathode for lithium batteries”, Electrochemical and solid-state letters, 5, A135, 2002

33. D. Liu, C. Kim, A. Perea, D. Joel, W. Zhu, S. C. Martin, A. Forand, M. Dontigny, C. Gagnon, H. Demers, S. Delp, J. Allen, R. Jow, K. Zaghib, “High-voltage lithium-ion battery using substituted LiCoPO4: Electrochemical and safety performance of 1.2 Ah pouch cell”, Materials, 13, 4450, 2020

34. Y. T. Liu, S. Liu, C. R. Li, X. P. Gao, “Strategy of enhancing the volumetric energy density for lithium-sulfur batteries” Adv. Mater. 33, 2021

35. R. D. Rauh, K. M. Abraham, G. F. Pearson, J. K. Surprenant and S. B. Brummer, A lithium/dissolved sulfur battery with organic electrolyte, J. Electrochem Soc., 126 (1979) 523-527

36. H. Yamin and E. Peled, Electrochemistry of a nonaqueous lithium/sulfur cell, J. Power Sources, 9 (1983) 281

37. H. Yamin, J. Penciner, A. Gorenshtain, M. Elam and E. Peled, The electrochemical behavior of polysulfide in tetrahydrofuran, J. Power Sources, 14 (1985) 129-134

38. Y. V. Mikhaylik and J. R. Akridge, Polysulfide shuttle study in the Li/S battery system, J. Electrochem. Soc., 151 (2004) A1969-1976

39. M. Cuisinier, C. Hart, M. Balasubramanian, A. Garsuch and L. F. Nazar, Radical or not radical: revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes, Adv. Energy Mater. (2015) 1401801

40. Y. X. Yin, S. Xin, Y. G. Guo and L. J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects, Angew. Chem. Int. Ed. 52 (2013) 13186-13200

41. X. Ji, K. T. Lee and L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nature Materials 8 (2009) 500-506

42. C. Lai, X. P. Gao, B. Zhang, T.Y. Yan and Z. Zhou, Synthesis and electrochemical performance of sulfur/highly porous carbon composite, J. Phys. Chem. C, 113 (2009) 4712-4716

43. B. Zhang, X. Qin, G. R. Li and X. P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon, Energy Environ. Sci., 3 (2010) 1531-1537

44. W. Li, Q. Zhang, G. Zheng, Z. W. Seh, H. Yao and Y. Cui, Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance, Nano Lett., 13 (2013) 5534-5540

45. J. Wang, J. Yang, J. Xie and N. Xu, A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries, Adv. Mater. 14 (2002) 13-14

46. L. Wang, X. He, J. Li, M. Chen, J. Gao, and C. Jiang, Charge/discharge characteristics of sulfurized polyacrylonitrile composite with different sulfur content in carbonate based electrolyte for lithium batteries, Elctrochimica Acta 72 (2012) 114-119

47. L. Wang, X. He, J. Li, J. Gao, J. Guo, C. Jiang and C. Wan, Analysis of the synthesis process of sulphur-poly(acrylonitrile)-based cathode materials for lithium batteries, J. Mater. Chem., 22 (2012) 22077

48. J. Fanous, M. Wegner, M. B. M. Spera and M. R. Buchmeise, High energy density poly(acrylonitrile)-sulfur composite-based lithium-sulfur batteries, J. Electrochem. Soc., 160 (2013) A1169-A1170

49. T. N. L. Doan, M. Ghaznavi, Y. Zhao, Y. Zhang, A. Konarov, M. Sadhu and R. Tangirala, P. Chen, Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode, J. Power Sources 241 (2013) 61-69

50. T. Miyuki, T. Kojima, Y. Okuyama and T. Sakai, Development of olganosulfur cathode using nanofiber nonwoven precursor and their electrode performance for the rechargeable lithium battery, SENNI GAKKAISHI, 68 (2012) 7

51. Y. V. Mikhaylik, U.S. Pat. 7,352,680 (2008)

52. S. Xiong, X. Kai, X. Hong and Y. Dian, Effect of LiBOB as additive on electrochemical properties of lithium-sulfur batteries, ionics, 18 (2012) 249-254

53. F. Wu, J. T. Lee, N. Nitta, H. Kim, O. Borodin and G. Yushin, Lithium iondine as a promising electrolyte additive for lithium-sulfur batteries: mechanism of performance enhancement, Adv. Mater. 27 (2015) 101-108

54. S. Meini, R. Elazari, A. Rosenman, A. Garsuch and D. Aurbach, The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems, J. Phys. Chem. Lett., 5 (2014) 915-918

55. H. Kim, F. Wu, J. T. Lee, N. Nitta, H. T. Lin, M. Oschatz and G. Yushin, In situ formed of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolyte, Adv. Energy Mater. (2014) 1401792

56. J. J. Hu, G. J. Long, S. Liu, G. R. Li and X. P. Gao, A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery, Chem. Commun., 50 (2014) 14647

57. S. Chen, F. Dai, M. L. Gordin and D. Wang, Exceptional electrochemical performance of rechargeable Li-S batteries with a polysulfide-containing electrolyte, RSC Adc., 3 (2013) 3540- 3543

58. J. W. Park, K. Yamauchi, E. Takashima, N. Tachikawa, K. Ueno, K. Dokko and M. Watanabe, Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium-sulfur batteries, J. Phys. Chem. C 117 (2013) 4431-4440

59. W. Weng, V. G. Pol and K. Amine, Ultrasound assisted design of sulfur/carbon cathodes with partially fluorine ether electrolytes for highly efficient Li/S batteries, Adv. Mater. 25 (2013) 1608- 1615

60. K. Dokko, N. Tachikawa, K. Yamauchi, M. Tsuchiya, A. Yamazaki, E. Takashima, J. W. Park, K. Ueno, S. Seki, N. Serizawa and M. Watanabe, Solvate ionic liquid electrolyte for Li-S batteries, J. Elctrochem. Soc. 160 (2013) A1304-A1310

61. M. Cuisinier, P. E. Cabelguen, B. D. Adams, A. Garsuch, M. Balasubramanian and L. F. Nazar, Unique behavior of nonsolvents for polysulphides in lithium-sulphur batteries, Energy Environ. Sci., 7 (2014) 2697-2705

62. L. Suo, Y. S. Hu, H. Li, M. Armand and L. Chen, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries, Nature communicateons, 4 (2013) 1481

63. J. Gao, M. A. Lowe, Y. Kiya and H. D. Abruna, Effect of liquid electrolytes on the charge- discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies, J. Phys. Chem. C, 115 (2011) 25132-25137

64. T. yim, M. S. Park, J. S. Yu, K. J. Kim, K. Y. Im, J. H. Kim, G. Jeong, Y. N. Jo, S. G. Woo, K. S. Kang, I. Lee and Y. J. Kim, Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemicall performance of Li-S batteries, Electrochimica Acta, 107 (2013) 454-460

65. S. S. Zhang, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions, Journal of power sources, 231 (2013) 153-162

66. J. W. Park, K. Ueno, N. Tachikawa, k. Dokko, M. Watanabe, Ionic liquid electrolytes for lithium- sulfur batteries, J. Phys. Chem. C 117 (2013) 20531-20541

67. H. Kim, M. Seo, M. H. Park, J. Cho, “A critical size of silicon nano-anodes for lithium rechargeable batteries”, Angew. Chem. Int. Ed. 49, 2146, 2010

68. M. T. F. Rodrigues, S. E. Trask, I. A. Shkrob, D. P. Abraham, “Quantifying gas generation from slurries used in fabrication of Si-containing electrodes for lithium-ion cells”, Journal of Power Sources. 395, 15, 289, 2018

69. T. Hirose, M. Morishita, H. Yoshitake, T. Sakai, “Study of structural changes that occurred during charge/discharge of carbon-coated SiO anode by nuclear magnetic resonance”, Solid State Ionics, 303, 154, 2017

70. M. W. Forney, M. J. Ganter, J. W. Staub, R. D. Ridgley, B. J. Landi, ”Prelithiation of silicon- carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder(SLMP)”, Nano Lett. 13, 9, 4158, 2013

71. H. J. Kim, S. Choi, S. J. Lee, M. W. Seo, J. G. Lee, E. Deiz, Y. J. Lee, E. K. Kim, J. W. Choi, “Controlled prelithiation of silicon monoxide for high perfomrnace lithium-ion rechargeable full cells”, Nano Lett., 16, 1, 282, 2016

72. C. C. Nguyen, B. L. Lucht, “Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries”, Journal of the electrochemical society 161, 12, A1933, 2014

73. C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Bjorefors, K. Edstrom, T. Gustafsson, “Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive”, Chem. Mater., 27, 2591, 2015

74. H. Zhi, L. Xing, X. Zheng, K. Xu, W. Li, “Understanding how nitriles stabilize electrolyte/electrode interface at high voltage”, J. Phys. Chem. Lett. 8, 24, 6048, 2017

75. E. R. Logan, D. S. Hall, M. M. E. Cormier, T. Taskovic, M. Bauer, I. Hamam, H. Hebecker, L. Molino, J. R. Dahn, “Ester-based electrolytes for fast charging of energy dense lithium-ion batteries”, J. Phys. Chem. C. 124, 12269, 2020

76. S. Tsuzuki, K. Hayamizu, S. Seki, “Origin of low-viscosity of [emim][(FSO2)2N ionic liquid and its lithium salt mixture: experimental and theoretical study of seld-diffusion coefficients, conductivities and intermolecular interactions”, J. Phys. Chem. B, 114, 16329, (2010)

77. M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko, M. Kono, “Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries”, Journal of power sources. 162, 1, 8, 658, 2006

78. T, Sugimoto, Y. Atsumi, M. Kono, M. Kikuta, E. Ishiko, M. Yamagata, M. Ishikawa, “Application of bis(flurosulfonyl)imide-based ionic liquid electrolyte to silicon-nickel-carbon composite anode for lithium-ion batteries”, Journal of power sources, 195, 18, 15, 6153, 2010

79. Y. Matsui, S. Kawaguchi, T. Sugimoto, M. Kikuta, T. Higashizaki, M. Kono, M. yamagata, M. Ishikawa, “Charge-discharge characteristics of a LiNi1/3Mn1/3Co1/3O2 cathode in FSI-based ionic liquids”, Electrochemistry, 80, 10, 2012

80. M. yamagata, K. Tanaka, Y. Tsuruda, Y. Sone, S. Fukuda, S. Nakasuka, M. Kono, M. Ishikawa, “The first lithium-ion battery with ionic liquid electrolyte demonstrated in extreme environment of space”, Electrochemistry, 83, 10 918, 2015

81. A. S. Best, A. I. Bhatt, A. F. Hollenkamp, “Ionic liquids with the bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology”, Journal of the electrochemical society. 157, 8, A903, 2010

82. R. S. Kuhnel, M. Lubke, M. Winter, S. Passerini, A. Baluducci, “Suppresion of aluminum current collector corrosion ion ionic liquid containing elecrtolytes”, Journal of power sources, 214, 15, 178, 2012

83. Y. Ugata, M. L. Thomas, T. Mandai, K. Ueno, K. Dokko, and M. Watanabe, “Li-ion hopping conduction in highly concentrated lithium bis(fluorosulfonyl)amide/dinitrile liquid electrolytes”, Phys. Chem. Chem. Phys., 21, 9759 (2019)

84. K. Fuhii, H. Hamano, H. Doi, X. Song, S. Tsuzuki, K. Hayamizu, S. Seki, Y. Kameda, K. Dokko, M. Watanabe, Y. Umebayashi, “Unusual Li+ ion solvation structure in bis(fluorosulfonyl)amide based ionic liquid” J. Phys. Chem. C, 117, 38, 19314, (2013)

85. D. Y. Wang, J. C. Burns, J. R. Dahn, “A systematic study of the concentration of lithium hexafluorophosphate(LiPF6) as a salt for LiCoO2/Graphite pouch cells”, Journal of the electrochemical society, 161, 9 A1278, 2014

86. C. Y. Wang, G. Zhang, S. Ge, T. Xu, Y. Ji, X. G. Yang, Y. Leng, “Lithium-ion battery structure that self-heats at low temperature”, Nature, 529, 515, (2016)

87. X. G. Yang, T. Liu, C. Y. Wang, “Thermally modulated lithium iron phosphate batteries for mass- market electric vehicles”, Nature energy, 6, 176, (2021)

88. S. Ahmed, I. Bloom, A. N. Jansen, T. Tanim, E. J. Dufek, A. Pesaran, A. Burnham, R. B. Carlson, F. Dias, K. Hardy, M. Keyser, C. Kreuzer, A. Markel, A. Meints, C. Michelbacher, M. Mohanpurkar, P. A. Nelson, D. C. Robertson, J. Zhang, “Enabling fast charging -A battery technology gap assessment”, Journal of power sources, 367, 1, 250, 2017

89. J. Conder, R. Bouchet, S. Trabesinger, C. Marino, L. Gubler, C. Villevieille, “Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction”, Nature energy, 2, 17069, 2017

90. K. Beltrop, P. Meister, S. Klein, A. Heckmann, M. Grunebaum, H. D. Wiemhofer, M. Winter, T. Placke, “Does size really matter? New insights into the intercalation behavior of anions into a graphite-based positive electrode for dual-ion batteries”, Electrochimica Acta, 209, 44, (2016)

91. H. Matsumoto, N. Terasawa, T. Umecky, S. Tsuzuki, H. Sakaebe, K. Asaka, K. Tatsumi, “Low melting and electrochemically stable ionic liquids based on asymmetric fluorosulfonyl(trifluoromethylsulfonyl)amide”, Chemistry letters, 37, 10, (2008)

92. C. Liu, X. Ma, F. Xu, L. Zheng, H. Zhang, W. Feng, X. Huang, M. Armand, J. Nie, H. Chen, Z. Zhou, “Ionic liquid electrolyte of lithium bis(fluorosulfonyl)imide/N-methyl-N-propylpiperidinium bis(fluorosulfonyl)imide for Li/natural graphite cells: Effect of concentration of lithium salt on the physicochemical and electrochemical properties”, Electrochimica Acta, 149, 370, (2014)

93. D. M. Piper, T. Evans, K. Leung, T. Watkins, J. Olson, S. C. Kim, S. S. Han, V. Bhat, K. H. Oh, D. A. Buttry, S. H. Lee, “Stable silicon-ionic liquid interface for next-generation lithium-ion batteries” nature communications, 6, 6230, (2015)

94. H. Yoon, A. S. Best, M. Forsyth, D. R. Macfarlane,P. C. Howlett, “Physical properties of high Li- ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes”, Phys. Chem. Chem. Phys., 17, 4656, (2015)

95. A. Heist, S. H. Lee, “Improved stability and rate capability of ionic liquid electrolyte with high concentration of LiFSI”, Journal of the electrochemical society, 166, 10, 1860, (2019)

96. H. J. Lee, Z. Brown, Y. Zhao, J. Fawdon, W. Song, J. H. Lee, J. Ihli, M. Pasta, “Ordered LiNi0.5Mn1.5O4 cathode in bis(fluorosulfonyl)imide-based ionic liquid electrolyte: importance of the cathode-electrolyte interphase”, Chem. Mater., 33, 1238, (2021)

97. D. Liu, C. Kim, A. Persa, D. Joël, W. Zhu, S. C. Martin, A. Forand, M. Dontigny, C. Gagnon, H. Demers, S. Delp, J. Allen, R. Jow, K. Zaghib, “High-voltage lithium-ion battery using substituted LiCoPO4: electrochemical and safety perfomrnace of 1.2 Ah pouch cell”, Materials, 13, 4450, (2020)

98. Y. Liu, J. Harlow, J. Dahn, “Micro structural observations of ”Single crystal” positive electrode materials before and after long term cycling by cross-section scanning electron microscopy”, Journal of the electrochemical society, 167, 020512, (2020)

99. J. Li, H. Li, W. Stone, R. Weber, S. Hy, J. Dahn, “Synthesis of single crystal LiNi0.5Mn0.3Co0.2O2 for lithium ion batteries”, Journal of the electrochemical society , 164, 14, A3529, (2017)

100. J. Li, A. R. Cameron, H. Li, S. Glazier, D. Xiong, M. Chatzidakis, J. Allen, G. A. Botton, J. R. Dahn, “Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells”, Journal of the electrochemical society, 164, 7, A1534, (2017)

101. R. Weber, C. R. Fell, J. R. Dahn, S. Hy, “Operando X-ray Diffraction study of polycrystalline and single-crystal LixNi0.5Mn0.3Co0.2O2”, Journal of the electrochemical society, 164, 13, A2992, (2017)

102. A. Liu, N. Zhang, J. E. Stark, P. Arab, H. Li, J. R. Dahn, “Synthesis of Co-free Ni-rich single crystal positive electrode material s for lithium ion batteries: Part 1. Two-step lithiation method for Al- or Mg-doped LiNiO2”, Journal of the electrochemical society, 168, 040531, (2021)

103. A. Liu, N. Zhang, J. E. Stark, P. Arab, H. Li, J. R. Dahn, “Synthesis of Co-free Ni-rich single crystal positive electrode material s for lithium ion batteries: Part 2: One-step lithiation method of Mg-Doped LiNiO2”, Journal of the electrochemical society, 168, 050506, (2021)

104. S. Lee, W. Li, A. Dolocan, H. Celio, H. Park, J. H. Warner, A. Manthiram, “In-depth analysis of the degradation mechanisms of High-Nickel, Low/No-cobalt layered oxide cathodes for lithium-ion batteries”, Advanced Energy Materials, 2100858, (2021)

105. A. O. Kondrakov, A. Schmidt, J. Xu, H. Gebwein, R. Moning, P. Hartmann, H. Sommer, T. Brezesinski, J. Janek, “Anistropic lattice strain and mechanical degradation of high- and low- nickel NCM cathode materials for Li-ion batteries”, J. Phys. Chem. C., 121, 3286, (2017)

106. K. J. Park, H. G. Jung, L. Y. Kuo, P. Kaghazchi, C. S. Yoon, Y. K. Sun, “Improved cycling stability of Li[Ni0.9Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-ion batteiries”, Adv. Enrgy. Mater., 8, 1801202, (2018)

107. Q. Cheng, Y. Zhang, “Multi-channel graphite for high-rate lithium ion battery”, Journal of the electrochemical society, 165, 5, A1104, (2018)

108. Q. Cheng, R. Yuge, K. Nakahara, N. Tamura, S. Miyamoto, “KOH etched graphite for fast chargeable lithium-ion batteries”, Journal of Power Sources, 284, 15, 258, (2015)

109. K. Pan, F. Zou, M. Canova, Y. Zhu, J. H. Kim, “Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-ion batteries”, Journal of Power Sources, 413, 15, 20, (2019)

110. B. Wang, J. Ryu, S. Choi, X. Zhang, D. Pribat, X. Li, L. Zhi, S. Park, R. S. Ruoff, “Ultrafast- charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities”, ACS Nano, 13, 2, 2307, (2019)

111. K. J. Griffith, Y. Harada, S. Egusa, R. M. Ribas, R. S. Monteiro, R. B V. Dreele, A. K. Cheetham, R. J. Cava, C. P Grey, J. B. Goodenough, “Titanium niobium oxide: from discovery to application in fast-charging lithium-ion batteries”, Chem. Mater. 33, 1, 4, (2021)

112. N. Takami, K. Ise, Y. Harada, T. Iwasaki, T. Kishi, K. Hoshina, “High-energy, fast-charging, long-life lithium-ion batteries using TiNb2O7 anodes for automotive applications”, Journal of Power Sources, 396, 31, 429, (2018)

113. Q. Li, S. Jiao, L. Luo, M. S. Ding, J. Zheng, S. S. Cartmell, C. M. Wang, K. Xu, J. G. Zhang, W. Xu, “Wide-temperature electrolytes for lithium-ion batteries”, Appl. Mater. Interfaces, 9, 18826, (2017)

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る